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Spectral lines are a powerful tool to gain important information about black holes in X-ray binaries

and active galactic nuclei. We present a semi-analytical solution to determine the observed energy

range of such relativistic spectral lines as a function of the model parameters, namely, the emission

radius, observer’s view angle, and the black hole spin. Thisis a continued work, where we already

presented the solution for the systems with black holes withpositive spin. Now we study the case

of systems with negative spin. We compare the results for these two different cases and discuss

the dependence of minimum and maximum energy shifts on the model parameters.
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1. Introduction

The observation of spectral lines from inner regions of accretion disks around black hole gives
us information about this matter in extreme conditions. Kα spectral line of iron, broadened and
skewed by fast orbital motion and redshifted by strong gravitational field, has been used to constrain
parameters of the black hole, both in active galactic nuclei[10], [19], [16] and Galactic X-ray
binaries containing black-holes [15], [14]. Most of these cases suppose prograde rotation of the
black hole. In our theoretical work we present the results for the case of the black hole with the
negative spin [8] and compare it with the case of the positivespin [12].

We can imagine the accretion disk as a superposition of radiating accretion rings that extend
from the inner edge to the outer rim of the disk, with a prescribed profile of emissivity as a function
of radius. On one hand such a superposition can be seen as a merely formal way of integrating
the total signal from the accretion disk that extends over the range of radii. The convenience of
this formulation arises naturally from the fact that we usually consider perfectly circular motion
of the emitting material, which only very slowly spirals toward the centre (eccentric rings are only
rarely discussed in the literature). Therefore, the emission originates effectively from a set of
infinitesimally narrow, concentric rings which sum up to form the total signal.

On the other hand, a relatively narrow range of emission radii may indeed represent a realistic
emission profile under certain circumstances. This is for example the case of so called flare/spot
scenario [7], [9], [11]. According to this scheme, magnetically triggered flares occur above the disk
surface due to reconnection of field lines twisted by differential rotation. Illumination of the disk
then produces the reflection spectral line that emerges froma spot at a well defined radius in the
disk. As the flare orbits with the underlying disk it creates aring of emission, azimuthal extent of
which is determined by the interplay between duration of theobservation and the orbital period at
the corresponding radius.

The exposure time is governed by technical specification of the detector and brightness of the
source. As for the orbital period, Keplerian motion (which we assume) near a rotating black hole
is determined by distance from the centre and the spin of the black hole. The latter causes asym-
metry between the cases of prograde versus retrograde motion (a purely general relativistic effect).
Although prograde rotation (i.e. a positive spin) is often assumed, counter-rotation (negative spin)
cannot be excludeda priori. In fact, the orientation of the black hole rotation with respect to the ac-
cretion disk is mainly defined by the boundary condition at the outer edge of the system. Therefore,
it makes sense to include both positive and negative spin into consideration.

There is currently a lot of uncertainty concerning the maximum life-time of the flares illumi-
nation the disk below. Because of significant shearing of themagnetic loops, it has been assumed
that flares can last typically a fraction of the orbital period at the corresponding radius, but excep-
tionally prominent and persistent flares seem to occur occasionally in the observed lightcurves [18].
Another relevant point in this respect is that actually the individual flares do not have to last for
the entire period, instead a sequence of causally triggeredevents can develop from the parent flare
[17]. These “offsprings” should all occur at a similar radius like the original parent flare, producing
the reflection line at approximately the same distance from the black hole.

In our work we show straightforward method to calculate extremal energy shifts of radiation
from accretion rings lying in equatorial plane. The calculated extremal energy shifts are presented
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in contour graphs for different observer’s view angle.

2. Photon propagation in Kerr metric

The gravitational field of a stationary, axisymetric and rotating black hole is described by
Kerr metric [5], [13]. The form of Kerr metric in Boyer-Lindquist co-ordinates(t, r,θ ,φ) and
geometrised units(c = G = M = 1) is

ds2 = −
(

1− 2r
Σ

)

dt2− 4ar
Σ

sin2 θdtdφ +
A
Σ

sin2θdφ2 +
Σ
∆

dr2 + Σdθ2, (2.1)

where
Σ = r2 +a2cos2θ ; ∆ = r2−2r +a2; A = (r2 +a2)2−a2∆sin2θ . (2.2)

The metric depends only on one parameter, angular momentum of the black holea.
The minimum allowed radius of a stable circular equatorial orbit, so called marginally stable

orbit [2], is given by the roots of the equation

r2−6r ∓8a
√

r −3a2 = 0. (2.3)

The roots are
rms = 3+Z2∓ [(3−Z1)(3+Z1+2Z2)]

1/2, (2.4)

whereZ1 = 1+(1−a2)1/3[(1+a)1/3+(1−a)1/3]; Z2 = (3a2+Z2
1)

1/2, where the upper sign refers
to co-rotating and the lower to counter-rotating orbits.

The path of photons (null geodesic) in Kerr metric is completely described by three constants
of motion: the total energyE, the azimuthal angular momentumLz, and Carter’s constantQ. We
can further reduce the number of constants by re-normalizing Lz andQ with respect to energyE,
λ = Lz

E , q2 = Q
E2 .

Further, a null geodesic must satisfy the Carter equation [4]

±
∫

r

dr
√

R(r,λ ,q2)
= ±

∫

µ

dµ
√

Θ(µ ,λ ,q2)
, (2.5)

where
R(r) = r4 +(a2−λ 2−q2)r2 +2[q2 +(λ −a)2]r −a2q2 (2.6)

and
Θ(µ ,λ ,q2) = q2 +(a2−λ 2−q2)µ2−a2µ4, (2.7)

where we suppose the substitutionµ = cosθ . The left side of the eq. (2.5) describes the motion in
radial direction and the right side the motion in latitudinal direction.

The roots ofR(r) andΘ(µ) correspond to the turning points in radial and latitudinal directions
respectively, see [6] and [12].

The integrals in Carter equation (2.5) can be expressed in the form of the elliptical integrals of
first kind [1], [3]

F(ϕ ,k) =

ϕ
∫

0

dϑ
√

1−ksin2 ϑ
. (2.8)

The explicit form of the integral depends on whether the roots are real or complex and whether
the photon passes through the turning points or not.
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2.1 The radial integral, real roots

The case of real roots is
∞

∫

re

dr
√

R(r,λ ,q2)
= gr [F(ϕo,kr)±F(ϕe,kr)], (2.9)

where

gr(λ ,q2) =
2

√

(r1− r3)(r2− r4)
; kr(λ ,q2) =

(r2− r3)(r1− r4)

(r1− r3)(r2− r4)
, (2.10)

ϕo(λ ,q2) = arcsin

(
√

r2− r4

r1− r4

)

; ϕe(λ ,q2) = arcsin

[
√

(r2− r4)(re− r1)

(r1− r4)(re− r2)

]

, (2.11)

r1, r2, r3, r4 are the roots ofR(r) andre is the radius of an accretion ring, see [12]. The upper sign
refers to the case of a photon that passes through the turningpoint and the lower sing refers to the
case of a photon that does not pass through the turning point in the radial direction.

2.2 The radial integral, complex roots

We supposer1, r2 are complex andr3, r4 are real, then the rootsr1, r2 can be written in the
form r1 = u+ iv, r2 = u− iv. The expression for this case is

∞
∫

re

dr
√

R(r,λ ,q2)
= gr [F(ϕo,kr)−F(ϕe,kr)], (2.12)

where

gr(λ ,q2) =
1√
AB

; kr(λ ,q2) =
(A+B)2− (r3− r4)

2

4AB
, (2.13)

ϕo(λ ,q2) = arccos

[

A−B
A+B

]

; ϕe(λ ,q2) = arccos

[

(A−B)re+ r3B− r4A
(A+B)re− r3B− r4A

]

, (2.14)

A(λ ,q2) =
[

(r3−u)2 +v2]1/2
; B(λ ,q2) =

[

(r4−u)2 +v2]1/2
. (2.15)

2.3 The latitudinal integral

The form of the latitudinal integral is
µo
∫

0

dµ
√

Θ(µ ,λ ,q2)
=

gµ

| a |F(ψ ,kµ ) (2.16)

if the photon does not pass through the turning point. For thecase with transit through the turning
point it is

µo
∫

0

dµ
√

Θ(µ ,λ ,q2)
=

gµ

| a | [2K(kµ)−F(ψ ,kµ )], (2.17)

where

gµ(λ ,q2) =
1

√

µ2
+ + µ2

−

; kµ(λ ,q2) =
µ2

+

µ2
+ + µ2

−
; ψ(λ ,q2) = arcsin

[
√

µ2
o(µ2

+ + µ2
−)

µ2
+(µ2

o + µ2
−)

]

, (2.18)

µ2
+, µ2

− are the roots ofΘ(µ), µo is observer’s view angle andK(kµ) = F(π
2 ,kµ).
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3. Extremal photon energy shifts

The energy shift is defined as the ratio

g(λ ) =
Eo

Ee
=

1
ut

1
1−λΩ

(3.1)

between the observedEo and emittingEe energy. The emission source orbits the black hole at
Keplerian four-velocityu = ut(1,0,0,Ω), whereut =

[

1−2r−1
e (1−aΩ)2− (r2

e +a2)Ω2
]−1/2

and

Ω(re) = (r3/2
e +a)−1 is the Keplerian angular velocity at the emission radiusre anda is the spin of

black hole.
The extreme values ofg are required to meet the conditions of the Carter equation (2.5). We

used the Lagrange multipliersα to find their values. Define the Lagrangian as

Λ(λ ,q2,α) =
1
ut

1
1−λΩ

−α
∞

∫

re

dr
√

R(r,λ ,q2)
+ α

µo
∫

0

dµ
√

Θ(µ ,λ ,q2)
. (3.2)

The partial derivatives of the Lagrange function (3.2) withrespect toλ ,q2 andα must vanish
identically. The latter condition yields two equations fortwo unknowns(λ ,q2),

f1 =

∞
∫

re

dr
√

R(r,λ ,q2)
−

µo
∫

0

dµ
√

Θ(µ ,λ ,q2)
= 0, (3.3)

f2 =
∂ f1
∂q2 =

∂
∂q2





∞
∫

re

dr
√

R(r,λ ,q2)
−

µo
∫

0

dµ
√

Θ(µ ,λ ,q2)



 = 0. (3.4)

To solve eqs. (3.3) and (3.4) we used numerical Newton-Raphson method in the form of Taylor
expansion about the root. The explicit solution can be foundby successive iterations according to
the prescriptionλn+1 = λn + ∆λn, q2

n+1 = q2
n + ∆q2

n, where

∆q2
n =

f1
∂ f2
∂λ − f2

∂ f1
∂λ

∂ f1
∂λ

∂ f2
∂q2 − ∂ f1

∂q2
∂ f2
∂λ

, ∆λn =
− f1−∆q2

n
∂ f1
∂q2

∂ f1
∂λ

. (3.5)

There are always two solutions of pairs
(

λ ,q2
)

, where one corresponds to the minimal energy
shift and the second to the maximal energy shift. The extremal energy shifts for different observer’s
view angles are shown in Fig. 1. The success of this numericalmethod depends on the right starting
value and on the knowledge of the derivatives of the ellipticintegrals.

4. Discusion and Conclusion

The solution for the case of the negative spin of black hole connects to the solution of the
positive spin (Fig. 1). We see that the value ofgmax is always bigger for smaller spins than for
greater spins and the value ofgmin is smaller for smaller spins than for greater spins if we suppose
the same radius. That means the width is broader for negativespins than for positive spins.
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Figure 1: Examples of contour graphs with extremal energy shifts for different view angle of the observer
(cosi on the top of graph) and for the negative spin of black holea. Thick lines represent emission radius
rem, thin lines the spin of black holea.

The dependence of energy shift on emitting radius is that minimum and maximum ofg go
always to the value 1 for farther radii. The maximum value of energy shift grows at first with larger
emitting radius and then declines to the value 1. This effectoccurs with a small inclination angle.

The maximum values of the energy shift drop and minimum values grow with smaller inclina-
tion angle. It is because for smaller view angle there is smaller Doppler redshift and blueshift.

In our work we presented semi-analytic solution to find extremal values of energy shifts of
radiation from accretion ring around Kerr’s black hole. Thesolution is written in an implicit form,
eqs. (3.3), (3.4) and we used Newton-Raphson numerical method to solve them. It is an iteration
procedure with prescription (3.5). The advantages of this method are the quickness and accuracy,
but we need to know the derivatives of the elliptical integrals.
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[11] P. Jovanovíc, L. Č. Popovíc, M. Stalevski, A. I. Shapovalova,Variability of the Hβ Line Profiles as an
Indicator of Orbiting Bright Spots in Accretion Disks of Quasars: A Case Study of 3C 390.3, ApJ718
(2010) 168.

[12] V. Karas, V. Sochora,Extremal Energy Shifts of Radiation from a Ring Near a Rotating Black Hole,
ApJ725 (2010) 1507-1515.

[13] R. P. Kerr,Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metric,
Phys. Rev. Lett.11 (1963) 237.

[14] J. E. McClintock, R. A. Remillard,Compact Stellar X-ray Sources, Cambridge University Press,
Cambridge 2006, pp. 157-213.

[15] J. M. Miller, A. C. Fabian, R. Wijnands, R. A. Remillard,P. Wojdowski et al.,Resolving the
Composite Fe Kα Emission Line in the Galactic Black Hole Cygnus X-1 with Chandra, ApJ, 578
(2002) 348-356.

[16] J. Miller, Relativistic X-Ray Lines from the Inner Accretion Disks Around Black Holes, ARA&A45
(2007) 441-479.

[17] T. Pechá̌cek, V. Karas, B. Czerny,Hot-spot Model for Accretion Disc Variability as Random Process,
A&A 487 (2008) 815.

[18] G. Ponti, M. Cappi, M. Dadina, G. Malaguti,Mapping the inner regions of MCG-6-30-15 with
XMM-Newton, A&A, 417 (2004) 451.

[19] C. S. Reynolds, M. A. Nowak,Fluorescent iron lines as a probe of astrophysical black hole systems,
Phys. Rep.377 (2003) 389-466.

7


