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Present and future ultra-high-energy-cosmic-ray facilities (e.g., the Pierre Auger Observatory with

South and North components) and TeV-gamma-ray telescope arrays (e.g., HESS or VERITAS and

CTA) have the potential to set stringent indirect bounds on the nine Lorentz-violating parameters

of nonbirefringent modified Maxwell theory minimally coupled to standard Dirac theory. Theo-

retically, the most interesting case is isotropic Lorentz violation, which is described by a single

parameter [taken to vanish for the standard Lorentz-invariant theory]. It appears possible to obtain

in the future an upper (lower) indirect bound on this single isotropic Lorentz-violating parameter

at the+10−21
(
−10−17

)
level. Comparison is made with existing and future direct bounds from

laboratory experiments. The possible physics implications of upper bounds at the 10−21 level are

briefly discussed.
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1. Isotropic Lorentz violation in the photon sector

If Lorentz violation (LV) occurs somewhere in the theory of elementary particles and their
interactions, then it can be expected to feed also into the photon sector. This makes the search of
possible Lorentz-violating effects in the photon sector ofsubstantial interest, especially as photons
can be measured accurately and in a variety of physical systems.

Consider the isotropic modified Maxwell theory [1, 2] minimally coupled to the standard Dirac
theory of a spin–12 particle with chargee and massM. The Lagrange density of this particular
modification (“deformation”) of quantum electrodynamics (QED) is given by

LmodQED[c, κ̃tr,M,e] = LmodMaxwell[c, κ̃tr]+LDirac[c,M,e] , (1.1a)

LmodMaxwell[c, κ̃tr](x) = 1
2

(
(1+ κ̃tr) |E(x)|2− (1− κ̃tr) |B(x)|2

)
, (1.1b)

with Cartesian spacetime coordinates(xµ) = (ct, x1, x2, x3) and the standard Lagrange density of
a Dirac particle from the textbooks, some of which are listedin Ref. [3].

This theory is gauge-invariant, CPT–even, and power-counting renormalizable, but, for̃κtr 6= 0,
violates the Lorentz boost invariance while maintaining rotational invariance in a preferred refer-
ence frame. One possible reference frame is the one with an isotropic Cosmic Microwave Back-
ground. Here, though, the usual choice of the experimentalists is followed by employing the sun-
centered celestial equatorial frame.

Two questions immediately arise. First, is the modified-QEDtheory theoretically consistent
for all values of the parameter̃κtr or is there a restricted parameter domain? Second, the modified-
QED theory (1.1) is formulated in a flat spacetime, but how about gravity? Very briefly, the answers
are as follows. The theory (1.1) is consistent (i.e., has microcausality and unitarity) only for pa-
rameters in a restricted domain [3],

κ̃tr ∈ (−1, +1] . (1.2)

As to gravity, the theory (1.1) can be coupled [4, 5] to an external gravitational field (fixed back-
ground spacetime metric) but not to a dynamic gravitationalfield (variable spacetime metric), as
the energy-momentum tensor is generally not symmetric [4, 6].

Leaving the gravitational issue aside, return to the modified-QED theory (1.1) over a flat space-
time manifold and ask what parameter values of the single Lorentz-violating parameter̃κtr area
priori to be expected. It turns out that simple spacetime-foam models (see Sec. 6) can give positive
values of order unity for this deformation parameter,

κ̃tr
∣∣naive theory

= O(1) . (1.3)

This implies that already the most basic experimental testsof the effective photon theory (1.1b)
have the potential to teach us something of the fundamental properties of spacetime.

2. Existing direct laboratory bounds

The first direct laboratory bound was obtained in 1938 by Ivesand Stilwell at Bell Labs, USA,
with the following approximate result [7]:

|κ̃tr| . 10−2 . (2.1)
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Over the years, this difficult experiment has been improved steadily. The two most recent results
were obtained at the Max-Planck-Institut für Kernphysik (MPIK) in Heidelberg, Germany [8] and
at the University of Western Australia (UWA) in Perth, Australia [9], giving, respectively, the
following two–σ bounds:

|κ̃tr| < 2×10−7 , (2.2a)

|κ̃tr| < 3×10−8 . (2.2b)

In principle, this last direct laboratory bound can be improved by 4 orders of magnitude if cryo-
genic resonators are used [10, 11]. For completeness, also another type of laboratory bound [12]
will be mentioned in the next section.

3. Indirect bounds from particle astrophysics

Following up on an early suggestion by Beall [13]
(
and a later one by Coleman and Glashow

[14]
)
, it is possible to obtain tight indirectbounds via particle astrophysics [15, 16]. The basic idea

is remarkably simple [13, 14]:

(a) With modified dispersion relations, new decay channels appear which are absent in the stan-
dard relativistic theory.

(b) This leads to rapid energy loss of particles with energies above threshold [a generic LV
parameter ‘κ ’ typically gives a threshold energyEthresh(κ) → ∞ for |κ | → 0 ].

(c) Observing these particles implies that they necessarily have energies at or below threshold
[E ≤ Ethresh(κ)], which, in turn, gives bounds on the LV parameters (‘κ ’) of the theory.

In modified QED theory (1.1) with̃κtr ∈ (−1, 1], exact tree-level decay rates have been calcu-
lated for two processes [15], which occur forκ̃tr 6= 0 because of the difference between the maxi-
mum attainable velocityc of the Dirac particle and the photon velocityvγ = c

√
(1− κ̃tr)/(1+ κ̃tr).

The resulting bounds will be called ‘indirect,’ because they do not directly rely on the propagation
properties of the photon but on indirect mass-shell effects, as is made clear by point (a) above.1

The first process, vacuum-Cherenkov radiation forκ̃tr > 0 (Fig. 1–left), is found to have the
energy threshold

E(a)
thresh= M

√
1+ κ̃tr

2κ̃tr
=

1√
2

M√
κ̃tr

+O

(
M

√
κ̃tr

)
, (3.1a)

where the charged particle can be a protonp or heavy nucleusN, each, in first approximation,
considered as a charged pointlike Dirac particle with massM = Mp or M = MN. The vacuum-
Cherenkov decay rate depends, of course, on the value of the electric charge of the Dirac particle (|e|
or ZN |e|) but the energy threshold does not. In fact, the energy threshold (3.1a) simply follows from
energy-momentum conservation. Still, it is important to know the radiation rate above threshold,
in particular, to make sure that it is not strongly suppressed.

1Indirect bounds can also be obtained in the laboratory. For isotropic modified Maxwell theory, a remarkable
bound [12] has been obtained from the apparent absence of nonstandard synchrotron-radiation losses at the Large Elec-
tron Positron (LEP) collider of CERN. This indirect laboratory bound will be listed in the summary table below.

3



P
o
S
(
T
e
x
a
s
 
2
0
1
0
)
2
1
6

Future limits on isotropic LV from UHECRs and TeVγ rays F.R. Klinkhamer

Figure 1: Left: Vacuum-Cherenkov radiationp+ → p+γ. Right: Photon decayγ → e+e−.

The second process, photon decay forκ̃tr < 0 (Fig. 1–right), has a similar energy threshold:

E(b)
thresh= 2M

√(
1− κ̃tr

)

−2κ̃tr
=

√
2

M√
−κ̃tr

+O

(
M

√
−κ̃tr

)
, (3.1b)

where the charged particles in the final state can be an electron and a positron, each considered as
a charged pointlike Dirac particle with massM = Me.

Both decay rates and corresponding energy thresholds are well-behaved for parameter values
in the domain (1.2).

4. Existing indirect earth-based bounds from particle astrophysics

The absenceof vacuum-Cherenkov radiation for a particular ultra-high-energy-cosmic-ray
(UHECR) event [17] from the Pierre Auger Observatory (Auger, for short) withEprim = (212±
53) EeV impliesEprim < E(a)

thresh(κ̃tr). Formula (3.1a), then, gives the following indirect two–σ
upper bound [15]:

κ̃tr < +0.6×10−19, (4.1a)

for a conservative mass valueM = MFe = 52 GeV.

Similarly, the absenceof photon decay for gamma-ray events [18] from HESS withEγ =

(30± 5) TeV impliesEγ < E(b)
thresh(κ̃tr). Formula (3.1b), then, gives the following indirect two–σ

lower bound [15]:

κ̃tr > −0.9×10−15, (4.1b)

for photon decay into an electron-positron pair with an individual particle massM = Me= 511 keV.
A similar bound can perhaps be obtained with appropriate gamma-ray events from VERITAS [19].

Equation (4.1a) or (4.1b) depends only on the inferred travel length of a meter or more for
the primary at the top of the Earth’s atmosphere and on the energy of this primary. As such, each
is an earth-basedbound, not an “astrophysical” bound. This type of bound doesnot depend on
the precise (astronomical) origin of the primary nor on the actual distance between the source and
the Earth. Specifically, bounds (4.1a)–(4.1b) rely on having detected primaries traveling over a
few meters in the Earth’s atmosphere and having measured their energy reliably. (The previous
statements on these bounds are somewhat repetitive, but they hopefully dispel the considerable
confusion in the literature about the nature of these indirect bounds.)
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5. Future indirect earth-based bounds from particle astrophysics

According to (3.1), the bounds from Sec. 4 scale as(M/E)2. This scaling behavior invites the
following considerations.

In the future, it may be possible to obtain an appropriate Auger sample of UHECR events with

Eprim
?
= (25±5) EeV, Mprim

?
= Mp = 0.938 GeV. (5.1a)

Similarly, it may be possible to obtain an appropriate Cherenkov Telescope Array [20] (CTA)
sample of TeV-gamma-ray events with

Eγ
?
= (3.0±0.5)×102 TeV. (5.1b)

These data samples would allow us to improve the previous two–σ bounds (4.1a)–(4.1b) by 2
orders of magnitude [16],

−0.9×10−17 ?
< κ̃tr

?
< +1.0×10−21, (5.2)

again withM = Me = 0.511 MeV for the lower bound. The question marks in (5.2) are a reminder
that the samples (5.1) are not yet available.

These potential future bounds, together with the existing ones, are summarized in Table 1.

6. Outlook

What do the existing and future bounds onκ̃tr from Table 1 imply physically? Based on very
general arguments (Einstein’s dynamic spacetime manifoldand Heisenberg’s quantum-mechanical
uncertainty relations), Wheeler [21] has argued that “quantum spacetime” must have a nontrivial
small-scale structure. Moreover, it is to be expected that this must leave someremnants (“defects”)
in the effective classical spacetime manifold relevant over sufficiently large length scales.

Already for rather naive Swiss-cheese-type classical-spacetime models [22], it has been found
that the photon propagation is modified and corresponds to anisotropic modified Maxwell theory
(1.1b) with a positive deformation parameter of order

κ̃tr
∣∣naive theory

= O
(

b̃4/ l̃ 4)
≥ 0, (6.1)

Type of bound κ̃tr Experiment + Reference(s)

Existing, direct ±10−8 Laboratory: sapphire oscillators, UWA [9]

Existing, indirect ±5×10−15 Laboratory: synchrotron losses, LEP (CERN) [12]

Existing, indirect
(
−10−15, +10−19

)
Particle astrophysics: HESS, Auger–S [15]

Future, direct ±10−12? Laboratory: cryogenic resonators [10, 11]

Future, indirect
(
−10−17?, +10−21?

)
Particle astrophysics: CTA, Auger–S+N [16]

Table 1: Orders of magnitude for existing and future two–σ bounds on the Lorentz-violating parameterκ̃tr

of isotropic modified Maxwell theory coupled to standard Dirac theory from laboratory and particle-astro-
physics experiments (the last experiments only refer to processes occurring in the Earth’s atmosphere).
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for a typical defect (“hole”) sizẽb and a typical separatioñl between the individual defects (holes)
randomly embedded in Minkowski spacetime. Equally important, the same defects do notmod-
ify the maximum velocity of the Dirac particle, at least to leading order [22]. This implies that
the modified QED theory (1.1) corresponds to the effective theory of standard photons and Dirac
particles propagating over a Swiss-cheese-type classicalspacetime. In principle, it may be that the
defects (holes) have sizes and separations related byb̃ . l̃ . l Planck≡

√
h̄G/c3 ≈ 1.6×10−35m or

by b̃ . l̃ . l if “quantum spacetime” has a new fundamental lengthl as argued in Ref. [23].
From (6.1), the suggestion is that the physically relevant quantity is perhaps not̃κtr ≥ 0 but

rather its quartic root, (
κ̃tr

)1/4 ≥ 0. (6.2)

Taking values at the boundaries of the range of Table 1, observe that, on the one hand, the number
(10−8)1/4 = 10−2 is small but not very small and, on the other hand, the number(10−20)1/4 = 10−5

really is very small [of the same order as the ratio of the nucleus radius over the atomic radius].
Particle astrophysics thus provides a null experiment suggesting that spacetime is unexpectedly

smooth[quantified as̃b/l̃ . 10−5 for the effective parameters̃b and l̃ mentioned below (6.1)].
Perhaps this null experiment from particle astrophysics will turn out to be as important as the
Michelson–Morley experiment [24], which led to Einstein’sradically new concept of the relativity
of simultaneity and the special theory of relativity [25]. Also in our case, it appears that radically
new concepts are needed to understand the nature of what we call, for convenience, “quantum
spacetime” but which may have an entirely novel content.
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