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Figure 1: (a) Summary ofαMS(MZ) from nf = 2+ 1 lattice simulations, compared with PDG 2008 average
(black) [10] discussed in the text. The red points are for determinations using staggered fermions, the green
for one using Wilson and the blue overlap fermions. The plot is taken from [9]. (b)αT from the lattice, after
applying the appropriate lattice-artefacts curing procedure, confronted to the continuum formula obtained
from PT and including OPE non-perturbative corrections. The solid line is for the complete non-perturbative
expression, while dotted stands only for the perturbative four-loop one,αpert

T . The momentum in the x-axis is
expressed in lattice units ofa(β = 3.9)−1. The plot is taken from ref. [7].

1. Introduction

ΛMS is the scale of strong interactions. This parameter has to betaken from experiment and can
be determined from the running of the QCD coupling constant.This latter had been calculated in the
past by following a variety of non-perturbative ways on the lattice (see [1, 2, 3, 4, 5, 6] and references
therein) from quenched andNf = 2 gauge configurations. The comparison of those results withthe
experimental determinations of the Strong coupling,αS(MZ), is completly meanignless because of
the inaccesibility of the threshold scales ofµ = muu,d We will very shortly comment first on the very
recent reported progress on the lattice determinantion ofαS(MZ) from Nf = 2+1 simulations, where
perturbation theory is used for the matching at the threshold for the charm mass,µ = O(1) GeV, from
Nf = 3 toNf = 4, implying not to take into account the non-perturbative effects, still important at this
scale. Then, we will focussed on the study of the running itself of the Strong coupling through the
comparison between the perturbative and lattice determinations ofαS from the ghost-gluon coupling
over a large momentum window [7]. This has been done from quenched lattice simulations and with
Nf = 2 twisted mass quark flavours [8] and reveals the presence of adimension-two〈A2〉 condensate,
signaling that momenta considered in lattice simulation are in a non-perturbative region.

2. αMS(MZ) from the lattice

There have been very recent estimates ofαMS(MZ) by applying different procedures (for a recent
report, see section 4.1 of [9]) from lattice simulations.

In ref. [11], the couplingαV defined from Wilson loops is computed through lattice perturba-
tion theory, and then matched toαMS(µ) at three-loop. The authors of ref. [12] use the continuum
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three-loop expression of a moment of charm current-currentcorrelation function and getαMS by
comparison with the lattice estimates of the same moment. The work of ref. [13] use step scaling
of the SF coupling, where the renormalization scale is set from the inverse linear lattice extension
µ = 1/L, and matching toMS with three-loops PT. Finally, in ref. [14], the continuumvacuum polar-
ization function has been obtained through operator product expansion and the relevant coefficients
has been calculated up to three-loops, the renormalizationscale being set from the size of the in-
jected momentum at the current. The results ofαMS(MZ) estimates from those procedures appear
summarized in Fig. 1.(a).

3. Lattice computation of the coupling in the Taylor scheme

In ref. [7], we calculate the strong coupling constant from the ghost-gluon vertex through

αT(µ2) ≡
g2

T(µ2)

4π
= lim

Λ→∞

g2
0(Λ2)

4π
G(µ2,Λ2)F2(µ2,Λ2) , (3.1)

whereF andG are the ghost and gluon dressing functions andΛ = a−1(β ) is the regularisation cut-
off. This coupling is renormalized in the MOM Taylor scheme,where the ghost-gluon vertex is finite
and the only form factor surviving goes to 1 [15] because the incoming ghost momentum is taken to
vanish. Hereg0 is the bare strong coupling andµ the renormalization scale. This definition can be
used in a lattice determination and is to be compared with a theoretical formula in order to extract
ΛQCD:

αT(µ2) = αpert
T (µ2)

(

1+
9

µ2

g2
T(q2

0)〈A
2〉R,q2

0

4(N2
C−1)

)

, (3.2)

whereαpert
T (µ2) can be obtained at the four-loop level [7, 16] in PT and, to cure the observed mis-

match beetween lattice and perturbative determination, a non-perturbative OPE correction to the
perturbative formula is to be considered. This accounts forthe minimal power correction associated
to the presence of a dimension-two〈A2〉 condensate [5, 7]. TheΛT in the MOM Taylor-scheme and
the dimension-two gluon condensate are to be obtained from the confrontation, over a large momen-
tum window, of eq. (3.2) to the lattice data computed from eq.(3.1) and properly cured of lattice
artefacts, as explained in [5]. Then, we applied this procedure and exploited the ETMC lattice con-
figurations [17] withNf = 2 twisted-mass dynamical quark flavours and, after the conversion ofΛT

to MS, obtain (see Fig. 1.b):

ΛMS = (330±23)×
0.0801 fm

a(3.9)
MeV , g2(q2

0)〈A
2〉q0 = (2.4±0.8)×

(

0.0801 fm
a(3.9)

)2

GeV2 ;(3.3)

wherea(3.9) = 0.0801(14) fm [17]. Of course, with only two sea quark flavours, the computation
of αMS(mZ) is still inaccesible. A computation fromNf = 4 lattice simulations is now in progress.

4. Conclusions

We shortly reported on some very recent computation ofαMS(mZ) from Nf = 2+1 lattice sim-
ulations, allowing a matching fromNf = 3 to Nf = 4 wich uses PT and neglects the impact of the
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still important non-perturbative impact at the charm quarkmass. Then, we also reported on the com-
putation of the Strong coupling from the ghost-gluon vertexover a large momentum window, which
reveals the impact of the non-perturbative effects at energies of the orderO(1) GeV and leads to an
estimate ofΛMS for Nf = 2 consistent with other independent computations.
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