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Exclusive reactions at large momentum transfer allow to probe the structure of hadrons, in partic-
ular of the pion and nucleon, on the amplitude level. They are challenging both the experimental
measurements and the theoretical understanding of Quantum Chromodynamics. We shortly in-
troduce the concept of factorization, emphasize the importance of new experimental nucleon and
photon-to-pion form factor measurements, and report on phenomenological progress in the de-
scription of hard exclusive electroproduction of photons, providing access to generalized parton
distribution.
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1. Introduction

Quantum Chromodynamics (QCD) is widely accepted as the Gauge Field Theory that describes the
dynamics of constituents that make up hadrons. Historically, this theory grew up from the quark
model [1] and the observed scaling behavior in deeply inelastic electron scattering (DIS) [2]. These
measurements at the Stanford Linear Accelerator Center showed that the DIS structure function is
(nearly) independent on the photon virtuality Q2 [3], which was explained by the incoherent scat-
tering of so-called partons [4, 5]. These partons where then identified with quarks and gluons,
where the underlying gauge symmetry of QCD is SU(3) [6]. It has been immediately realized in
perturbation theory that the running QCD fine structure constant αs(Q2) vanishes for asymptoti-
cally large momentum transfer Q2 → ∞ [7, 8]. On the other hand there is no experimental evidence
so far that quarks exist as free particles, hence, they are confined inside of hadronic matter. This
immediately challenges our theoretical capabilities to solve the bound state problems in terms of
quark and gluonic degrees of freedom. Since the asymptotic states are given as bound states of
the elementary particles in the theory, it is also not straightforward to employ scattering theory.
It might be obvious that a QCD understanding is essential for the exploration of new phenomena
in high-energy scattering experiments at the Large Hadron Collider, for the understanding of the
muon anomalous magnetic moment or the weak-interaction phenomena in B-meson physics.

QCD remains an unsolved theory; however, in the last four decades various tools have been
developed to overcome the fundamental challenges. Most important for the QCD phenomenol-
ogy of middle- and high-energy scattering experiments is the concept of short- and long-distance
factorization [18]. E.g., the DIS structure function, depending on the Bjorken variable xBj and Q2,

F2 = xBj ∑
q=u,d,···

∫ 1

xBj

dx
x

Cq

(xBj

x
,αs(Q

2)
)

q(x,Q2)+O(1/Q2) , Cq(z) = e2
qδ (1− z)+O(αs),(1.1)

factorizes in perturbatively calculable coefficients Cq and parton distribution functions (PDFs) q,
where x is the longitudinally quark momentum fraction. While in DIS and in inclusive electron-
positron scattering one can utilize the optical theorem and relies on the (light-cone) operator prod-
uct expansion (OPE) of the time-ordered product of two electromagnetic currents, a diagrammatical
approach is needed for the description of other inclusive processes such as semi-inclusive deep in-
elastic scattering, electron-proton annihilation, and inclusive hadron-hadron scattering processes.
In such a factorization framework one uses the fact that collinear singularities in a partonic scatter-
ing process, which appear after the transverse degrees of freedom are integrated out, are universal
and can be absorbed in PDFs. These non-perturbative quantities are process independent, however,
they are conventionally defined within a factorization scheme in terms of light-ray operators,

q(x,µ2) =

∫ ∞

−∞

dλ
2π

eiλx 2n·P⟨P|ψ̄q(λn)n · γ ψq(−λn)|P⟩
∣∣∣
µ2
, n2 = 0 (for n ·A = 0), (1.2)

where µ2 denotes the factorization scale that is associated with the hard-scale. The PDFs are
extracted from experimental measurements within global fitting, where their evolution w.r.t. µ2

is perturbatively governed by the Dokshitzer-Gribov-Lipatov-Alterelli-Parisi (DGLAP) equations
[19, 20, 21], which read in the quark non-singlet channel:

µ2 d
dµ2 q(x,µ2) =

∫ 1

x

dy
y

P(x/y,αs(µ2))q(y,µ2) , P(z,α) =
α
2π

P(0)(z)+O(α2) . (1.3)
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The state of the art in the collinear factorization framework, applied to inclusive processes, is
now becoming the next-to-next-to-leading (NNLO) approximation, e.g., at this order the DGLAP
kernels were evaluated in the pioneering work of Ref. [22, 23]. This might reduce the theoretical
uncertainties in the description of inclusive processes to the few percent level or so.

2. Counting rules, factorization, and perturbative description of exclusive processes

Often the scaling behavior, observed in experiment, is employed as a criteria to judge on the under-
lying mechanism. The asymptotic scaling behavior for various exclusive observables was formally
derived from (quark) dimensional counting [24, 25] within the assumption that quark binding ef-
fects do not induce an additional, i.e., hadronic, scale. These counting rules state, e.g., that the
large s behavior of the cross section for an exclusive process A+B →C+D behaves as

dσ
dt

=
1

sn−2 f (t/s) for s → ∞, t/s−fixed, (2.1)

where n is the total number of leptons, photons, and quarks. For the pion, the photon-to-pion
transition, the Dirac and Pauli form factors dimensional counting state for Q2 =−t → ∞:

Fγπ→π(Q2) ∝
1

Q2 , Fγγ⋆→M(Q2) ∝
1

Q2 , Fγ⋆p→p
1 (Q2) ∝

1
Q4 , Fγ⋆p→p

2 (Q2) ∝
1

Q6 . (2.2)

However, already in the early days it is been realized in quark model calculations for wide angle
scattering [26] that, e.g., pinch singularities might spoil the dimensional scaling rules (2.1).

Inspired by the phenomenological success of counting rules and asymptotic freedom, collinear
factorization has been also proposed for exclusive processes such as elastic form factors [27, 28],
transition form factors, wide angle scattering processes [29], and heavy meson decays [30]. Here,
the underlying idea is that the hard probe resolves entirely the partonic content by gluon (or quark)
exchanges, which reproduces up to logarithmic corrections the result of dimensional counting. The
non-perturbative quantities are now described in terms of meson or baryon distribution amplitudes
that are defined to leading twist accuracy in terms of two-body and three-body light ray operators,
respectively. For instance, the pion distribution amplitude reads

ϕ(u,µ2) =

∫ ∞

−∞

dλ
2π

eiλ (2u−1)n·P⟨0|ψ̄(λn)n · γ γ5ψ(−λn)|π0(P)⟩
∣∣∣
µ2
, n2 = 0, (2.3)

which evolution is governed by the Efremov-Radyushkin-Brodsky-Lepage (ERBL) equation [27,
28]. An alternative mechanism was suggested by Feynman. Here, only the struck parton takes part
on the hard reaction while the spectator system remains unresolved. Since of lack of experimental
data, a controversial discussion on the underlying mechanism can be found in the literature [31, 32].

Alternatively, to the collinear factorization framework, it has been proposed to employ a modi-
fied factorization scheme, including Sudakov suppression, [33, 34] or to use (light-cone) sum rules
[35]. In particular, for the description of heavy meson decays the effective soft-collinear theory
(SCET) has been developed [36]. In all these frameworks the distribution amplitudes, cf. 2.3, are
utilized as non-perturbative input, where it is rather popular to take a truncated (collinear) con-
formal partial wave expansion, which coefficients are given by certain u-moments. The first few
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Figure 1: Scaled ratio of proton form factors (left) from Ref. [40] and scaled photon-to-pion transition form
factors at large Q2 from Ref. [43] (right). For details see the corresponding references.

moments [30] can be evaluated from sum rules or in principle be measured with Lattice QCD,
where already the forth moment is hardly to access in present simulations.

Let us now provide two examples for the violation of dimensional scaling at accessible mo-
mentum transfer. As displayed in the left panel of Fig. 1 by the filled circles, squares and triangles,
polarization transfer measurements of the electromagnetic proton form factors up to Q2 ≃ 9 GeV2

[37, 38, 39, 40] shows that the ratio Q2F2(Q2)/F1(Q2) drastically deviates from a constant behav-
ior, expected from the dimensional counting rules (2.2). For the Pauli form factor F1(Q2) it is
widely assumed that collinear factorization holds true at leading twist, however, so far this is not
verified in a NLO calculation. Collinear factorization might be broken for the Dirac form factor
F2(Q2), which is a higher twist quantity [41]. Pragmatically, the authors of Ref. [42] provided a LO
result, where they regularized the non-factorizable end-point singularities. This yields a logarith-
mical modification, depending on the regularization parameter Λhadron, of the dimensional counting
rule,

Q2F2(Q2)

F1(Q2)
∝ log2 Q2

Λ2
hadron

,

where Λhadron can be adjusted to the observed scaling violation (dashed, labeled with Belitsky).
Recently, a striking scaling behavior has been found for the photon-to-pion transition form

factor, measured by the BaBar collaboration in electron-positron scattering [43]. As shown in
the right panel of Fig. 1, the new BaBar data (filled circles) indicate for Q2 & 10 GeV2 a strong
deviation from the dimensional counting rule (2.2), which seemed to be compatible with both new
Q2 . 10 GeV2 and previous data (triangle). Note also that an anomalous scaling behavior is not
established in the new η and η ′ transition form factor data from BaBar [44]. Theoretically, the pion
transition form factor is the simplest observable that can be obtained from the light-cone OPE,

Fγ∗γ→π(Q2) =
2

3Q2

∫ 1

0
du [1+O(αs)]

ϕ(u,Q2)

u
+O(1/Q3) . (2.4)

In a specific scheme, respecting conformal symmetry, the radiative corrections to the hard scattering
amplitude are even known to NNLO accuracy [47], where their size does not indicate a theoretical
issue. This form factor was also utilized in a model dependent manner to pin down the pion
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Figure 2: GPDs are associated in the central region |x| ≤ η with a mesonic-like t-channel exchange (left)
and in the outer region η ≤ |x| with a partonic s-channel exchange (right).

distribution amplitude [45, 46] (see grayed area in Fig. 1). We emphasize that factorization consist
of two building blocks, the short distance dynamics which is here, as in (polarized) DIS, controlled
by the OPE and the end-point behavior of the non-perturbative pion DA. Various attempts have
been given to explain the new BaBar data. The most drastic solution is that the pion DA is almost
flat, meaning that factorization does not work, and evolution is not applicable [48], emphasizing
the special role of the pion [49]. Other explanations are based on a effective quark mass, leading to
a logQ2/m2

eff modification [50], sizeable higher–twist contributions [51], the (updated) inclusion
of transverse degrees of freedom [52, 53], or a revised light-cone sum rule analysis [54].

3. Hard electroproduction of photons and mesons: imaging the nucleon

Another class of hard exclusive processes is the hard photon and meson electroproduction off nu-
cleon. Here the non-perturbative physics is contained in generalized parton distributions (GPDs)
[55, 56, 57]. They are defined by off-forward matrix elements off light-ray operators

qS1S2(x,η , t,µ2) =

∫ ∞

−∞

dλ
2π

eiλxn·P⟨S2,P2|ψ̄(λn)n · γ ψ(−λn)|P1,S1⟩
∣∣∣
µ2
, n2 = 0, (3.1)

depending on the longitudinal momentum fraction x, the skewness η = n · (P1 −P2)/n · (P1 +P2),
i.e., the longitudinal momentum fraction in the t-channel, the momentum transfer square t, and the
factorization scale µ2. Moreover, one might describe the target spin content within a form factor
decomposition F = {H,E, H̃, Ẽ}, where H (H̃) and E (Ẽ) GPDs are the target helicity conserved
and flip form factors for a unpolarized (polarized) quark operator (3.1), respectively. In such a
description the partonic content of the nucleon is not entirely resolved and so the Feynman mech-
anism is somehow implemented. For these hard exclusive processes factorization theorems have
been proven in the collinear framework at twist-two level [58, 59]. Deeply virtual Compton scat-
tering (DVCS) off nucleon is considered as the theoretically cleanest process. Its amplitude can be
parameterized by twelve Compton form factors (CFFs) [66], which are given in terms of GPDs,
e.g., to LO and twist-two accuracy:

F (xBj, t,Q2)
LO
=
∫ 1

−1
dx
[

1
ξ − x− iε

∓ 1
ξ + x− iε

]
F(x,η = ξ , t,Q2) . (3.2)

Here, the Bjorken variable xBj might be set equal to 2ξ/(1+ξ ). Analogous formulae hold for the
LO description of transition form factors (TFFs), measurable in deeply virtual electroproduction of
mesons (DVEM) within the exchange of a longitudinally polarized photon. However, the normal-
ization of DVEM amplitudes is also determined by the meson distribution amplitude. The GPD
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evolution equation generalizes both the DGLAG and ERBL one, e.g., in the non-singlet case,

µ2 d
dµ2 F(x,η , t,µ2) =

∫ 1

−1

dy
η

V (x/η ,y/η ,αs(µ))F(y,η , t,µ2) . (3.3)

All then twist-two kernels are known to NLO accuracy [71]. Together with the radiative corrections
to the hard-scattering amplitudes [72, 73, 74], the collinear formalism is available at NLO accuracy.

Comparing the definitions (1.2) and (3.1), one realizes that GPDs, which are defined on am-
plitude level, reduces in the forward case to common PDFs. Moreover, the lowest x-moment of H
and E GPDs provide the definition of (partonic) Pauli and Dirac form factors. Most attention GPDs
have received by the fact that their second moment is related to the energy-momentum tensor form
factors Aq and Bq, which appear in the proton spin sum rule that has been suggested by X. Ji [57]:

1
2
= JQ + JG, JQ = ∑

q=u,d,···
Jq, Ji(Q2) = Ai(Q2)+Bi(Q2). (3.4)

Furthermore, it has been realized that GPDs allow for a three-dimensional imaging of nucleons and
nuclei [60]. In the zero-skewness case the Fourier transform

ρ(x,b,Q2) =

∫ ∞
−∞d2⃗∆ ei⃗∆⃗bH(x,η = 0, t = −⃗∆2,Q2)∫ ∞

−∞d2⃗∆ H(x,η = 0, t = −⃗∆2,Q2)
(3.5)

has the probabilistic interpretation to struck a parton in the infinite momentum frame with momen-
tum fraction x and transverse distance b from the proton center [61]. On the partonic level one
might view GPDs as a two-fold object that arises in the central region |x| ≤ η from a mesonic-like
t-channel exchange and in the outer region η ≤ |x| from a partonic s-channel view, cf. Fig. 2. Both
regions are dual to each other, except for a so-called D-term [62] that lives entirely in the central
region. One another interesting aspect is that GPDs can be represented as the overlap of light-cone
wave functions (LCWFs), where the parton number is conserved in the outer, however, not in the
inner region. Such a representation allows to establish a model dependent link of GPDs and trans-
verse momentum dependent PDFs. However, it has been understood that a LCWF model has to
respect the underlying Lorentz symmetry to obtain a GPD that satisfy polynomiality constraints. If
such a model LCWF is at hand, one might be able to restore the whole GPD from the overlap in
the outer region [14]. In other words one essentially models the Field Theoretical aspects of QCD,
which immediately provides the known challenges: understanding of Regge behavior or whether
the generic large −t and x behavior arises from the perturbative [15] or non-perturbative region
[13]. In fact, GPDs build up a whole framework for description of hadron structure [63, 64].

Much effort to measure hard exclusive electroproduction processes has been spent in the last
decade by the H1 and ZEUS collaborations (DESY) in the small xBj region and at the fixed target
experiments HERMES (DESY), CLAS (JLAB), and Hall A (JLAB) in the moderate xBj region.
The intricate variable dependence of GPDs makes the phenomenology on the first view to a cum-
bersome task. Indeed, for almost one decade only model predictions were given, which could not
reproduce the growing set of DVCS data. For hard meson electroproduction a hand-bag model
approach, including transverse degrees of freedom and employing a specific GPD ansatz [65], re-
produces experimental data at small and moderate values of xBj.

6
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Figure 3: Quark (a) and gluon (b) transverse profile function (3.5) for Q2 = 4GeV2 and x= 10−3 is obtained
from a six parameter DVCS fit, see Ref. [75] for details.

Flexible GPD models, based on a Mellin-Barnes integral, were utilized the first time in fits to
DVCS at small xBj to LO, NLO, and NNLO accuracy, where χ2/d.o.f.≈ 1 [75]. Here one accesses
the DVCS cross section, which is essentially expressed by H and E CFFs:

dσDVCS

dt
(W, t,Q2)≈ πα2

Q4

W 2x2
Bj

W 2 +Q2

[
|H |2 − t

4M2
p
|E |2

](
xBj, t,Q2)∣∣∣

xBj≈ Q2

W2+Q2

. (3.6)

At small xBj H arises from a "pomeron" exchange and the findings might be reparameterized as

ℑmH (xBj, t,Q2)∼ πh(t,Q2)x−α(Q2)−α ′(Q2)t
Bj . (3.7)

In accordance with pQCD evolution, one finds that the intercept α , which is slightly larger than one
at Q2

0 = 4 GeV2, increases with growing Q2, while the slope parameter α ′ ∼ 0.15/GeV2 is smaller
than for a soft pomeron and decreases with growing Q2. The target helicity-flip E CFF might be
associated with the spin-flip "pomeron" [76]. It might be sizeable, however, in the cross section
(3.6) it is suppressed by the factor ⟨⟨|t|⟩⟩/4M2

p ∼ 0.05. Another handle on H and E CFFs is the
beam charge asymmetry that arises from the interference of Bethe-Heitler and DVCS amplitudes,

ABC(ϕ) =
dσ+−dσ−

dσ++dσ− ∝ xBj

(
F1(t)ℜeH − t

4M2
p

F2(t)ℜeE

)
cos(ϕ)+ · · · . (3.8)

Unfortunately, the experimental errors [77] do not allow to separate H and E contributions. Since
of the large lever arm 3GeV2 .Q2 . 80GeV2, evolution can be used to decompose the sea quarks
and gluons. The findings for the transverse profiles (3.5) of quarks and gluons are shown in Fig. 3.

In fixed target kinematics one might rely on Q2-scaling, where the "dispersion relation", e.g.,

ℑmF (xBj, t,Q2)
LO
= πF(ξ ,ξ , t,Q2) , F = {H,E, H̃, Ẽ} , (3.9)

ℜe
{

H

E

}
(xBj, t,Q2)

LO
= PV

∫ 1

0
dx

2x
ξ 2 − x2

{
H
E

}
(x,x, t,Q2)±D(t,Q2), (3.10)

offers a simple tool1 to access CFFs or GPDs at LO from measurements [70]. Thereby, the integral
(3.10) is taken as a sum rule to access GPDs on the cross-over line, even in the region that is exper-

1At LO one might view the GPD on the η = x cross-over line as “spectral function" (3.9). The GPD support ensures
that the real part (3.10) can be alternatively evaluated from Eq. (3.2), where the subtraction constant D can be calculated
from either H or E [67, 68, 69]. To pin down the GPD in the outer region x ≥ η , one might utilize evolution (3.3).

7
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imentally not accessible. In these kinematics one uses the interference of Bethe-Heiter and DVCS
amplitudes to access various observable, which are approximatively given as a linear combination
of CFFs and nucleon form factors. Neglecting, the presumable small transverse photon helicity
flip contributions, one can at least in principle access the imaginary and real part of all remaining
four twist-two and four twist-three related CFFs. Such a program is only doable if both kinds of
polarized electron beams are present and the polarization of the target can be adjusted in longitudi-
nal and both transverse directions. At the HERMES experiment a variety of charge and single spin
asymmetries were published for ⟨⟨xBj⟩⟩ ∼ 0.1, unfortunately, with rather large uncertainties. The
CLAS experiment provided also beam spin asymmetries and the HALL A experiment even sums
and differences of electron helicity dependent cross sections. Often, it is thought that all of these
observables are dominated by the interference term and by H GPD. However, the magnitude and the
steep raise of the unpolarized cross section measurements at xBj = 0.36 from HALL A raise some
concern on this assumption. In Fig. 4 we show some fitting results. The solid, dotted and dash-
dotted lines arise from "dispersion integral" fits, where the small-x behavior of sea-quarks were
pinned down from H1 and ZEUS data and evolved backwards to the scale Q2 ∼ 2 GeV2. The gap
between these curves somehow quantifies the importance of HALL A data. So far an error estimate
has not been given, which is considered as an intricate task. The dotted line is a model prediction,
used in the description of hard electroproduction of light vector mesons. Its value overshoots the
DVCS results, which, however, in spite of theoretical and experimental uncertainties it cannot be
viewed as critical. The filled squares are CFF fits, asking for the value of the real and imaginary part
of twist-two CFF, where model dependent bounds has been utilized for the unconstrained degrees
of freedom. The large error bars, which size is correlated with the model dependent boundaries,
mainly reflect the uncertainty that arise from the limited number of observables. This is also clearly
demonstrated by the filled diamonds, where measurements on a longitudinal polarized target have
been included and so the size of error bars is drastically reduced. The circles finally arise from the
H dominance hypothesis and a GPD model, using a smeared expansion in polynomials. Here the
smallness of errors reflects a more tied bound of the unconstrained degrees of freedom. Finally,
the triangles arise from a neural network fit within H dominance hypothesis, where only the ex-
perimental errors where propagated. We might conclude from the left panel in Fig. 4 that in spite
of lack of data, all of the DVCS results are compatible for 0.1 < xB j < 0.35, while the right panel
clearly reminds us that HALL A cross section measurements remain challenging.

4. Conclusions

Pioneering measurements at large Q2 revealed unexpected scaling behavior of elastic and transi-
tion form factors. These experimental results trigger a renewed debate on the underlying QCD
mechanism, including the basic question: Are the constituents entirely resolved in a hard exclusive
process? In the hard exclusive electroproduction of photons and mesons this question is irrelevant,
since the amplitudes are described here in terms of GPDs that incorporate the Feynman mech-
anism. These GPDs are now used as a tool to quantify the partonic picture of the nucleon (or
other hadrons). Phenomenologically, they are accessed within both the collinear factorization and
the hand-bag approach. The growing amount of data calls for a unique description, available in
the collinear factorization framework to NLO accuracy, in terms of flexible GPD models, which

8
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Figure 4: ℑmH /π obtained from different strategies: our DVCS fits [dashed (solid) curve excludes (in-
cludes) Hall A data from "dispersion relation" KM09a (KM09b) [75] and hybrid KM10b (dash-dotted) mod-
els], model prediction [78] (dotted), seven-fold CFF fit [79, 80] with boundary conditions (squares), H , H̃

CFF fit [81] (diamonds), smeared conformal partial wave model fit [82] within H GPD (circles).

requires also the development of software tools. On the experimental side, new high-luminosity
experiments with dedicated detectors are needed to get a deeper insight into both the underlying
QCD mechanism and the exploration of the nucleon. Finally, we like to apologize that not all
theoretical developments were even mentioned here, e.g., new non-perturbative quantities which
are generalized distribution amplitudes (the crossed analog of GPDs) [55, 83] and transition distri-
bution amplitudes [84] have been proposed for the description of two meson production via hard
photon fusion and exclusive hard processes in hadron-hadron scattering experiments, respectively.
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