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Binary systems that harbor a non-accreting pulsar are efficient non-thermal emitters, from radio to

gamma rays. This broadband emission is thought to come from the region where the companion

star and pulsar winds collide. A paradigmatic example of this source type is PSR B1259−63.

Whereas the high-energy radiation probes the shock structure at the binary scale, the radio emis-

sion is produced well outside the system, in regions where the shocked stellar and pulsar winds

are likely mixing due to hydrodynamical instabilities. Understanding the evolution of the shocked

flow depends strongly on a proper characterization of the low-energy radiation. We have per-

formed numerical calculations of the radio emission produced in a high-mass binary hosting a

young pulsar. Adopting a prescription for the shocked flow inthe system and the non-thermal

particle injection, we have generated synthetic radio emission maps that can be compared with

observations. Preliminary results suggest that the emitting bulk flow should be rather slow, with

a pulsar wind magnetization at the shock higher than in isolated pulsars.

25th Texas Symposium on Relativistic Astrophysics - TEXAS 2010
December 06-10, 2010
Heidelberg, Germany

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
T
e
x
a
s
 
2
0
1
0
)
1
7
9

Radio emission from binaries with pulsar

1. Introduction

The X-ray binary PSR B1259−63 is a long-period system, formed by a Be star and a young
and powerful pulsar with spin-down luminosityLsd≈ 8×1035 erg s−1 ([1]). Non-thermal emission
in radio (e.g. [2]), X-rays (e.g. [3, 4, 5]) and gamma rays (e.g. [6]) has been detected from this
source. This emission is thought to originate in the region where the star and pulsar winds collide
([7]). Therefore, PSR B1259−63 is not an accretion powered system, like many Be X-ray binaries,
since the pulsar wind ram pressure keeps the stellar wind beyond the neutron star gravitational
capture radius ([8]). The two-winds collision leads to two shocks, one in the stellar wind, and
another in the pulsar wind. The contact discontinuity between the two flows is located where
the wind ram pressures are equal, at a minimum distance from the pulsarRoff =

√η Rorb/(1+√η), whereRorb is the star-pulsar separation distance,η = Ldsd/Ṁ∗ vw c, andṀ∗ andvw are the
stellar mass loss rate and wind velocity, respectively ([27]). Other three high-mass binaries in the
Galaxy may harbor a non-accreting pulsar: LS I +61 303, LS 5039 and HESS J0632+057 (e.g.
[9, 10, 11, 12, 13, 14, 15]), although their accreting nature cannot be discarded yet (e.g. see the
discussion in [16]; see also [17, 18]).

In binaries hosting a non-accreting pulsar, the X- and gamma rays are produced close or within
the binary system, where the shocks are the strongest. X-rays are of likely synchrotron origin, and
gamma rays, of inverse Compton (IC) nature (e.g. [19, 20, 21, 22, 23];see however [24]), and the
cooling timescales of the electrons and positrons emitting at these energies areprobably very short.
These particles are likely accelerated in the pulsar wind shock, more suitablefor particle acceler-
ation than the slower and less energetic stellar wind shock. Accelerated particles are expected to
follow a power-law of indexp (∝ E−p) between a minimum (Emin) and a maximum energy (Emax),
cooling down while advected away in the shocked flow. At the scales of the shock,∼ Roff , syn-
chrotron and IC cooling dominate, but at farther distances energy losses are dominated by adiabatic
cooling (i.e. work). The velocity at which the flow leaves the shock region,and eventually the sys-
tem, determines how much radiation is produced at places where adiabatic cooling is dominant.
This is so because the non-thermal power scales as∝ 1/tad∼ R/vesc, whereRandvescare the char-
acteristic size of the flow and the shock escape velocity, respectively. The emission coming from
the outskirts of the binary and beyond can be better studied in radio, and provides information on
the material flowing away from the system. An important factor affecting the colliding wind region
is the development of instabilities, which can mix the shocked pulsar wind with the much denser
and colder stellar wind.

High-resolution VLBI studies can be of very much help characterizing the shocked flows. Re-
markably, extended radio emission has been recently detected from PSR B1259−63 ([25]; see also
[12] and [26] regarding the candidates LS I +61 303 and LS 5039). Tofully profit from these
observations, however, detailed radiation modeling is required. From the radio emission from bi-
naries hosting a young pulsar, one can derive important information of theshocked medium, like its
velocity and magnetic field, both to be affected by mixing. The emitting particles themselves can
also be studied, since the value ofEmin affects strongly the number of the radio emitting particles.
It is useful to compute maps of the radio emitter, to compare with observations. Astudy of the
radio emission appearance was already done in [11], although the radio emitter was treated there
as 1-dimensional, with point-like injection. In this work, we present calculations done adopting a
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Figure 1: Sketch of the scenario and the model presented here. The pulsar and the stellar wind collide
forming two shocks separated by a contact discontinuity. The shocked material flows away and gets spiral-
shaped by the orbital motion of the system. Electrons and positrons are injected in the interaction surface,
in the form of different rings, at different distances from the pulsar. These particles flow with the shocked
material producing radio to X-rays through synchrotron, and X-rays to gamma rays through IC scattering.
Here we concentrate in the radio emission. Overlaid on the system and interaction region, the contours of
the source radio image are shown.

prescription for the shocked star-pulsar wind structure that accounts for the 3-dimensional exten-
sion of the particle injection and the radio emitter. The results are preliminary, but they can already
shed light on the properties of the radio emitting flow in binaries hosting a non-accreting pulsar. In
Figure 1 we show a sketch of the considered problem.

2. The model

We model the radio emitter injecting particles, electrons and positrons, as rings. These rings
are distributed along a paraboloid that is connected to a cone beyond a certain distance. The flux of
energy at the shock, going to non-thermal particles, is computed from sin(θ)Lsd/4π l2

p0c, whereθ
is the angle between the shock surface and the pulsar radial direction, and lp0 is the distance from
a particular injection point to the pulsar (or characteristic injection region size). The paraboloid
is initially defined asr = Rorb

√
y−doff , wherer is the radius of the paraboloid,y the distance to

the star from the paraboloid axis, anddoff = Rorb−Roff . The final opening angle of the cone is:
≈ 0.5(4−η2/5)η1/3, which corresponds in reality to the opening angle of the contact discontinuity
between the two winds [27], simplified here as the whole shocked structure.Particles are advected
away along the parabolic/conical surface in the direction opposite to the star. In fact, these rings of
particles are injected, with time, in different locations following the pulsar orbital motion around
the companion. Once injected, rings are assumed to follow ballistic motion, and thus the shape of
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the whole structure at large scales tends to form a spiral. Note that ballistic motion is just a rough
approximation; the shocked stellar wind exerts a Coriolis force on the pulsarwind, bending it even
farther in the direction opposite to the pulsar orbital motion.

We do not adopt here the Kennel & Coroniti solution ([28]) for the postshock flow, as it was
done in [11]. The assumption of a flow being like the one treated in [28], of spherical nature, is not
realistic here since the flow evolution is strongly affected by the inhomogeneityand anisotropy of
the pulsar environment (i.e. the stellar wind). This is clearly seen in the resultsof [27]. However, in-
stabilities were not considered in that work, and simulations including instability development have
not been performed yet. For this reason, some parameters are treated here phenomenologically.
The flow velocity is derived defining a velocity of the shocked flow along its trajectory, parabolic
first, straight later on. The velocity is taken to bec/3 at the injection locations, although this is
only strictly true at the regions in which the pulsar shock is roughly perpendicular. At distances
bigger than the injection region (> lp0), we have assumed that the flow speed decreases exponen-
tially down to some intermediate velocityvw < vesc< c/3 (typically vw ∼ (1−2)×108 cm s−1).
This decrease in the bulk flow velocity relates to mixing due to hydrodynamical instabilities1 in
the contact discontinuity, most likely of Kelvin-Helmholtz nature. Kelvin-Helmholtzinstabilities
would start to grow at scales of the order of those of the shock region, thus mainly affecting the
radio emitting region. Eventually, the final turbulent and mixed flow velocity should be close to
the one obtained assuming momentum conservation, due to significant kinetic to internal/turbulent
energy conversion. In this work,vesc is fixed to 109 cm s−1 for simplicity. Adiabatic losses have
been computed as given in Sect. 1. To compute synchrotron losses, we have adopted a magnetic

field B0 ≈ 3
√

σ 2Lsd/l2
lp0c ([29]), andB decreases farther in the shocked flow as 1/lp. Turbulent

mixing should affectB, but we have not accounted for it at this stage. The value ofEmin has been
fixed to∼ 0.1Γpmec2, whereΓp is the Lorentz factor of the particles in the pulsar wind ([29]),
fixed by us to 105. The value ofEmax has been set to 1 TeV. The spin-down luminosity of the
pulsar has been takenLsd = 1036 erg s−1. Regarding the system properties, the orbit is circular,
with Rorb = 3×1012 cm and an inclination anglei = 45◦. The inferior conjunction of the compact
object corresponds to phase 0.5. The star luminosity has been fixed to 5×1038 erg s−1, and the
temperature to 3× 104 K. The stellar mass loss rate iṡM∗ = 10−6M⊙/yr, andvw = 2× 108 cm.
The IC losses are derived from the stellar photon energy density (see [16] and references therein).
Densities are low enough to neglect ionization/coulombian losses and relativistic Bremsstrahlung.

The radio emission has been calculated from the evolved particle populationsafter propagating
from their injection point, atlp0. Synchrotron self-absorption, and free-free absorption in the stellar
wind (ionization fraction of 0.1), have been taken into account. The impact of these absorption
processes is rather small provided that most of the radio emission comes from a fairly large region,
well outside the binary.

3. Results and discussion

In Figure 2, top, 5 GHz radio maps are computed for a generic binary system and two different
orbital phases. The maps have been obtained smoothening the computed flux-per-beam values with

1As shown in [27], a hydrodynamical approximation for the flow seems appropriate.
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Figure 2: Top: Simulated radio map at 5 GHz, smoothed with a gaussian ofFWHM ≈ 1 mas, for the generic
case studied here and phases 0 and 0.5. Intensity units are mJy per beam. Axis units are in mas. Bottom:
The same as in the top of the figure, but without gaussian smoothening.

a 1 milliarcsecond (mas) FWHM Gaussian, reproducing the effect of a radio interferometer with a
1 mas beam. In Figure 2, bottom, the same maps without Gaussian smoothening arealso shown.
From Fig. 2, it is clear that the overall picture differs strongly from a point-like source. The emitter
spiral shape is hinted in Fig. 2, top, and much more clear in Fig. 2, bottom. The center of gravity
is displaced by few mas between phases 0 and 0.5, and the total flux in both phases is≈ 13 mJy.
Despite the flow prescriptions are quite distinct, and that we have accountedfor the 3-dimensional
extension of particle injection and the emitter, our results and those of [11] are qualitatively similar.

The adopted value forσ , 0.1, may appear rather high. In the case of Crab, the parameterσ is
much lower ([28]). A higherσ in our case is however plausible if the transfer of energy, from the
Pointing flux to matter in the pulsar wind, is a process extended in space. The conversion may even
take place in the termination shock itself ([30]). SinceRoff in a close binary system is much smaller
than in Crab, theσ -value may well be significantly higher in the former case. Another possibility
would be an effective increase (or decrease) ofB through the mixing of the shocked stellar and
pulsar winds, as the radio emitting plasma gets entangled with the stellar wind magneticfield.

Concerningvesc, simulations predict values close toc due to the acceleration of the shocked
flow because of strong pressure gradients [27]. Under such conditions, as shown in [31], adiabatic
cooling timescales can be indeed very short. However, instabilities and mixing at scales signifi-
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cantly larger thanRoff should slow down the flow. This has been included here and allow radio
fluxes to reach significant values. Otherwise, the emission would be lower by more than one order
of magnitude, i.e. radio fluxes< 1 mJy.

Nowadays, radio observations start to allow detailed comparisons with models. In this paper,
we present preliminary results of such a comparisons in the context of a semi-phenomenological
work, based on current state of our knowledge on the flow structure. Amore detailed study of
the properties of the radio emitter, as well as applications to specific objects, will be presented
elsewhere. We remark that, to better characterize the shocked wind evolution, farther numerical
magnetohydrodynamics simulations are required, with a detailed study of the instability develop-
ment. Pulsar wind physics is also a very important but open issue, central for wind propagation,
particle acceleration at the wind termination, and postshock region conditions.
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