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We use axisymmetric magnetohydrodynamic simulations to investigate the spinning-down of

magnetars rotating in the propeller regime and moving supersonically through the interstellar

medium. The simulations indicate that magnetars spin-down rapidly due to this interaction, faster

than for the case of a non-moving star. We discuss this model in respect of Soft Gamma Repeaters

(SGRs) and the isolated neutron star candidates
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Accretion onto NS in the "propeller" regime

1. Introduction

Some neutron stars referred to as “magnetars” have unusually large magnetic fields,B ∼
1013−1015 G [2]. Possible candidates for magnetars include anomalous X-ray pulsars and soft
gamma-ray repeaters (SGRs). These objects are associated with supernovae remnants and hence
are relatively young. Only a few candidates for magnetars have been found so far. The estimated
birthrate of magnetars is∼ 10%of ordinary pulsars [4] so that there might be many more magne-
tars which are presently invisible. Their “visibility" depends on a number of factors. One important
factor is the rate of the star’s spin-down. If magnetars spin-down rapidly to very long periods, then
one will not detect spin modulated variability during flares.

During the pulsar stage of evolution, magnetars spin down much more rapidly than ordinary
pulsars. They pass through their pulsar stage much faster, in∼ 104 years [9]. When the light
cylinder radius becomes larger than magnetospheric radiusrm, the relativistic wind is suppressed
by the inflowing matter [8] and the star enters the propeller regime where the spin-down is due to
the interaction of the star’s rotating field with the interstellar medium (ISM) [1], [3]. Magnetars
with velocitiesv > 100− 200 km/s interact directly with the ISM. That is, the magnetospheric
radius is larger than gravitational capture radius and the rapidly rotating magnetosphere interacts
strongly with the supersonically inflowing ISM.

The spin-down rate of supersonically moving magnetars in the propeller regime has been es-
timated earlier, but different authors have obtained rather different results. For example, Rutledge
in [7] estimates a spin-down time of∼ 4×109 yr for a neutron star with a surface magnetic field
B = 1015 G and velocityv = 300 km/s. On the other hand, Mori and Ruderman in [5] estimate
that a magnetar spins-down to periods greater than104 s within∼ 5×105 years. Mori and Rud-
erman put forward this model as an explanation of the isolated neutron star (INS) candidate RX
J1856.5-3754.

2. Model

We investigate the interaction of fast moving rotating magnetized star with the ISM using an
axisymmetric, resistive MHD code. The code incorporates the methods of local iterations and
flux-corrected-transport [13]. The flow is described by the resistive MHD equations:

∂ρ
∂ t

+∇·(ρ v) = 0 ,

ρ
∂v
∂ t

+ρ(v ·∇)v =−∇p+
1
c

J×B+Fg ,

∂B
∂ t

= ∇×(v×B)+
c2

4πσ
∇2B ,

∂ (ρε)
∂ t

+∇ · (ρεv) =−p∇·v+
J2

σ
. (1)

We assume axisymmetry(∂/∂φ = 0), but calculate all three components of velocity and magnetic
field v andB. The equation of state is taken to be that for an ideal gas,p= (γ−1)ρε , with specific
heat ratioγ = 5/3. The equations incorporate Ohm’s lawJ = σ(E + v×B/c), whereσ is the
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Accretion onto NS in the "propeller" regime

electrical conductivity. The associated magnetic diffusivity,ηm≡ c2/(4πσ), is considered to be a
constant within the computational region. The gravitational force,Fg =−GMρR/R3, is due to the
central star.

We use a cylindrical, inertial coordinate system(r,φ ,z) with thez− axis parallel to the star’s
dipole momentµ and rotation axisΩ. The vector potentialA is calculated so that∇ ·B = 0 at all
times. The star rotates with angular velocityΩ∗ = Ω∗ ẑ. The intrinsic magnetic field of the star is
taken to be an aligned dipole, with vector potentialA = µ×R/R3.

More detailed description of numerical model you can see in [12].

3. Results

We investigated numerically interaction of the rotating magnetar with the ISM and the rate
of spinning-down. Simulations were done at a variety of parameters: magnetic moments of the
starµ, angular velocitiesΩ∗, Mach numbersM and diffusivitiesη̃ . In most cases we varied one
parameter in a time, and kept other parameters fixed and corresponding to the “main" case. In the
main case a star rotates with an angular velocityω∗ = Ω∗/ΩK∗ = 0.7, whereΩK∗ =

√
GM/R3∗

is Keplerian angular velocity at the surface of the numerical star. We suggest that numerical star
(inner boundary) is much larger than the true radius of the neutron star. Mach number isM = 3.
We take dimensionless magnetic momentµ = 10−7.5, and take magnetic diffusivitỹηm = 10−5.

3.1 Dependence of Torque on Mach Number

For parameters corresponding to our “main case,” we did simulation runs for the Mach num-
bersM = 1, 3, 5, 6, and10, with the ambient sound speed fixed. From these runs we find that the
torque decreases with the Mach number approximately asL̇ ∝−M−0.4.

Figure 1a shows that for a Mach numberM = 1 the flow is similar to that observed in case
of a non-movingpropeller [6]. Rapidly rotating magnetosphere pushes matter and magnetic flux
outward in the equatorial plane forming the low-density, rotating torus. The gravitational radius is
several times larger than magnetospheric radius so that a significant part of the inflowing matter
is gravitationally trapped and accumulates around the star. This is similar to the case of spherical
Bondi accretion to a star in the propeller stage. ForM = 1, there is an axial flow of matter
downstream from the shock wave. However, the energy-density of the inflowing matterρv2/2 is
smaller than the energy-density of the equatorial propeller outflowρv2/2+B2/8π and this is why
the equatorial structure forms.

Figure 1b shows the flow at a larger Mach numberM = 3. In this case the energy-density of
the ISM matter is larger than the energy-density of the equatorial propeller-generated wind, so that
the disk structure is bent and pushed to the direction of the tail. This interaction is similar to that
observed in the simulations of magnetized supersonic stars in the non-rotating case [10].

The magnetosphere of the star acts as an obstacle for the ISM matter so that a bow shock
stands in front of the star and a conical shock wave forms behind it. The stand-off distance and the
cross-section of the interaction is larger in the propeller case than in the non-rotating case. This
is because the rotating equatorial disk of matter and magnetic field generated by the fast rotating
magnetosphere. For Mach numbersM > 2− 3, this disk structure is pushed by the inflowing
matter into a magnetotail behind the star.
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Figure 1: Matter flow around a strongly magnetized star rotating in the propeller regime and propagating
through the interstellar medium with Mach numbersM = 1 (top panel) andM = 3 (bottom panel).

For even larger Mach numbers,M = 6−10, the flow is similar to that observed forM = 3.
However, the stand-off distance is even smaller, because the larger portion of the rotating magne-
tosphere is pushed into the magnetotail behind the star.

The rotating magnetosphere interacts with the non-rotating matter of the ISM and this leads to
the spinning-down of the star. Angular momentum lost by the star flows out from the star. Thus,
we calculate the torque on the star by integrating the angular momentum flux density over a surface
surrounding the star,

L̇ =−
∫

dS·
(

ρvprvφ −
BprBφ

4π

)
(3).

Here,dS is the outward pointing surface area element and thep−subscript indicates the poloidal
component. We use a cylindrical surface around the star approximately at the Alfvén surface to
evaluate this integral.

Figure 2 shows temporal variation of this flux. After few initial rotations of the star,L̇ becomes
approximately constant. For comparison, we also calculated angular momentum flux through the
magnetotail at the distancez= 0.6 from the star. We obtained similar value of the angular momen-
tum flux (dashed line) because the angular momentum lost by the star flows into the magnetotail.

Figure 3 shows distribution of angular momentum flux densities carried by the magnetic field
−BprBφ/4π (top panel) and that carried by the matterρvprvφ (bottom panel). One can see that in-
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Figure 2: Variation of the total angular momentum flux from the star over a surface surrounding the star
(solid line) and the flux through a surface across the magnetotail atz= 0.6 (dotted line)

side the star’s magnetosphere the magnetic field gives the main contribution to the angular momen-
tum flux (see top panel). After passing the shock wave, magnetosphere interacts with non-rotating
ISM and transports part of its angular momentum to the matter. This rotating matter propagating to
the magnetotail gives the main contribution to the angular momentum flux in the tail (see bottom
panel). The rate of angular momentum loss from the star depends on efficiency of mixing of the
ISM matter with the magnetic field of the magnetosphere.

3.2 Dependence of the Torque on Other Parameters

We performed a number of simulations with different angular velocities of the starΩ∗ and
different magnetic momentsµ. We calculated the total angular momentum loss rate from the star
and investigated its dependence on theM , Ω∗, µ andη̃m. In addition we calculated the dependence
of the torque on the density of the ISM medium. We obtain the summary of scaling laws:

dL
dt

∝− η0.3µ0.6ρ0.8M−0.4Ω1.5
∗ . (4)

4. Spinning Down of Magnetars

We can estimate spinning down of magnetars in real, dimensional units. We take as a base our
main dimensionless parameters: angular velocityΩ/ΩK∗ = 0.7, Mach numberM = 3, gravimag-
netic parameterβ = 10−6 and magnetic diffusivitỹηm = 10−5.

We consider a neutron star with massM = 1.4 M¯ = 2.8×1033 g and radiusRNS= 106 cm.
The density of the ambient interstellar matter is taken to beρ = 1.7×10−24 g/cm3 (n = 1/ cm3).
The sound speed in the ISM,cs = 30km/s and a star moves in the interstellar medium with velocity
v = 3cs = 90km/s.

Using those values we can obtain:

L̇≈ 3×1029n1c−4
30 B0.6

15 P−1.5
5 M−0.4

3 g(cm/s)2 . (5)
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Figure 3: Distribution of the angular momentum fluxes in the magnetotail.

Thus the characteristic spin-down time is

T = L∗/|L̇| ≈ 104 n−1
1 c4

30B
−0.6
15 P0.5

5 M 0.4
3 yr . (6)

Next we can estimate the time-scale of evolution at the propeller stage. For periodsP∗ = 103 s,
which correspond to beginning of the propeller stage, the evolution scale will be∆T = 103 years,
while at periodP∗ = 106 s corresponding to the end of propeller stageT = 3×104 years. Thus
we see that magnetars are expected to spin down very fast at the propeller stage. This time-scale
however may be much larger if diffusivity is very small.

5. Conclusions

Using axisymmetric MHD simulations we have studied the supersonic propagation through the
ISM of magnetars in the propeller stage. We have done many simulation runs for the purpose of
determining the angular momentum loss rate of the star due to the interaction of its magnetosphere
with the shocked ISM. We conclude, that the interaction may be highly effective in spinning-
down magnetars. A star with magnetic fieldB∼ 1013−1015G is expected to spin-down in∆T ∼
104− 105years. This time may be longer if the ISM material does not efficiently interact with
the external regions of the magnetar’s magnetosphere. Therefore, after relatively short stages of
pulsar and propeller activity, a magnetar becomes a very slowly rotating object, with a period
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Accretion onto NS in the "propeller" regime

P > 105−106s, which is much longer than the periods expected for ordinary pulsars. This may be
a reason why the number of soft gamma repeaters, which are candidate magnetars, is so small. We
should note however, that the rate of spinning-down depends on the magnetic diffusivity which is
not known. At lower diffusivity the rate of spinning-down will be lower. The INS candidate RX
J1856.5-3754 may be an example of a slowly rotating magnetar. However, this model does not
explain theHα nebulae. An ordinary misaligned pulsar explains the different features more easily,
excluding the fact that no periodic fluctuations were observed from this object.
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