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The broadband SEDs of blazars exhibit two broad spectral components, which in leptonic emis-
sion models are attributed to synchrotron radiation and SSC radiation of relativistic electrons.
During high state phases, the high-frequency SSC component often dominates the low-frequency
synchrotron component, implying that the inverse Compton SSC losses of electrons are at least
equal to or greater than the synchrotron losses of electrons. The linear synchrotron cooling, usu-
ally included in radiation models of blazars, then has to be supplemented by the SSC cooling.
Here, we present an analytical solution to the kinetic equation of relativistic electrons subject to
the combined synchrotron and nonlinear synchrotron self-Compton cooling for monoenergetic in-
jection. The electron distribution functions and the time-integrated synchrotron fluences depend
sensitively on an injection parameter, determined by the injection conditions of the relativistic
electrons in the emission region.
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A new ordering parameter of SEDs from SSC-emitting blazars Reinhard Schlickeiser

1. Introduction

The broadband continuum spectra of blazars are dominated by nonthermal emission and often
consist of two distinct broad components. In leptonic emission models (for review see Böttcher
[1]) synchrotron radiation from highly relativistic electrons generates the low-energy component
whereas the high-energy component results from Compton interactions of the same relativistic
electron population. In many blazars the Compton emission component dominates the synchrotron
emission component. Here we investigate the radiative signatures of the injection and subsequent,
self-consistent synchrotron and SSC cooling of monoenergetic electrons, including the case of SSC
dominated radiative output.

The dominance of the SSC component over the synchrotron component in this case implies
that the inverse Compton SSC losses of electrons are at least equal or greater than the synchrotron
losses of electrons, even more when the intergalactic deabsorption of the TeV emission from the
cosmic infrared background is accounted for. The ratio of the observed SSC to synchrotron photon
luminosity from the same population of electrons n(γ)

L∗SSC
L∗sy

=
∫

dV
∫

∞

1 dγ n(γ)| ˙γSSC|∫
dV
∫

∞

1 dγ n(γ)|γ̇S|
(1.1)

directly reflects the ratio of the corresponding loss rates, because of the identical Doppler boosting
factors[2] of synchrotron and SSC emission.

In the case of the dominance of the first-order SSC component over the synchrotron compo-
nent, Schlickeiser[3] (hereafter referrred to as paper S) has pointed out that then the linear syn-
chrotron cooling rate, included standardly in radiation models of blazars, has to be replaced by the
nonlinear SSC cooling rate. In the Thomson limit (hereafter referred to as SST-losses) the SST
energy loss rate of a single electron

|γ̇|SST ' A0γ
2
∫

∞

0
dγ̃ γ̃

2n(γ̃, t) , A0 =
3σT c1P0Rε2

0
mc2 (1.2)

depends on the energy integral of the actual electron spectrum n(γ, t), reflecting that the energy
integral determines the number density of the target synchrotron photons in the source. The depen-
dence on the energy integral is a collective effect completely different from the linear synchrotron
energy loss rate of a single electron in a constant magnetic field

|γ̇|S = D0γ
2, D0 =

4
3

cσT

mc2 UB = 1.29 ·10−9b2 s−1, (1.3)

which is solely determined by the magnetic field strength B = b Gauss and the electron Lorentz
factor γ . The notation in Eqs. (1.2) and (1.3) is the same as in paper S: P0 = 3.2 · 1012 eV−1s−1,
ε0 = 1.16 · 10−8b eV, R is the radius of the spherical source, c denotes the speed of light, σT =
6.65 ·10−25 cm2 is the Thomson cross section and c1 = 0.684.

2. Solution of electron kinetic equation for combined synchrotron and SST cooling

The competition between the instanteneous injection of ultrarelativistic electrons (γ� 1) with
the arbitrary injection distribution function q(γ) at time t = 0 and the combined synchrotron and
SST radiative losses
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dγ

dt
= γ̇ = γ̇S + γ̇SST =−γ

2
(

D0 +A0

∫
∞

0
dγ γ

2n(γ, t)
)

(2.1)

is described by the time-dependent kinetic equation for the volume-averaged relativistic electron
population inside the radiating source[4]:

∂n(γ, t)
∂ t

− ∂

∂γ

[
γ

2
(

D0 +A0

∫
∞

0
dγ γ

2n(γ, t)
)

n(γ, t)
]

= q(γ)δ (t) (2.2)

where n(γ, t) denotes the volume-averaged differential electron number density. Introducing the
implicit time variable T (t) by

dT
dt

= D0 +A0

∫
∞

1
dγ γ

2n(γ, t) = D0 +A0

∫
∞

0
dγ R(γ, t), (2.3)

where R(γ, t) = γ2n(γ, t), yields for the kinetic equation (2.2)

∂R
∂T
− γ

2 ∂R
∂γ

= γ
2q(γ)δ (T ) (2.4)

With the boundary condition R(γ = ∞,T ) = 0 its solution by the method of characteristics is (with
the step function H)

γ
2n = R(γ,T ) =

∫
∞

γ

dγ
′
q(γ

′
)δ (

1
γ
′ −

1
γ

+T ) = H[T ]H[1−T γ]
(

γ

1− γT

)2

q
(

γ

1− γT

)
(2.5)

Inserting this solution we obtain for Eq. (2.3)

dT
dt

= D0 +A0H[T ]
∫ 1/T

0
dγ

(
γ

1− γT

)2

q
(

γ

1− γT

)
, (2.6)

yielding upon integration the time-dependence of implicit time scale T (t) for specified injection
distributions.

2.1 Monoenergetic injection

Nearly monoenergetic electron injection distributions result from the pile-up mechanism[5, 6,
7], i.e. the simultaneous operation of first-order Fermi acceleration and radiative losses of electrons.
For the injection of monoenergetic distributions q(γ) = Q0δ (γ−γ0) with the total volume-averaged
density of injected electrons Q0 = 3N/(4πR3) = 2.39 ·104N50R−3

15 cm−3, where we scale the total
number of injected electrons N = 1050N50 and the source size R = 1015R15 cm, we obtain for Eq.
(2.6)

1
D0

dT
dt

= 1+
1

γ2
B(T + γ

−1
0 )2

. (2.7)

The characteristic electron Lorentz factor in Eq. (2.7)

γB =
(

D0

A0Q0

)1/2

=
217R15

N1/2
50

(2.8)
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reflects the injection conditions of the relativistic electrons. Obviously, the more compact the
source is, and the more electrons are injected, the smaller the electron injection Lorentz factor γB

is. Eq. (2.7) is solved by

1+T γ0

α
− arctan

(
1+T γ0

α

)
=

D0γ0t
α

+ c0, (2.9)

with the integration constant c0 and the injection parameter

α =
γ0

γB
= 46

γ4N1/2
50

R15
, (2.10)

where we scale γ0 = 104γ4. Unfortunately, Eq. (2.9) cannot be inverted to a closed form giving
the dependence T (t), which is needed in Eq. (2.5) to determine the electron distribution function
as a function of γ and t. However, an approximate but reasonably accurate inversion is possible by
using the asymptotic expansions of the arctan-function for small and large values of the injection
parameter α compared to unity.

2.2 Small injection parameter

For small values of α� 1 we approximate Eq. (2.9) with T (t = 0) = 0 as T 'D0t. According
to Eq. (2.5) the time evolution of the electron distribution function is solely determined by the linear
synchrotron losses, and is given by

n(γ, t) = Q0H[γ0− γ]δ
(

γ− γ0

1+D0γ0t

)
(2.11)

2.3 Large injection parameter

For large injection parameters α� 1 and early times 0≤ T ≤ Tc = (α−1)/γ0, corresponding
to

0≤ t ≤ tc =
α3−1

3γBD0α3 '
1

3γBD0
=

1.2 ·106N1/2
50

R15b2 s (2.12)

we approximate Eq. (2.9) as

D0t ' 1
3γ0α2

[
(1+T γ0)3−1

]
, (2.13)

yielding according to Eq. (2.5)

n(γ,γ0, t ≤ tc)=
Q0H[γ0− γ]δ

(
γ

1−γT − γ0

)
(1− γT )2 = Q0H[γ0−γ]δ

(
γ− γ0

1+ γ0T

)
= Q0H[γ0−γ]H[tc−t]

×δ

(
γ− γ0

(1+3D0γ0α2t)1/3

)
= Q0H[γ0− γ]H[tc− t]δ

(
γ− γ0

(1+3A0Q0γ3
0 t)1/3

)
, (2.14)

which agrees with the nonlinear SST solution of S, his Eq. (28).
For late times t ≥ tc Eq. (2.9) yields
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T = D0t +
α−1
3α3γB

[2α
2− (α +1)], (2.15)

which for t = tc agrees with the approximation (2.13). From Eq. (2.5) we then obtain

n(γ,γ0, t ≥ tc) = Q0H[γB− γ]H[t− tc]δ

(
γ− γB

1+2α3

3α3 +D0γBt

)
(2.16)

a modified linear cooling solutions. Note that both solutions (2.14) and (2.16) indicate that at time
tc the electrons have cooled to the characteristic Lorentz factor γB.

Provided electrons are injected with Lorentz factors much higher than γB, given in Eq. (2.8),
they initially cool down to the characteristic Lorentz factor γB by nonlinear SST-cooling until time
tc. At later times they further cool to lower energies according to the modified cooling solution
(2.16). If the electrons are injected with Lorentz factors much smaller than γB they undergo only
linear synchrotron cooling at all energies with no influence of the SST cooling. The characteristic
Lorentz factor γB is only determined by the injection conditions, whereas the time scale tc also de-
pends on the magnetic field strength. This different cooling behaviour for large and small injection
energies affects the synchrotron and SSC intensities and fluences.

2.4 Power law injection

Zacharias and Schlickeiser[8] find a similar behavior for initial power law injection. Any
extended injection energy spectrum is immediately quenched by the intense radiation losses to
a nearly monoenergetic distribution function at either the lower or upper cutoff of the injection
spectrum, depending on the steepness of the injected distribution. Therefore the assumption of
monoenergetic injection is very well justified.

3. Intrinsic synchrotron radiation fluences

With the electron distribution functions n(γ, t) we calculate the optically thin synchrotron in-
tensities I(ε, t). In order to collect enough photons, intensities are often averaged or integrated
over long enough time intervals. For rapidly varying photon intensities this corresponds to frac-
tional fluences which are given by the time-integrated intensities. The total fluence spectra are
F(ε) =

∫
∞

0 dt I(ε, t).
For small injection energy α � 1 the total synchrotron fluence is

Fs(ε)' F0S

{
c0
(E0

ε

)1/2
for ε � E0(E0

ε

)
exp(−ε/E0) for ε � E0

(3.1)

where c0 = 0.95302 and E0 = 1.74bγ2
4 eV denotes the intial characteristic synchrotron photon

energy.
For the high injection energy case α � 1 the total synchrotron fluence varies as[9]

Fh(ε)' F0h


c0α2

(E0
ε

)1/2
for ε � E0/α2

c2
(E0

ε

)3/2
for E0/α2� ε � E0(E0

ε

)
exp(−ε/E0) for ε � E0

(3.2)
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Fig. 1 shows the fluence SEDs N(x) ∝ xF(x) for small (αs = 0.1) and high (αh = 100) injection
conditions in terms of the normalized synchrotron photon energy x = ε/E0.

Figure 1: Total synchrotron fluence SED N(x) as a function of the normalized synchrotron photon energy
x = ε/E0 for high (αh = 100, full curve) and small (αs = 0.1, dashed curve) injection conditions calculated
for γ0 = 104. From [9].

At high synchrotron photon energies (ε � E0) the total synchrotron fluences for small and
high injection energy exhibit the same exponential cut-off. However, at low energies (ε � E0) we
find markedly different power law behaviours for the two injection cases:
D1) In the high injection case the synchrotron SED peaks at a photon energy which is a factor
1.4α2

h = 1.4 ·10−4 smaller than the peak in the small injection case.
D2) The high injection SED is a broken power law with spectral indices +0.5 below and −0.5
above the peak energy xB� 1, respectively, and it cuts-off exponentially at photon energies x > 1.
Below the peak energy xB the time of maximum synchrotron intensity decreases as tmax ∝ ε−1/2,
whereas above the peak energy xB it decreases more rapidly as tmax ∝ ε−3/2 due to the severe
additional SST losses.
D3) The small injection SED is a single power law with spectral index +0.5 below the peak en-
ergy xp = 0.5, and it cuts-off exponentially at photon energies x > 1. Here the time of maximum
synchrotron intensity decreases as tmax ∝ ε−1/2 at all energies x < 1 because in the small injection
case the SST-losses do not contribute.

4. Summary and conclusions

We presented the analytical solution to the synchrotron and non-linear synchrotron-self-Compton
cooling in the Thomson regime (SST) of monoenergetic electrons. Based on our analytical solu-
tions, we evaluated the time-integrated synchrotron fluences whose properties are solely determined
by the injection parameter α . We find qualitatively different results depending on whether electron
cooling is initially Compton dominated (high injection energy parameter α) or it is always syn-
chrotron dominated (low α). In the low-α case, the resulting fluence spectrum exhibits a simple
exponentially cut-off power-law behaviour, Sν ∝ ν1/2e−ν/ν0 . In contrast, in the high-α case, we
find a broken power-law with exponential cutoff, parametrized in the form Sν ∝ ν1/2 νB

ν+νB
e−ν/ν0 .
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The analytically calculated synchrotron fluence SEDs and light curve peak times agree well with
the corresponding numerically calculated quantities using the radiation code of Böttcher et al. [10].
Based on our analysis we propose the following interpretation of multiwavelength blazar SEDs:

Blazars, where the γ-ray fluence is much larger than the synchrotron fluence, are regarded as
high injection energy sources. Here, the synchrotron fluence should exhibit the symmetric broken
power law behaviour Eq. (3.2) around the synchrotron peak energy that is a factor (αhγ0)2 smaller
than the SSC peak energy. Below and above νB the synchrotron light curve peak times exhibit
different frequency dependences tmax(ν < νB) ∝ ν−1/2 and tmax(ν > νb) ∝ ν−3/2, respectively,
resulting from the additional severe SST-losses at ν > νB.

Blazars, where the γ-ray fluence is much smaller than the synchrotron fluence, are regarded
as small injection energy sources. Here, the synchrotron fluence exhibits the single power law
behaviour (D3) up to a higher synchrotron peak energy that is a factor γ2

0 smaller than the SSC peak
energy. In this case the synchrotron light curve peak time exhibits the standard linear synchrotron
cooling decrease tmax(ν) ∝ ν−1/2 at all frequencies.

Work in progess indicates that the corresponding SSC fluences and SSC lightcurves are also
solely determined by the injection parameter α with characteristic different spectral properties.

If the injection Lorentz factor γ0 and the size of the source are the same, different values of
the injection parameter α result from different total numbers of instantaneously injected electrons.
E.g., the high injection case αh = 100 results for N50 = 4.7, whereas the low injection case αs = 0.1
needs N50 = 4.7 ·10−6.
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