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The recently formulation of the relativistic Thomas-Fermimodel for compressed atoms is applied

to the study of white-dwarf equilibrium configurations in the framework of general relativity.

The equation of state is obtained as a function of the compression by considering each atom

constrained in a Wigner-Seitz cell and it takes into accountthe beta equilibrium and the Coulomb

interaction between the nuclei and the surrounding electrons. The consequences on the numerical

value of the Chandrasekhar-Landau mass limit are presentedas well as the modifications to the

mass-radius relation for4He and56Fe white-dwarf equilibrium configurations.
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On the general relativistic white-dwarfs

1. Introduction

Recently, the study of a compressed atom has been revisited in [1] by extending to special
relativity the powerful global approach of Feynman, Metropolis and Teller [2], which takes into
account all the Coulomb contributions duly expressed relativistically withoutthe need of any pie-
cewise description. The relativistic Thomas-Fermi model has been solved by imposing in addition
to the electromagnetic interaction also the weak interaction between neutrons, protons and elec-
trons. This presents some conceptual differences with respect to previous approaches and can be
used in order both to validate and to establish the limitations of previous approaches. We apply here
the considerations presented in [1] of a compressed atom in a Wigner-Seitzcell to the description
of a non-rotating white-dwarf in general relativity.

2. The Equation of State

We use the equation of state recently obtained in [1] which generalizes to relativistic regimes
the treatment of Feynman, Metropolis and Teller of the compressed atom [2].The white-dwarf
matter is arranged in a Wigner-Seitz lattice composed of cells of radiusRws filled by a relativistic
gas ofZ electrons in equilibrium with a nucleus ofA nucleons inside a radiusRc < Rws

Rc = ∆λπZ1/3 , (2.1)

beingλπ = h̄/(mπc). At nuclear density we have∆ ≈ (r0/λπ)(A/Z)1/3 with r0 ≈ 1.2 fm.
The condition of equilibrium of the electrons in each Wigner-Seitz cell is expressed by

EF
e =

√

c2(PF
e )2 +m2

ec4−mec
2−eV(r) > 0, (2.2)

whereV is the Coulomb potential andEF
e is the Fermi energy of electrons inside the compressed

cell.
The distribution of protons confined within the radiusRc is assumed as constant, thus

np(r) =
Z

4
3πR3

c

θ(r −Rc) , (2.3)

whereθ(r −Rc) denotes the Heaviside function. The electron density is given by

ne(r) =
(PF

e )3

3π2h̄3 =

[

V̂2(r)+2mec2V̂(r)
]3/2

3π2h̄3c3
, (2.4)

whereV̂ = eV+EF
e .

Introducingx = r/λπ , xc = Rc/λπ , χ/r = V̂(r)/(h̄c) we obtain from the Poisson equation the
relativistic Thomas-Fermi equation

1
3x

d2χ
dx2 = −

α
∆3 θ(xc−x)+

4α
9π

[

χ2

x2 +2
me

mπ

χ
x

]3/2

, (2.5)

which is integrated subjected to the boundary conditionsχ(0) = 0, χ(xws) ≥ 0 anddχ/dx|x=xws =

χ(xws)/xws.
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On the general relativistic white-dwarfs

The neutron densitynn(r) is determined from the condition of beta equilibrium

√

c2(PF
n )2 +m2

nc4 =
√

c2(PF
p )2 +m2

pc4 +mnc2−mpc2 +eV(r)+EF
e , (2.6)

from which we can obtain self-consistently the onset for inverse beta-decay of a given nuclear
composition(Z,A).

The pressure at the cell boundary is then a function of the compression level determined by the
Wigner-Seitz cell dimensionless radiusxws and therefore, a non-analytic pressure-density relation
is derived (see [1] for details). In Fig. 1 we show the electron number density inside a Wigner-Seitz
cell for a selected compressed atom of Iron. The electron distribution around the nucleus is well
different from the one given by the uniform approximation of the electronfluid. It is worth to note
that the electron density at the Wigner-Seitz cell boundary is smaller than the one given by the
uniform electron density case (see Fig. 1). Then, for a given density,the pressure obtained from
the self-consistent relativistic Feynman-Metropolis-Teller treatment is necessarily smaller than the
one obtained in the uniform electron density case.
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Figure 1: The electron number densityne in units of the average electron number densityn0 = 3Z/(4πR3
ws)

is plotted as a function of the dimensionless radial coordinatex = r/λπ for xws = 9.7 in both the relativistic
Feynman-Metropolis-Teller approach and the uniform approximation respectively for Iron. The electron
distribution for different levels of compression and for different nuclear compositions can be found in [1].

3. General relativistic structure equations

Outside each Wigner-Seitz cell the system is electrically neutral, thus no overall electric field
exists [1]. Therefore, the equation of state can be used to calculate the structure of the star through
the Einstein equations. Introducing the spherically symmetric metric

ds2 = eν(r)c2dt2−eλ (r)dr2− r2dθ 2− r2sin2 θdϕ2 , (3.1)
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On the general relativistic white-dwarfs

the Einstein equations can be written as

dν(r)
dr

=
2G
c2

4πr3P(r)/c2 +M(r)

r2
[

1− 2GM(r)
c2r

] , (3.2)

dM(r)
dr

= 4πr2E (r)
c2 , (3.3)

dP(r)
dr

= −
1
2

dν(r)
dr

[E (r)+P(r)] , (3.4)

whereeλ (r) = 1−2GM(r)/(c2r), E (r) is the energy-density andP(r) is the total pressure.

4. Mass and radius of general relativistic stable white-dwarfs

In Figs. 2 and 3 we show the total mass of4He and56Fe white dwarfs as a function of the
central density and the total radius respectively. The results correspond to the numerical integra-
tion of the Einstein equations (3.2)–(3.4) for the equation of state obtained from the relativistic
Feynman-Metropolis-Teller treatment described in Sec. 2.
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Figure 2: Mass in solar masses as a function of the central density in g cm−3 for 4He (left) and56Fe (right)
white-dwarfs. The solid curve corresponds to the general relativistic white-dwarfs using the equation of
state given by the relativistic Feynman-Metropolis-Teller approach. The dashed curve corresponds to the
white-dwarfs of Hamada and Salpeter [3] while, the dotted curve, are the corresponding Newtonian56Fe
white-dwarfs of Chandrasekhar [4].

The value of the critical mass and the radius of white-dwarfs in our treatmentand in the
Hamada and Salpeter [3] treatment is a function of the nuclear composition of the star. We have
given here specific examples in the limiting cases of4He and56Fe and the results of Chandrasekhar,
of Salpeter and ours have been compared and contrasted (see Table 1 and Figs. 2 and 3).
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Figure 3: Mass in solar masses as a function of the radius in km for4He (left) and56Fe (right) white-dwarfs.
The solid curve corresponds to the general relativistic white-dwarfs using the equation of state given by
the relativistic Feynman-Metropolis-Teller approach. The dashed curve corresponds to the white-dwarfs of
Hamada and Salpeter [3] while, the dotted curve, are the corresponding Newtonian56Fe white-dwarfs of
Chandrasekhar [4].

MStoner
crit MCh−L

crit MH&S
crit MFMTrel

crit
4He 1.73 1.44 1.42 1.38
56Fe 1.49 1.24 1.11 1.08

Table 1: Critical mass of4 He and56 Fe white-dwarfs in solar masses.MStoner
crit denotes the Stoner critical

mass, the Chandrasekhar-Landau limiting mass isMCh−L
crit while the one of Hamada and Salpeter is denoted

by MH&S
crit . The critical mass obtained in the present work is denoted byMFMTrel

crit .
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