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1. Intro

The dawn of the first astrophysical objects and the eventual reionizatitre Universe is
of fundamental importance, offering insight into many astrophysicalgases. Also, since ob-
servational surveys only pick out the rarest, most luminous objects, coadietion fields and
their effects on the intergalactic medium (IGM) may our only way of studying thenibaof our
galactic ancestors. Recent theoretical and observational advarecstading to shed light on a
complex and extended reionization epoch. Here | sketch-out three liteajgs of this process. |
briefly discuss the potential of the redshifted 21cm signal to probe rgtreionization, but also
the pre-reionization epochs. However, interpreting the upcoming ais@ms requires efficient
modeling tools, such as the recently developed 21cmFAST.

2. Onceupon atime... the story of cosmic dawn and reionization

2.1 Early stages

Hierarchal structure formation implies that the first astrophysical objeetskaly hosted by
so-called minihalos (with virial temperatur@g < 10* K). Cooling via atomic hydrogen is ineffi-
cient at such low temperatures, so baryons condense into these halbe walecular hydrogen
(H2) cooling channel. Without metals to aid in cooling and fragmentation, the firgtrgéons of
stars (so-called Poplll stars) are likely massive (with masses H00M..; [1, 5, 81]), yet short-
lived (with lifetimes of a few Myr; [61, 62]).

Poplll stars are likely to have very different properties from “nornmi&dipll stars, with harder
spectra, a factor of ten times more ionizing photons per baryon [61], aridug exotic, mass-
dependent fates (e.g., [29]). Accurately determining their propertiesation efficiency and
initial mass functions (IMFs) requires detailed numerical simulations and cestiprations of
parameter space (e.g., [73]).

These prehistoric giants have complex interactions with their surroundimgs, star forma-
tion in such small-mass halos is susceptible to feedback mechanisms. Modebegdaeires
introducing parameterized prescriptions for stellar properties and éstgsunulations to larger,
~ 1 Mpc scales. Feedback processes can come in three forrmehanical:supernovae (SNe)
can blow out gas from the surrounding shallow potential well, delayind kiea formation until
gas is re-accreted (e.g., [74, 75]); @)emical: evolution in the IMF depends on metal enrich-
ment [68, 65, 63], which is very inhomogeneous making it necessary telnttoe enrichment on
large scales (e.g., [70]); and (Bdiative radiation in various bands can either promote (positive
feedback) or suppress (negative feedback) future star formation.

Because it acts on very large scales and involves a large dynamic raegergy, it is likely
that radiative feedback is the most pivotal and complex of the feedbackanisms. Positive
radiative feedback can result when the enhanced free-electifrdrom ionizing photons (e.g.,
[56]) or hydrodynamical shocks [64] catalyzes the formation ef thereby enhancing the,H
cooling channel. Negative feedback can result from heating by ioniaitigtion which can photo-
evaporate gas in low-mass halos (e.g., [11]). Also, an active baakgmfuLyman-Werner (LW)
radiation (with photon energies in the 11.18-13.6eV range) can dissociatieud decreasing the
gas’s cooling capabilities (e.g., [28]).
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The first astrophysical objects can emit radiation in various bands.yX-generated from
accretion onto remnant black holes or massive X-ray binaries, haverleag free paths, but their
feedback effects seem to be mild [38, 34]. However, they can bems#pe for early IGM heating
and some degree of reionization (e.g., [9, 59, 50]). Feedback restrtimga LW background is
by definition negative, and can delay star formation in low mass halos, dieygeon the strength
of the background [37, 38, 82, 58]. Also depending on its strengttarsint (due to the short
lifetimes of Poplll stars) ionizing UV background (UVB) can have vasiéeedback regimes [57,
46, 47, 75, 74], especially in conjunction with the negative feedbadctsffof a LW background
[46, 47, 75]. Despite this complexity, it is likely that the final suppressiostarf formation inside
minihalos was regulated by the build-up of persistent UV or LW backgreuwefore the bulk
of reionization [25, 26]. However, the complexity of radiative feedbaokl/or an early X-ray
background could precipitate an extended early reionization epochywbidd allow a significant
amount of reionization to occur at late times~(6), and still be consistent with constraints from
the Wilkinson Microwave Anisotropy Probe (WMAP) [35].

2.2 Middle stages

After the initial, “fireworks” stage of Poplll-driven reionization, longered stars begin to
establish persistent UVBs. Reionization proceeds in an “inside-outidiagin large-scales, with
biased sources driving HIl regions to tens of Mpc in size (e.g., [2184), Larger, atomically-
cooled halos T > 10* K) start dominating the ionization budget. These are likely too faint to
image directly with current or upcoming instruments (e.g., [60, 80]), althougltan get close
with gravitational lensing surveys (e.g., [67, 52, 79]). Likewise, beeanf the inside-out nature
of reionization, most astrophysical objects during the epoch of reionizfitid themselves inside
large HIl regions, largely unaffected by the neutral IGM even whelilitaecupies a substantial
volume filling fraction. Thus most of the current observational probeseimhization (derived
from quasar proximity regions, damping wings in quasar and gamma ray(@R8) spectra, Lg
emitter (LAE) number density and clustering properties; see below) are fifectivee back when
the Universe is predominantly neutral.

Aside from these observational challenges, there are substantiattibabhurdles to over-
come when studying the middle stages of reionization. lonization structurieg dhis epoch can
span volumes over four magnitudes larger than the first-stars simulationssksicin the previous
section (see Fig. 1). To statistically capture the middle stages of reionizatioumaton boxes
need to be hundreds of Mpc in length, yet still be able to account for igpizidiation from small-
mass halos. The required dynamic range is daunting, and state-of-#ievalations are forced to
ignore minihalos and photon sinks, while also using approximate prescripti@ssign ionizing
luminosities to source halos (see the recent review in [72]). More appaba techniques have re-
cently been developed in order to overcome the challenge of such adauge of scales, including
sub-grid [33, 43] and semi-numerical [83, 49, 23, 2, 7, 69, 50] models

Additionally, our poor understanding of the early Universe means thg¢ lexplorations of
parameter space are required for any robust conclusion. Analyticlsioale been very useful in
this respect, predicting that HIl morphology is not very sensitive to lifigdsfhen normalized to
the same mean neutral fractioy, and also that sources are more important that ionizing sinks
in this regime [21, 19]. These predictions were confirmed by the first noaigrarameter studies



How the first generations of luminous baryons establishedtnay and UV background&ndrei Mesinger

& 2 GpC ——

¢% 7=,5.00
L xan)y =010

o 01 02 03 04 05 06 07 08 09 1

Figure 1: Scales of some early Universe simulations, with box sizes indicated invéognonits. Slices correspond to
metallicity maps from [76], and ionization structure from [43] and [48it(to right). The left and middle panels roughly
correspond to the current maximum box sizes of state-of-the-aréncah simulations of the first stars and the middle
stages of reionization, respectively. This figure highlights the dauntingrdic range of cosmological processes such
as reionization. In principle, one should continue “zooming-in” down thestscales (e.g., [61, 29]).

in [43]. Another parameter study, [48], combined 1D hydrodynamich&pse simulations with
large-scale 3D semi-numerical simulations of the UVB during reionization,candluded that
radiative feedback does not play a major role during this epoch. Re$sli€lo parameter studies
allow us to simplify various theoretical problems.

2.3 Final stages

As reionization progresses, HIl regions grow to be larger than the mearpéth of ionizing
photons through them, requiring even larger simulation boxes (see Fign is final regime,
sinks of ionizing photons, such as Lyman limit systems (LLSs) could regulatenbgress of
reionization [18], and its morphological structure [19, 7]. These atigor systems are likely found
in the filaments of the recently-ionized IGM, where the UVB is the weakesT[8 final “overlap”
stages of reionization could be delayed until either absorbers get phapmrated (e.g. [31]), or
the remaining neutral islands get ionized from the inside. The time-scaléwk® processes are of
orderAz~ 1. This, combined with the large cosmic variance during this epoch (e.g), fsijgests
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that the overlap stage is much more gradual than was initially predicted by soxatisbulations
(e.g., [24]). Itis also unlikely that these final stages leave a strongwadigmal imprint, such as a
sharp rise in the UVB [18]. Despite popular belief, current observatiamnot rule-out a very late
overlap, even at ~ 5 [36, 45, 41].

2.4 Observational constraints

Several model-dependent constraints@natz ~ 6 have been derived from various astrophys-
ical probes such as: (1) the size of the proximity zone around qudg8r${, but see [55, 4, 40]);
(2) a claimed detection of damping wing absorption from neutral IGM in quasectra ([53, 54],
but see [51)); (3) th@ondetection of intergalactic damping wing absorption in a GRB spectrum
([71], but see [44]); and (4) the number density and clustering of &ésnitters ([39, 27, 22, 32, 42],
but see [10, 52, 30]). Additionally, a direct lower limit on, was recently derived from the dark
covering fraction in the Ly and Lyg forests [41].

However, constraining the ionization state of the high-redshift Univisrsery difficult with
current observations, since they are not direct probes of HIl nobogly. For example, the Lyman
forests begin to saturatea} 5, becoming difficult to interpret (e.g., [66, 12, 3, 36, 45]). Similarly,
the dominant population of ionizing galaxiesNstwo orders of magnitude fainter than current de-
tection limits; and in any case, galaxies offer a very biased tracer of teicoadiation fields.
Luckily, there is a plethora of upcoming observations which should helprasvour understand-
ing: 21cm tomography, high-redshift IR spectra, wide-field LAE susye@nd improved E-mode
CMB polarization power spectra. Of these, arguably the 21cm line frartraldydrogen provides
the greatest potential for directly studying reionization in the near term.

3. The2lcm frontier and 21cmFAST

The cosmological 21cm signal uses the CMB as a back-light. The offget 81cm brightness
temperature from the CMB temperatuil, along a line of sight (LOS) at observed frequengy
can be written as (c.f. [20]):

T, H 1+2z 015\ Y2/ Qph?
6Tb(\/) == 27XH| <1— TS> (1+ 5r1|) <dVr/dr+H> ( 10 QMh2> <0023> mK, (31)

wherexy is the hydrogen neutral fractiofig is the gas spin temperaturg, is the optical depth at
the 21cm frequencyo, o (x,2) = p/p — 1 is the evolved (Eulerian) density contradt(z) is the
Hubble parametedyv; /dr is the comoving gradient of the line of sight component of the comoving
velocity, and all quantities are evaluated at redshiftvy /v — 1. The above equation also assumes
thatdv, /dr < H, which is generally true for the pertinent redshifts and scales.

The redshifted 21cm line carries with it much information, containing both plsysical &y
andTs) and cosmological (last four termsin eq. 3.1) terms (see [16, 17]). Hawi@ order to make
sense of the upcoming observations, one must disentangle the variousratyp Considering
the scales and uncertainties involved, this is a daunting task.

Recently “semi-numerical” tools have proven invaluable in overcoming tHestades. These
simulations use more approximate physics than numerical simulations, but arefaster. In
particular, the recent launch of 21cmFAST [50] (http://www.astro.princetiu~mesinger/Sim)
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provided the astronomical community a publicly-available tool specialize@dgbyarge-scale sim-
ulations of the 3D cosmological 21cm signal. For example, & 2&8lization of reionization with
21cmFAST is obtained in just a few minutes on a single CPU, with every stepiagreith cos-
mological hydrodynamic simulations into the quasi-non-linear regime [49, @4, Such speeds
facilitate rapid explorations of the vast parameter space, necessangeimreting upcoming ob-
servations.

Most studies thus far have focused on the reionization tgrm,making various simplifying
assumptions in eq. 3.1. The 21cm signal during reionization can indeedstelluaoh about the
relevant physical processes and intergalactic radiation fields. Hovtbee21cm signal also offers
us a precious glimpse into even earlier epochs, via the spin temperguterm.

The spin temperature can be written as (e.g. [20]):

T, X Tyt X T
1+ Xg + X

Tot= (3.2)
whereTk is the kinetic temperature of the gas, andis the color temperature, which is closely
coupled to the kinetic gas temperatuiig, ~ Tk [14]. From this equation, one can see that the
spin temperature interpolates between the CMB and the gas temperatures thdothrough two
coupling coefficients: (1) the collisional coupling coefficient,which requires high densities and
is effective in the IGM at > 40; and (2) the Wouthuysen-Field ([77, 13]; WF) coupling coefficient
which uses the Ly radiation background and is effective soon after the first sourcés igheither
coefficients is high, the spin temperature approaches the kinetic temperftioeegas. Otherwise,
the spin temperature approaches the CMB temperature and there is no signal.

The CMB temperature decreased 8dl + z). After decoupling from the CMB, the gas kinetic
temperature decreases@g1+ z)?, before being heated, most likely with X-rays from the first
sources (see [15] and the discussion therein). Likely before the lhukianization, the gas is
heated to temperatures far beyond the CNiB;> Ty, and the spin temperature term in eg. 3.1 no
longer contributes to the signal. When and whggec Ty, the 21cm signal is seen in absorption,
and when/wherés > Ty, the signal is seen in emission.

Therefore, the 21cm signal and its inhomogeneity could be a powediépnot only of reion-
ization, but also of the Ly background, IGM heating, and cosmology during the collisionally cou-
pled regime before the first sources ignite. Another probe of cosmologidvbe available at lower
redshifts (making it easier to detect) if heating completes before reionizationovie of 21cm
evolution fromz = 250, computed with 21cmFAST, is available at http://www.astro.princeton.edu/
~mesinger/21cm_Movie.html, together with an explanation of the various interestouns.

4. Conclusions

Milestones such as reionization are likely the only practical way of studyiagtimordial
zoo of astrophysical objects in the near future.

Reionization is likely extended, going through various stages.

The cosmological 21cm signal is very rich in information, containing botmodsgical and
astrophysical components.

The range of scales and unknown parameter space is enormous.

6
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e We need efficient modeling tools, such as 21cmFAST, to make sense ofdbmung obser-
vations.

e \We are living in exciting times!
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