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1. Introduction

1.1 Overview

Observational cosmology is currently in its “Golden Age". wkalth of new observational
results are being uncovered. The cosmic microwave backdr¢GMB) has been measured to
high precision, the distribution of visible and of dark neatis being mapped out to greater and
greater depths. New observational windows to probe thetsiiel of the universe are opening up.
To explain these observational results it is necessarynesider processes which happened in the
very early universe.

The inflationary scenario [2] (see also [3, 4, 5]) is the autrparadigm for the evolution of the
very early universe. Inflation can explain some of the pugalbich the previous paradigm - Stan-
dard Big Bang cosmology - could not address. More impongahtiwever, inflationary cosmology
gave rise to the first explanation for the origin of inhomagjdas in the universe based on causal
physics [6] (see also [7, 5, 8])). The theory of structurarfation in inflationary cosmology pre-
dicted the detailed shape of the angular power spectrum d8 @Msotropies, a prediction which
was verified many years later observationally [9].

In spite of this phenomenological success, inflationaryrmdegy is not without its concep-
tual problems. These problems motivate the search fonaltiee proposals for the evolution of the
early universe and for the generation of structure. Thesenatives must be consistent with the
current observations, and they must make predictions whticlwthey can be observationally dis-
tinguished from inflationary cosmology. In these lectureslll discuss two alternative scenarios,
the “Matter Bounce" (see e.g. [10]) and “String Gas Cosmgl¢gl].

| begin these lectures with a brief survey of the Standard Bagg (SBB) model and its
problems. Possibly the most important problem is the aleseh@ structure formation scenario
based on causal physics. | will then introduce inflationaryneology and the two alternatives and
show how they address the conceptual problems of the SBBImiodzarticular how structure is
formed in these models.

Since the information about the early universe is encodétkispectrum of cosmological fluc-
tuations about the expanding background, it is these fltiongawhich provide a link between the
physics in the very early universe and current cosmologibaérvations. Section 2 is devoted to an
overview of the theory of linearized cosmological perttidias, the main technical tool in modern
cosmology. The analysis of this section is applicable teeatly universe theories. In Section 3
| give an overview of inflationary cosmology, focusing on thessic principles and emphasizing
recent progress and conceptual problems.

The conceptual problems of inflationary cosmology motivhie search for alternatives. In
Section 4 the “Matter Bounce" alternative is discussed gctin 5 the “String Gas" alternative.

1.2 Standard Big Bang Model

Standard Big Bang cosmology is based on three principle fifét is the assumption that
space is homogeneous and isotropic on large scales. Thadsiethe assumption that the dynamics
of space-time is described by the Einstein field equatiohs.tfiird basis of the theory is that matter
can be described as a superposition of two classical pdiféds, a radiation fluid with relativistic
equation of state and pressure-less (cold) matter.
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The first principle of Standard Cosmology implies that thdrindakes the following most
general form for a homogeneous and isotropic four-dimeraianiverse

ds? = dt? —a(t)2dx?, (1.1)

wheret is physical timex denote the three co-moving spatial coordinates (pointgsttin an
expanding space have constant co-moving coordinatestharstale factoa(t) is proportional to
the radiius of space. For simplicity we have assumed thatiherse is spatially flat.

The expansion raté (t) of the universe is given by

Ht) = =, (1.2)

where the overdot represents the derivative with respetitm®. The cosmological redshift)
at timet yields the amount of expansion which space has undergomebetthe timea and the

present timey:
a(to)
ZH)+1=——. 1.3
In the case of a homogeneous and isotropic metric (1.1),itketdin equations which describe
how matter induces curvature of space-time reduce to a sedofary differential equations, the
Friedmann equations. Written for simplicity in the case @tosmological constant and no spatial

curvature they are

H2 — _Sng, (1.4)
wherep is the energy density of matter af&lis Newton’s gravitational constant, and
a 4nG
= 1.
2 3 (P+3p) (1.5)
or equivalently
p=-3H(p+p), (1.6)

wherep is the pressure density of matter.
The third principle of Standard Cosmology says that thegndensity and pressure are the
sums of the contributions from cold matter (symbols withssuipt “m™) and radiation (subscripts

“r':

P = Pm+pr (1.7)
P = Pm+Pr

with pm =0 andp, = 1/3p.

The first principle of Standard Cosmology, the homogenaeity iaotropy of space on large
scales, was initially introduced soleley to simplify thethmatics. However, it is now very well
confirmed observationally by the near isotropy of the cosmicrowave background and by the
convergence to homogeneity in the distribution of galaaethe length scale on which the universe
is probed increases.

Standard Cosmology rests on three observational pillarsthy it explains Hubble’s redshift-
distance relationship. Secondly, and most importantijtfertheme of these lectures, it predicted
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Figure 1: A sketch of the temperature (vertical axis) - time (horiabakis) relation in Standard Cosmology.
As the beginning of time is approached, the temperaturegise

R

the existence and black body nature of the cosmic microwagkdround (CMB). The argument is
as follows. If we consider regular matter and go back in tithe temperature of matter increases.
Eventually, it exceeds the ionization temperature of atddegore that time, matter was a plasma,
and space was permeated by a thermal gas of photons. A gastohphwill thus remain at the
current time. The photons last scatter at a tigg the “time of recombination" which occurs at
a redshift of about 1D After that, the gas of photons remains in a thermal distidiouwith a
temperaturel which redshifts as the universe expands, Te~ a~t. The CMB is this remnant
gas of photons from the early universe. The precision measemt of the black body nature of
the CMB [12] can be viewed as the beginning of the “Golden Agfetbservational cosmology.
The third observational pillar of Standard Cosmology isghed agreement between the predicted
abundances of light elements and the observed ones. Thisragnt tells us that Standard Cos-
mology is a very good description of how the universe evoback to the time of nucleosynthesis.
Any modifications to the time evolution of Standard Cosmeglotust take place before then.

At the present timéy matter is dominated by the cold pressureless components, Hsuwe
go back in time, the universe is (except close to the presmeat when it appears that a residual
cosmological constant is beginning to dominate the cosgicdb dynamics) initially in a matter-
dominated phase during whigtft) ~ t%3. Since the energy density in cold matter scalea@s
whereas that of relativistic radiation scalesaa$, there will be a time before which the energy
density in radiation was larger than that of cold matter. fiitme when the two energy densities are
equal isteq and corresponds to a redshift of aroung 10°. Fort < teq the universe is radiation-
dominated anda(t) ~ t%2. As we go back into the past the density and temperature dsere
without bound and a singularity is reached at which energysithe temperature and curvature are
all infinite. This is the “Big Bang" (see Fig. 1 for a sketch béttemperature/time relationship in
Standard Cosmology).

1.3 Problems of the Standard Big Bang

Obviously, the assumptions on which Standard Cosmologgsed break down long before
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Figure 2: Sketch illustrating the horizon problem of Standard Cosgwl our past horizon dfec is larger
than the causal horizon (forward light cone) at that timastmaking it impossible to causally explain the
observed isotropy of the CMB.

the singularity is reached. This is the “singularity prabfeof the model, a problem which also
arises in inflationary cosmology. It is wrong to say that 8&ad Cosmology predicts a Big Bang.
Instead, one should say that Standard Cosmology is incéenalel one does not understand the
earliest moments of the evolution of the universe.

There are, however, more “practical” “problems" of the 8tad Big Bang model - problems
in the sense that the model is unable to explain certain layrfes of the observed universe. The
first such problem is the “horizon problem" [2]: within Stamd Cosmology there is no possi-
ble explanation for the observed homogeneity and isotrdgiieoCMB. Let us consider photons
reaching us from opposite angles in the sky. As sketchedguarEi2, the source points for these
photons on the last scattering surface are separated byaaaksgreater than the horizon at that
time. Hence, there is no possible causal mechanism whichetate the temperatures at the two
points.

A related problem is the “size problem™: if the spatial st of the universe are finite,
then the only length scale available at the Planck tipnés the Planck length. However, it we
extrapolate the size of our currently observed horizon liackhen the temperature was equal
to the Planck temperature, then the corresponding wavtléadarger than fim, many orders
of magnitude larger than the Planck length. Standard Camgyabffers no explanation for these
initial conditions.

The third mystery of Standard Cosmology concerns the obdesiegree of spatial flathess of
the universe. At the current time the observed energy deagqifials the “critical" energy density
pc of a spatially flat universe to within 10% or better. HowewerStandard Cosmology = pc is
an unstable critical point in an expanding universe. As thiearse expands, the relative difference
betweenp andp. increases. This can be seen by taking the Friedmann equatibe presence of
spatial curvature

8nG
H2+€eT? = 3P (1.8)
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Figure 3: Sketch illustrating the formation of structure problem tdi®8lard Cosmology: the physical wave-
length of fluctuations on fixed comoving scales which coroespto the large-scale structures observed in
the universe is larger than the horizon at the tigeof equal matter and radiation, the time when matter
fluctuations begin to grow. Hence, it is impossible to expldie origin of non-trivial correlations of the
seeds for the fluctuations which had to have been preserstdirtie.

where K
€= (a—T)2 (1.9
T being the temperature amdthe curvature constant which ks= +1 or k = 0 for closed, open
or flat spatial sections, and comparing (1.8) with the cpoading equation in a spatially flat
universe k= 0 andp. replacingp. If entropy is conserved (as it is in Standard Cosmology) the
is constant and we obtain
P—Pc iiz ~ T2

pc  8nG pc '
Hence, to explain the currently observed degree of spatialets, the initial spatial curvature had
to have been tuned to a very high accuracy. This is the “flatpesblem".

We observe highly non-random correlations in the distidsubf galaxies in the universe. The
only force which can act on the relevant distances is gra@tavity is a weak force, and therefore
the seed fluctuations which develop into the observed siresthad to have been non-randomly
distributed at the timé&,q, the time when gravitational clustering begins (see Secjo However,
as illustrated in Figure 3, the physical length correspogdo the fluctuations which we observe
today on the largest scales (they have constant comovirg) $sdarger than the horizon at that
time. Hence, there can be no causal generation mechanistinefse perturbations This is the
“fluctuation problem" of Standard Cosmology.

There are also more conceptual problems: Standard Cosyni@dzased on treating matter
as a set of perfect fluids. However, we know that at high eaerghd temperatures a classical
description of matter breaks down. Thus, Standard Cosmalmgst break down at sufficiently
high energies. It does not contain the adequate matter gghysidescribe the very early uni-
verse. Similarly, the singularity of space-time which $kard Cosmology contains corresponds

(1.10)

IThis is the usual textbook argument. The student is inviteftht (at least) two flaws in this argument.
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Figure 4: A sketch showing the time line of inflationary cosmology. Tperiod of accelerated expan-
sion begins at timg and end atg. The time evolution aftetr corresponds to what happens in Standard
Cosmology.

to a breakdown of the assumptions on which General Relaiwibased. This is the “singularity
problem" of Standard Cosmology.

All of the early universe scenarios which | will discuss iretfollowing provide solutions
to the formation of structure problem. They can successtblain the wealth of observational
data on the distribution of matter in the universe and on thiB@Gnisotropies. The rest of these
lectures will focus on this point. However, the reader sti@lso ask under which circumstances
the scenarios to be discussed below address the other mobientioned above.

1.4 Inflation as a Solution

The idea of inflationary cosmology is to add a period to thdugian of the very early universe
during which the scale factor undergoes accelerated ekpangnost often nearly exponential
growth. The time line of inflationary cosmology is sketchedrigure 4. The timg is the beginning
of the inflationary period, ant is its end (the meaning of the subscHptvill become clear later).
Although inflation is usually associated with physics atMaigh energy scales, e.§.~ 10*°Gev,
all that is required from the initial basic consideratiossthat inflation ends before the time of
nucleosynthesis.

During the period of inflation, the density of any pre-exigtparticles is red-shifted. Hence, if
inflation is to be viable, it must contain a mechanism to heatmiverse ak, a “reheating" mech-
anism - hence the subscriRtontg. This mechanism must involve dramatic entropy generation.
is this non-adiabatic evolution which leads to a solutiorthef flatness problem, as the reader can
verify by inspecting equation (1.10) and allowing for eplyaeneration at the timg.

A space-time sketch of inflationary cosmology is given inUkg5 . The vertical axis is time,
the horizontal axis corresponds to physical distance. dtifferent distance scales are shown. The
solid line labelled by is the physical length corresponding to a fixed comovingupbstion. The
second solid line (blue) is the Hubble radius

Ig(t) = H (). (1.12)

The Hubble radius separates scales where microphysicsdteriover gravity (sub-Hubble scales)
from ones on which the effects of microphysics are negl@iisuper-Hubble scale$) Hence, a
necessary requirement for a causal theory of structurediom is that scales we observe today
originate at sub-Hubble lengths in the early universe. Tird tength is the “horizon", the forward

2This statement will be demonstrated later in these lectures
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Figure 5: Space-time sketch of inflationary cosmology. The verticé & time, the horizontal axis corre-
sponds to physical distance. The solid line labekesithe physical length of a fixed comoving fluctuation
scale. The role of the Hubble radius and the horizon are sggliin the text.

light cone of our position at the Big Bang. The horizon is tl@gality limit. Note that because
of the exponential expansion of space during inflation, trézbn is exponentially larger than the
Hubble radius. It is important not to confuse these two scattubble radius and horizon are the
same in Standard Cosmology, but in all three early universaagios which will be discussed in
the following they are different.

From Fig. 5 it is clear that provided that the period of inflatis sufficiently long, all scales
which are currently observed originate as sub-Hubble scatiéhe beginning of the inflationary
phase. Thus, in inflationary cosmology it is possible to havmusal generation mechanism of
fluctuations [6, 7, 5]. Since matter pre-existingtjas redshifted away, we are left with a matter
vacuum. The inflationary universe scenario of structurendion is based on the hypothesis that
all current structure originated as quantum vacuum flunsat From Figure 5 it is also clear that
the horizon problem of standard cosmology can be solvedgedvhat the period of inflation lasts
sufficiently long. The reader should convince him/herdedit the required period of inflation is
about 584 1 if inflation takes place at an enegy scale of abodf@@V. Inflation thus solve both
the horizon and the structure formation problems.

To obtain exponential expansion of space in the context métEin gravity the energy density
must be constant. Thus, during inflation the total energysirel of the universe both increase ex-
ponentially. In this way, inflation can solve the size and@y problems of Standard Cosmology.

To summarize the main point concerning the generation ahotmyical fluctuations (the main
theme of these lectures) in inflationary cosmology: the firgtial criterium which must be satis-
fied in order to have a successful theory of structure fornais that fluctuation scales originate
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inside the Hubble radius. In inflationary cosmology it is #oeelerated expansion of space during
the inflationary phase which provides this success. In thewitng we will emphasize what is
responsible for the corresponding success in the two aligenscenarios which we will discuss.

1.5 Matter Bounce as a Solution

The first alternative to cosmological inflation as a theorgtaficture formation is the “matter
bounce" , an alternative which is not yet well appreciated & overview the reader is referred to
[10]). The scenario is based on a cosmological backgroumhioh the scale factoa(t) bounces
in a non-singular manner.

Figure 6 shows a space-time sketch of such a bouncing coggnaidthout loss of generality
we can adjust the time axis such that the bounce point (miniatae of the scale factor) occurs at
t = 0. There are three phases in such a non-singular bouncenitia¢ ¢ontracting phase during
which the Hubble radius is decreasing linearly|tih a bounce phase during which a transition
from contraction to expansion takes place, and thirdly gwaliexpanding phase of Standard Cos-
mology. There is no prolonged inflationary phase after thenbe, nor is there a time-symmetric
deflationary contracting period before the bounce point.isAgsbvious from the Figure, scales
which we observe today started out early in the contractingse at sub-Hubble lengths. The
matter bounce scenario assumes that the contracting phasater-dominated at the times when
scales we observe today exit the Hubble radius. A model irchvttie contracting phase is the
time reverse of our current expanding phase would obey thisliion. The assumption of an
initial matter-dominated phase will be seen later in thestures to be important if we want to
obtain a scale-invariant spectrum of cosmological pedtiobs from initial vacuum fluctuations
[13, 14, 15].

Let us make a first comparison with inflation. A non-deflatigneontracting phase replaces
the accelerated expanding phase as a mechanism to bring€ixealing scales within the Hubble
radius as we go back in time, allowing us to consider the poggiof a causal generation mech-
anism of fluctuations. Starting with vacuum fluctuations, ater-dominated contracting phase
is required in order to obtain a scale-invariant spectrurhis Eorresponds to the requirement in
inflationary cosmology that the accelerated expansion bdynexponential.

With Einstein gravity and matter satisfying the usual epergnditions it is not possible to
obtain a non-singular bounce. However, as mentioned befbig unreasonable to expect that
Einstein gravity will provide a good description of the piogsnear the bounce. There are a large
number of ways to obtain a non-singular bouncing cosmoldgymention but a few, it has been
shown that a bouncing cosmology results naturally from fiecial ghost-free higher derivative
gravity Lagrangian introduced in [16]. Bounces also aris¢hie higher-derivative non-singular
universe construction of [17], in “mirage cosmology" (seg. §18]) which is the cosmology on
a brane moving through a curved higher-dimensional bulkesiane (the time dependence for a
brane observer is induced by the motion through the bulk)within the context of Einstein gravity
- by making use of “quintom matter" (matter consisting of wemponents, one with regular kinetic
term in the action, the other one with opposite sign kinetitioa) [19]. For an in-depth review of
ways of obtaining bouncing cosmologies see [20]. Very rdgeit has been shown [21] that
a bouncing cosmology can easily emerge from Horava-Lidspravity [22], a new approach to
quantizing gravity.
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Figure 6: Space-time sketch in the matter bounce scenario. The aketids is conformal time}, the
horizontal axis denotes a co-moving space coordinate., 860! denotes the co-moving Hubble radius.

In the matter bounce scenario the universe begins cold aréftre large. Thus, the size
problem of Standard Cosmology does not arise. As is obviam figure 6, there is no horizon
problem for the matter bounce scenario as long as the ctinggmeriod is long (to be specific, of
similar duration as the post-bounce expanding phase hetjptesent time). By the same argument,
it is possible to have a causal mechanism for generatingrthmpdial cosmological perturbations
which evolve into the structures we observe today. Spetifieces will be discussed in the section
of the matter bounce scenario, if the fluctuations origiateacuum perturbations on sub-Hubble
scales in the contracting phase, then the resulting specatulate times for scales exiting the
Hubble radius in the matter-dominated phase of contradgiastale-invariant [13, 14, 15]. The
propagation of infrared (IR) fluctuations through the norgslar bounce was analyzed in the case
of the higher derivative gravity model of [16] in [23], in nage cosmology in [18], in the case
of the quintom bounce in [24, 25] and for a Horava-Lifshitauboe in [26]. The result of these
studies is that the scale-invariance of the spectrum béfi@erbounce goes persists after the bounce
as long as the time period of the bounce phase is short cothpatke wavelengths of the modes
being considered. Note that if the fluctuations have a theargin, then the condition on the
background cosmology to yield scale-invariance of the spectof fluctuations is different [27].

1.6 String Gas Cosmology as a Solution

String gas cosmology [28] (see also [29], and see [11] formprehensive review) is a toy
model of cosmology which results from coupling a gas of fundatal strings to a background
space-time metric. It is assumed that the spatial secti@nsanpact. It is argued that the universe
starts in a quasi-static phase during which the temperafitree string gas hovers at the Hagedorn

10
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Figure 7: The dynamics of string gas cosmology. The vertical axisesgnts the scale factor of the universe,
the horizontal axis is time. Along the horizontal axis, tipgp@ximate equation of state is also indicated.
During the Hagedorn phase the pressure is negligible dueetoancellation between the positive pressure
of the momentum modes and the negative pressure of the wimdades, after time the equation of state

is that of a radiation-dominated universe.

value [30], the maximal temperature of a gas of closed srim¢hermal equilibrium. The string gas
in this early phase is dominated by strings winding the carhppatial sections. The annihilation
of winding strings will produce string loops and lead to ansiiion from the early quasi-static
phase to the radiation phase of Standard Cosmology. Figowssh sketch of the evolution of the
scale factor in string gas cosmology.

In Figure 8 we sketch the space-time diagram in string gasclugyy. Since the early Hage-
dorn phase is quasi-static, the Hubble radius is infinite. the same reason, the physical wave-
length of fluctuations remains constant in this phase. Aetiteof the Hagedorn phase, the Hubble
radius decreases to a microscopic value and makes a toansitits evolution in Standard Cosmol-
ogy.

Once again, we see that fluctuations originate on sub-Hudalalles. In string gas cosmology,
it is the existence of a quasi-static phase which leads tor#sult. As will be discussed in the
section on string gas cosmology, the source of perturbatiorstring gas cosmology is thermal:
string thermodynamical fluctuations in a compact space stihle winding modes in fact leads to
a scale-invariant spectrum [31].

2. Theory of Cosmological Perturbations

The key tool which is used in modern cosmology to connectrtes®f the very early universe
with cosmological observations today is the theory of cdsgioal perturbations. In the following,
we will give an overview of this theory (similar to the oveswi in [33] which in turn is based on the
comprehensive review [34]). We begin with the analysis afuybations in Newtonian cosmology,
a useful exercise to develop intuition and notations.

11
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Figure 8: Space-time diagram (sketch) showing the evolution of fix@anoving scales in string gas cos-
mology. The vertical axis is time, the horizontal axis is piegl distance. The solid curve represents the
Einstein frame Hubble radiud —* which shrinks abruptly to a micro-physical scalérafind then increases
linearly in time fort > tr. Fixed co-moving scales (the dotted lines labelettjgndk,) which are currently
probed in cosmological observations have wavelengthshwénie smaller than the Hubble radius beftre
They exit the Hubble radius at timggk) just prior totr, and propagate with a wavelength larger than the
Hubble radius until they reenter the Hubble radius at titpés.

2.1 Newtonian Theory

The growth of density fluctuations is a consequence of thelpattractive nature of the grav-
itational force. Imagine (first in a non-expanding backgua density excesSp localized about
some pointx in space. This fluctuation produces an attractive force whidls the surrounding
matter towardx. The magnitude of this force is proportional &p. Hence, by Newton’s second
law

dp ~ Gdp, (2.1)

whereG is Newton'’s gravitational constant. Hence, there is an egpbal instability of flat space-
time to the development of fluctuations.

Obviously, in General Relativity it is inconsistent to ciles density fluctuations in a non-
expanding background. If we consider density fluctuationan expanding background, then the
expansion of space leads to a friction term in (2.1). Hermtstead of an exponential instability
to the development of fluctuations, fluctuations in an expantUniverse will grow as a power
of time. We will now determine what this power is and how it de@s both on the background
cosmological expansion rate and on the length scale of theiéltions.

12
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We first consider the evolution of hydrodynamical mattertfiations in a fixed non-expanding
background. In this context, matter is described by a peflei, and gravity by the Newtonian
gravitational potentialp. The fluid variables are the energy densitythe pressure, the fluid
velocity v, and the entropy density The basic hydrodynamical equations are

p+0-(pv) =0
V—i—(V-D)V—l—%Dp—i— O¢ =0

%9 = 4nGp (2.2)
S+ (v-O)s=0
p = p(p,s).

The first equation is the continuity equation, the secondhésEuler (force) equation, the third
is the Poisson equation of Newtonian gravity, the fourthregpes entropy conservation, and the
last describes the equation of state of matter. The darévatith respect to time is denoted by an
over-dot.

The background is given by the energy dengifythe pressur@y, vanishing velocity, constant
gravitational potentialp and constant entropy densiy. As mentioned above, it does not satisfy
the background Poisson equation.

The equations for cosmological perturbations are obtamegerturbing the fluid variables
about the background,

P = po+0p

Vv = dv

P = pPo+dp (2.3)
¢ = ¢o+9¢

S =+ 0sS,

where the fluctuating fieldép, dv,dp,d¢ and ds are functions of space and time, by inserting
these expressions into the basic hydrodynamical equatioRy by linearizing, and by combining
the resulting equations which are of first order in time. Wetlge following differential equations
for the energy density fluctuatiado and the entropy perturbatia¥s

dp — c2023p — 4nGpodp = o?ds (2.4)
5s = 0,

where the variables? and o describe the equation of state

dp = 2dp +0dS (2.5)
with 5p
<= (5 (2.6)

denoting the square of the speed of sound.

13
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The fluctuations can be classified as followsd#vanishes, we havadiabatic fluctuations.
If dsis non-vanishing buSp = 0, we speak of aentropy fluctuation.

The first conclusions we can draw from the basic perturbatmmations (2.4) are that
1) entropy fluctuations do not grow,

2) adiabatic fluctuations are time-dependent, and
3) entropy fluctuations seed adiabatic ones.
All of these conclusions will remain valid in the relativistheory.

Since the equations are linear, we can work in Fourier sgaaeh Fourier componeidp(t)
of the fluctuation fielddp(x,t) evolves independently. In the case of adiabatic fluctusfitime
cosmological perturbations are described by a single fidlidlwobeys a second order differential
equation and hence has two fundamental solutions. We veltisgt this conclusion remains true
in the relativistic theory.

Taking a closer look at the equation of motion fiyp, we see that the third term on the left
hand side represents the force due to gravity, a purelycttteaforce yielding an instability of flat
space-time to the development of density fluctuations (&sudsed earlier, see (2.1)). The second
term on the left hand side of (2.4) represents a force dueetdltid pressure which tends to set
up pressure waves. In the absence of entropy fluctuatioagutiution ofdp is governed by the
combined action of both pressure and gravitational forces.

Restricting our attention to adiabatic fluctuations, we Bem (2.4) that there is a critical
wavelength, the Jeans length, whose wavenurkpisrgiven by

4G
o= (TG @7
S
Fluctuations with wavelength longer than the Jeans lerigtt k;) grow exponentially
Spk(t) ~ et with wy ~ 4(nGpg)*/? (2.8)

whereas short wavelength mod&ss k;) oscillate with frequencyy ~ csk. Note that the value of
the Jeans length depends on the equation of state of therbacky For a background dominated
by relativistic radiation, the Jeans length is large (ofdtder of the Hubble radiud ~1(t)), whereas
for pressure-less matter it vanishes.

Let us now improve on the previous analysis and study Newatonosmological fluctuations
about an expanding background. In this case, the backgreguadtions are consistent (the non-
vanishing average energy density leads to cosmologicaresipn). However, we are still neglect-
ing general relativistic effects (the fluctuations of thetmag. Such effects turn out to be dominant
on length scales larger than the Hubble radius (t), and thus the analysis of this section is appli-
cable only to smaller scales.

The background cosmological model is given by the energgitlep(t), the pressurgy(t),
and the recessional velocityy = H (t)x, wherex is the Euclidean spatial coordinate vector (“phys-
ical coordinates”). The space- and time-dependent fluomidields are defined as in the previous
section:

v(t,x) = vo(t,x) + dv(t,x) (2.9)
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where?; is the fractional energy density perturbation (we are adtd in the fractional rather than
in the absolute energy density fluctuation!), and the presgerturbatiord p is defined as in (2.5).
In addition, there is the possibility of a non-vanishingrepy perturbation defined as in (2.3).

We now insert this ansatz into the basic hydrodynamical timps(2.2), linearize in the per-
turbation variables, and combine the first order diffeangiguations fod; and dp into a single
second order differential equation fép.. The result simplifies if we work in “comoving coordi-
nates”q which are the coordinates painted onto the expanding baakgt i.e.x(t) = a(t)q(t).
After some algebra, we obtain the following equation whiekatibes the time evolution of density
fluctuations: X

o

where the subscrif on theld operator indicates that derivatives with respect to commpeioordi-
nates are used. In addition, we have the equation of entr«npx;emvatiorﬁs =0.

Comparing with the equations (2.4) obtained in the absefi@n @expanding background,
we see that the only difference is the presence of a Hubblgidanerm in the equation fod;.
This term will moderate the exponential instability of theckground to long wavelength density
fluctuations. In addition, it will lead to a damping of the tlsting solutions on short wavelengths.
More specifically, for physical wavenumbeks < kj (wherek; is again given by (2.7)), and in
a matter-dominated background cosmology, the generati@olof (2.10) in the absence of any
entropy fluctuations is given by

&(t) = cat?P et (2.11)

wherec; andc, are two constants determined by the initial conditions, wechave dropped the
subscripte in expressions involving:. There are two fundamental solutions, the first is a growing
mode withd(t) ~ a(t), the second a decaying mode wd(t) ~ t~1. On short wavelengths, one
obtains damped oscillatory motion:

B(t) ~ a Y2(t)exp(ticek / dta i(t))). (2.12)

The above analysis applies for- teq, when we are following the fluctuations of the dominant
component of matter. In the radiation era, cold matter fltddms only grow logarithmically in
time since the dominant component of matter (the relativistdiation) does not cluster and hence
the term in the equation of motion for fluctuations which esgnts the gravitational attraction
force is suppressed. In this sense, we can say that inhoreitigerbegin to cluster at the tintg,.

As a simple application of the Newtonian equations for cdsgioal perturbations derived
above, let us compare the predicted cosmic microwave bagkgr(CMB) anisotropies in a spa-
tially flat universe with only baryonic matter - Model A - todltorresponding anisotropies in a
flat Universe with mostly cold dark matter (pressure-less-baryonic dark matter) - Model B.
We start with the observationally known amplitude of thatige density fluctuations today (time
to), and we use the fact that the amplitude of the CMB anisoé®pin the angular scalg(k)
corresponding to the comoving wavenumbds set by the primordial value of the gravitational
potential @ - introduced in the following section - which in turn is reddtto the primordial value
of the density fluctuations at Hubble radius crossing (awicto its value at the timgec - see e.g.
Chapter 17 of [34]).
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In Model A, the dominant component of the pressure-lesseanattcoupled to radiation be-
tweenteq andtrec, the time of last scattering. Thus, the Jeans length is coabjeato the Hubble
radius. Therefore, for comoving galactic scalkss> kj in this time interval, and thus the frac-
tional density contrast decreasesaés /2. In contrast, in Model B, the dominant component
of pressure-less matter couples only weakly to radiatiod, feence the Jeans length is negligibly
small. Thus, in Model B, the relative density contrast grassi(t) betweenteq andtyec. In the
time intervaltec <t < to, the fluctuations scale identically in Models A and B. Sumigiag, we
conclude, working backwards in time from a fixed amplitudedptoday, that the amplitudes of
O (teg) in Models A and B (and thus their primordial values) are edby

S(teg)a ~ (S22 Y25 (teq) |5 - 2.13)

Hence, in Model A (without non-baryonic dark matter) the Cldisotropies are predicted to be
a factor of about 30 larger [35] than in Model B, way in excekthe recent observational results.
This is one of the strongest arguments for the existence mfaoyonic dark mattet. Note that
the precise value of the enhancement factor depends onltieafathe cosmological constant-
the above result holds f@x = 0.

2.2 Observables

Let us consider perturbations on a fixed comoving lengtresgimen by a comoving wavenum-
ber k. The corresponding physical length increasesa@s This is to be compared with the
Hubble radiusH ~1(t) which scales as provideda(t) grows as a power of. In the late time
Universe,a(t) ~ t'/2 in the radiation-dominated phase (i.e. tox teg), anda(t) ~ t%2 in the
matter-dominated periodef; < t < tp). Thus, we see that at sufficiently early times, all comoving
scales had a physical length larger than the Hubble radiug tonsider large cosmological scales
(e.g. those corresponding to the observed CMB anisotrapiés galaxy clusters), the tintg (k)
of “Hubble radius crossing” (when the physical length wasatdo the Hubble radius) was in fact
later tharteq.

Cosmological fluctuations can be described either in psispace or in momentum space.
In position space, we compute the root mean square massdiioctdM /M (k,t) in a sphere of
radiusl = 2rr/k at timet. A scale-invariant spectrum of fluctuations is defined byrtiation

oM

(Kt (k)) = const. (2.14)

Such a spectrum was first suggested by Harrison [36] and Yieldf{87] as a reasonable choice for
the spectrum of cosmological fluctuations. We can introdbeéspectral indexth of cosmological

fluctuations by the relation

(%M)Z(k,tH(k)) ~ K (2.15)

and thus a scale-invariant spectrum corresponas=td.

3In my opinion no proposed alternative to particle dark nratt®uld be taken serious unless their proponents can
demonstrate that their model can reproduce the agreemmvedrethe amplitudes of the CMB anisotropies on one hand
and of the large-scale matter power spectrum on the othet. han
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To make the transition to the (more frequently used) monmrdépace representation, we
Fourier decompose the fractional spatial density contrast

S:(x,t) = V12 / AR (2.16)
whereV is a cutoff volume. Th@ower spectrumPs of density fluctuations is defined by
Ps(k) = K33 (K)?, (2.17)

wherek is the magnitude ok, and we have assumed for simplicity a Gaussian distribubion
fluctuations in which the amplitude of the fluctuations ongpdnds ork.
We can also define the power spectrum of the gravitationaniad ¢ :

Py (k) = K33 (K)[?. (2.18)
These two power spectra are related by the Poisson equat@n (
Py (k) ~ k™ *P5(K). (2.19)

In general, the condition of scale-invariance is expressedomentum space in terms of the
power spectrum evaluated at a fixed time. To obtain this ¢immgliwe first use the time dependence
of the fractional density fluctuation from (2.11) to detemmithe mass fluctuations at a fixed time
t >ty (k) > teq (the last inequality is a condition on the scales considered

() (kt) = (th(k))“/S(%M)Z(k,tH(k))- (2.20)
The time of Hubble radius crossing is given by
altn (K)k ™ = 2t (K), (2.21)
and thus
ty (k)3 ~ k71 (2.22)

Inserting this result into (2.20) and making use of (2.15)fiwd

oM

(1) (k) ~ K2, (2.23)

Since, for reasonable values of the index of the power spacdM /M (k,t) is dominated by the
Fourier modes with wavenumbkyrwe find that (2.23) implies

182 ~ K", (2.24)

or, equivalently,
Py(k) ~ k"1 (2.25)
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2.3 Classical Relativistic Theory
2.3.1 Introduction

The Newtonian theory of cosmological fluctuations discddsethe previous section breaks
down on scales larger than the Hubble radius because itateglerturbations of the metric, and
because on large scales the metric fluctuations dominattytramics.

Let us begin with a heuristic argument to show why metric tlatibns are important on scales
larger than the Hubble radius. For such inhomogeneities, strould be able to approximately
describe the evolution of the space-time by applying the FIRW equation (3.7) of homogeneous
and isotropic cosmology to the local Universe (this appration is made more rigorous in [38]).
Based on this equation, a large-scale fluctuation of theggndensity will lead to a fluctuation
(“oa") of the scale factoa which grows in time. This is due to the fact that self gravigifies
fluctuations even on length scaldgreater than the Hubble radius.

This argument is made rigorous in the following analysis agroological fluctuations in the
context of general relativity, where both metric and matibbmogeneities are taken into account.
We will consider fluctuations about a homogeneous and igittmackground cosmology, given by
the metric (1.1), which can be written in conformal timédefined bydt = a(t)dn) as

d& = a(n)?(dn?—dx?). (2.26)

The theory of cosmological perturbations is based on expgrtte Einstein equations to lin-
ear order about the background metric. The theory was ligitiieveloped in pioneering works
by Lifshitz [39]. Significant progress in the understandofghe physics of cosmological fluctu-
ations was achieved by Bardeen [40] who realized the impoetaf subtracting gauge artifacts
(see below) from the analysis (see also [41, 42]). The fatigvdiscussion is based on Part | of the
comprehensive review article [34]. Other reviews - in soames emphasizing different approaches
- are [43, 44, 45, 46].

2.3.2 Classifying Fluctuations

The first step in the analysis of metric fluctuations is togifgghem according to their trans-
formation properties under spatial rotations. There aatascvector and second rank tensor fluc-
tuations. In linear theory, there is no coupling betweendifferent fluctuation modes, and hence
they evolve independently (for some subtleties in thissifacstion, see [47]).

We begin by expanding the metric about the FRW backgroundcngéﬁz given by (2.26):

guv = 95103+59uv- (2-27)

The background metric depends only on time, whereas thealtctuationsdg,, depend on
both space and time. Since the metric is a symmetric tertsene fare at first sight 10 fluctuating
degrees of freedom idgy, .

There are four degrees of freedom which correspond to soanic fluctuations (the only
four ways of constructing a metric from scalar functions):

_ 2 20 —Bj
5guv =a <—B,i z(l.Udj —E,ij)> , (2.28)
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where the four fluctuating degrees of freedom are denotdidyfiog the notation of [34])p, B, E,
andy, a comma denotes the ordinary partial derivative (if we matlded spatial curvature of the
background metric, it would have been the covariant devieatith respect to the spatial metric),
andg; is the Kronecker symbol.

There are also four vector degrees of freedom of metric fautns, consisting of the four
ways of constructing metric fluctuations from three vectors

_2( 90 S
ogyy = & <—S Fi+Fi ) (2.29)

whereS andF; are two divergence-less vectors (for a vector with nonskang divergence, the
divergence contributes to the scalar gravitational flugnamodes).
Finally, there are two tensor modes which correspond tologoblarization states of gravita-

tional waves:
00
5 _ 2 2.30
gIJV a (0 hIJ ) ) ( )

wherehj is trace-free and divergence-less
hi =h) = 0. (2.31)

Gravitational waves do not couple at linear order to the endttictuations. Vector fluctu-
ations decay in an expanding background cosmology and temeceot usually cosmologically
important. The most important fluctuations, at least in tidtaary cosmology, are the scalar metric
fluctuations, the fluctuations which couple to matter inhgarities and which are the relativistic
generalization of the Newtonian perturbations consid@rdte previous section. Note that vector
and tensor perturbations are important (see e.g. [48])poltgical defects models of structure
formation and in bouncing cosmologies [49].

2.3.3 Gauge Transformation

The theory of cosmological perturbations is at first sighthpticated by the issue of gauge
invariance (at the final stage, however, we will see that wernake use of the gauge freedom to
substantially simplify the theory). The coordinates of space-time carry no independent physical
meaning. They are just labels to designate points in theesfime manifold. By performing a
small-amplitude transformation of the space-time coatdis (called “gauge transformation” in
the following), we can easily introduce “fictitious” fluctiilans in a homogeneous and isotropic
Universe. These modes are “gauge artifacts”.

We will in the following take an “active” view of gauge tramsfation. Let us consider two
space-time manifolds, one of them a homogeneous and isotimiverse.#(, the other a physical
Universe.# with inhomogeneities. A choice of coordinates can be cameidl to be a mapping
between the manifolds#, and.# . Let us consider a second mappi@g/vhich will take the same
point (e.g. the origin of a fixed coordinate system)th to a different point in#. Using the
inverse of these mapg andZ, we can assign two different sets of coordinates to poini#in

Consider now a physical quantity (e.g. the Ricci scalar) on#, and the corresponding
physical quantityQ(®© on .# Then, in the first coordinate system given by the mapgihghe
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perturbationdQ of Q at the pointp € .# is defined by

8Q(p) = QA(p) — Q% (7 X(p)). (2.32)
Analogously, in the second coordinate system give@byhe perturbation is defined by
3Q(p) = QM -V (7 (). (2.33)
The difference N
AQ(p) = 3Q(p) - 3Q(p) (2.34)

is obviously a gauge artifact and carries no physical sicgmiite.

Some of the degrees of freedom of metric perturbation inired in the first subsection are
gauge artifacts. To isolate these, we must study how caatelitnansformations act on the metric.
There are four independent gauge degrees of freedom congigiy to the coordinate transforma-
tion

xH — H = xH - EH, (2.35)

The zero (time) componerdt® of £ leads to a scalar metric fluctuation. The spatial three vecto
&' can be decomposed as
&' =& +VIE; (2.36)

(wherey!l is the spatial background metric) into a transverse p&cahich has two degrees of
freedom which yield vector perturbations, and the secomd {given by the gradient of a scal&y
which gives a scalar fluctuation. To summarize this pardyrtigere are two scalar gauge modes
given by &% and &, and two vector modes given by the transverse three vé@;torThus, there
remain two physical scalar and two vector fluctuation modde gravitational waves are gauge-
invariant.

Let us now focus on how the scalar gauge transformationstfieetransformations given by
&% and &) act on the scalar metric fluctuation variables, E, andy. An immediate calculation
yields:

b= 9-28-(
B=B+&0-¢& (2.37)
E=E-¢

_ e &0

where a prime indicates the derivative with respect to aonébtimen.

There are two approaches to deal with the gauge ambiguifiée first is to fix a gauge,
i.e. to pick conditions on the coordinates which completiyinate the gauge freedom, the
second is to work with a basis of gauge-invariant variabliesne wants to adopt the gauge-fixed
approach, there are many different gauge choices. Notehbadften used synchronous gauge
determined bydg® = 0 does not totally fix the gauge. A convenient system whichpletaly
fixes the coordinates is the so-calllEmhgitudinal or conformal Newtonian gaugedefined by
B =E =0. This is the gauge we will use in the following.
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Note that the above analysis was strictly at linear orderinusbation theory. Beyond linear
order, the structure of perturbation theory becomes mucte imvolved. In fact, one can show
[50] that the only fluctuation variables which are invariantler all coordinate transformations are
perturbations of variables which are constant in the baunkust space-time.

2.3.4 Equations of Motion

We begin with the Einstein equations

whereG, is the Einstein tensor associated with the space-time owgtyi andT,, is the energy-
momentum tensor of matter, insert the ansatz for metric aatemperturbed about a FRW back-

ground (g (n), 9©(n)):

Guv(X,1) = (1) + 3w (X, N) (2.39)
¢(X7’7) = ¢0(r’)+5¢(xvrl)7 (240)

(where we have for simplicity replaced general matter byalasamatter fieldp) and expand to
linear order in the fluctuating fields, obtaining the follogiequations:

In the abovedg,, is the perturbation in the metric ad is the fluctuation of the matter fiell.
Inserting the longitudinal gauge metric

ds? = @[(1+2¢)dn? — (1 - 2¢)y;dxdx] (2.42)
into the general perturbation equations (2.41) yields ¢fieWing set of equations of motion:

34 (A 9+ ) + D2y = 4nGESTY
(Ho+y); = 4G ST

(27 + %) o+ 9 +y' +22¢]d (2.43)
1 . 1 . .
+§D2D5j' - Ey"‘D,k,- = —4nGa 5T/,
whereD = ¢ — (¢ and.# = d /a.
The first conclusion we can draw is that if no anisotropicsstiie present in the matter at linear
order in fluctuating fields, i.ecSTji = 0 fori # |, then the two metric fluctuation variables coincide:

©=U. (2.44)

This will be the case in most simple cosmological models, amgheories with matter described
by a set of scalar fields with canonical form of the action, imnithe case of a perfect fluid with no
anisotropic stress.

Let us now restrict our attention to the case of matter desdrin terms of a single scalar
field ¢ (in which case the perturbations on large scales are autmatiatadiabatic) which can be
expanded as

o(x,n) = ¢o(n)+0¢(x,n) (2.45)
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in terms of background mattely and matter fluctuatiod¢ (x,n). Then, in longitudinal gauge,
(2.43) reduce to the following set of equations of motion

DPQ— 349 — (H +24%) @ = 4nG($0¢ +V a%3¢)
@+ P = ANGPd¢ (2.46)
0 +374¢ + (A +227) @ = 4nG (909 —V'a25¢),

whereV' denotes the derivative & with respect tap. These equations can be combined to give
the following second order differential equation for thiatistic potentialg:

n

Q® +2 (%— @> © —%p+2 (%ﬂ —jf@> @ = 0. (2.47)

This is the final result for the classical evolution of cosagital fluctuations. First of all, we
note the similarities with the equation (2.10) obtainedhia Newtonian theory. The final term in
(2.47) is the force due to gravity leading to the instahilttye second to last term is the pressure
force leading to oscillations (relativistic since we ar@sidering matter to be a relativistic field),
and the second term represents the Hubble friction. For eavkenumber there are two funda-
mental solutions. On small scalds> H), the solutions correspond to damped oscillations, on
large scalesk(< H) the oscillations freeze out and the dynamics is governethéyravitational
force competing with the Hubble friction term. Note, in peutar, how the Hubble radius naturally
emerges as the scale where the nature of the fluctuating rabeages from oscillatory to frozen.

Considering the equation in a bit more detail, we observeithhe equation of state of the
background is independent of time (which will be the cas#if = ¢(')' = 0), then in an expanding
background, the dominant mode of (2.47) is constant, andubedominant mode decays. If the
equation of state is not constant, then the dominant mod# isomstant in time. Specifically, at the
end of inflation#” < 0, and this leads to a growth gf(see the following subsection). In contrast,
in a contracting phase the dominant modepa$ growing.

To study the quantitative implications of the equation oftim (2.47), it is convenient to
introduce [51, 52] the variablé (which, up to a correction term of the ord&f¢ which is unim-
portant for large-scale fluctuations, is equal to the cumeaperturbationZ in comoving gauge
[53]) by

 2(He+9)
¢= P31 w (2.48)
where 0
5 (2.49)

characterizes the equation of state of matter. In tern{s tdfe equation of motion (2.47) takes on
the form 3.
SCH(L+w) = 0 (0%g). (2.50)

On large scales, the right hand side of the equation is ribgigvhich leads to the conclusion that
large-scale cosmological fluctuations satisfy

Z(1+w) = 0. (2.51)
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This implies that{ is constant except possibly ifAw = 0 at some point in time during the
cosmological evolution (which occurs during reheatingrifiationary cosmology if the inflaton
field undergoes oscillations [54]). In single matter fielddals it is indeed possible to show that
Z = 0 on super-Hubble scales independent of assumptions omtlatien of state [55, 56]. This
“conservation law” makes it easy to relate initial fluctoas to final fluctuations in inflationary
cosmology, as will be illustrated in the following subsenti

In the presence of non-adiabatic fluctuations (entropydktains) there is a source term on the
righ-hand side of (2.51) which is proportional to the amyalé of the entropy fluctuations. Thus,
as already seen in the case of the Newtonian theory of cogimaldluctuations, non-adiabatic
fluctuations induce a growing adiabatic mode (see [57, 58{liscussions of the consequences in
double field inflationary models).

2.4 Quantum Theory
2.4.1 Overview

As we have seen in the first section, in many models of the ey &niverse, in particular
in inflationary cosmology, in string gas cosmology and intiegtter bounce scenario, primordial
inhomogeneities are generated in an initial phase on suibldiscales. The wavelength is then
stretched relative to the Hubble radius, becomes larger ttie Hubble radius at some time and
then propagates on super-Hubble scales until re-enteriladeacosmological times. In a majority
of the current structure formation scenarios (string gasnadogy is an exception in this respect),
fluctuations are assumed to emerge as quantum vacuum peiiag Hence, to describe the
generation and evolution of the inhomogeneities a quanteairhent is required.

In the context of a Universe with a de Sitter phase, the quartgin of cosmological fluc-
tuations was first discussed in [6] and also [7, 5] for eailieas. In particular, Mukhanov [6]
and Press [7] realized that in an exponentially expandirakdraund, the curvature fluctuations
would be scale-invariant, and Mukhanov provided a qudiwiaalculation which also yielded the
logarithmic deviation from exact scale-invariance.

The role of the Hubble radius has already been mentionechtegly in these lectures. In
particular, in the previous subsection we saw that the Hutdalius separates scales on which fluc-
tuations oscillate (sub-Hubble scales) from those whezg #re frozen in (super-Hubble scales).
Another way to see the role of the Hubble radius is to condiueequation of a free scalar matter
field ¢ on an unperturbed expanding background:

|:|2
p+3Hp——0¢ =0. (2.52)

The second term on the left hand side of this equation leadartging of¢ with a characteristic
decay rate given bi. As a consequence, in the absence of the spatial gradiemtgewould be

of the order of magnitudél¢. Thus, comparing the second and the third terms on the lefi ha
side, we immediately see that the microscopic (spatialigridterm dominates on length scales
smaller than the Hubble radius, leading to oscillatory omtiwhereas this term is negligible on
scales larger than the Hubble radius, and the evolutio$ i determined primarily by gravity.
Note that in general cosmological models the Hubble radiustch smaller than the horizon (the
forward light cone calculated from the initial time). In amflationary universe, the horizon is
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larger by a factor of at least eidd), whereN is the number of e-foldings of inflation, and the
lower bound is taken on if the Hubble radius and horizon ddmantil inflation begins. It is very
important to realize this difference, a difference whicloliscured in most articles on cosmology
in which the term “horizon” is used when “Hubble radius” isané Note, in particular, that the
homogeneous inflaton field contains causal information geistiubble but sub-horizon scales.
Hence, it is completely consistent with causality [54] tedva microphysical process related to the
background scalar matter field lead to exponential amplifioeof the amplitude of fluctuations
during reheating on such scales, as it does in models in wdnttopy perturbations are present
and not suppressed during inflation [57, 58]. Note that atsstiing gas cosmology and in the
matter bounce scenario the Hubble radius and horizon areletety different.

There are general relativistic conservation laws [59] Whiaply that adiabatic fluctuations
produced locally must be Poisson-statistic suppressedalesslarger than the Hubble radius. For
example, fluctuations produced by the formation of topaabdefects at a phase transition in the
early universe are initially isocurvature (entropy) inurat(see e.g. [60] for a discussion). Via the
source term in the equation of motion (2.4), a growing adiabaode is induced, but at any fixed
time the spectrum of the curvature fluctuation on scalestatiyan the Hubble radius has index
n =4 (Poisson). A similar conclusion applies to models [61,&2hodulated reheating (see [63]
for a nice discussion), and to models in which moduli fieldsawbmasses after some symmetry
breaking, their quantum fluctuations then inducing cosuigiold perturbations. A prototypical
example is given by axion fluctuations in an inflationary ense (see e.g. [64] and references
therein).

To understand the generation and evolution of fluctuatinreaiirent models of the very early
Universe, we need both Quantum Mechanics and General Riatie. quantum gravity. At first
sight, we are thus faced with an intractable problem, siheetheory of quantum gravity is not
yet established. We are saved by the fact that today on largmalogical scales the fractional
amplitude of the fluctuations is smaller than 1. Since gyasit purely attractive force, the fluctu-
ations had to have been - at least in the context of an etgregilanding background cosmology
- very small in the early Universe. Thus, a linearized arialg§the fluctuations (about a classical
cosmological background) is self-consistent.

From the classical theory of cosmological perturbatiossuised in the previous section, we
know that the analysis of scalar metric inhomogeneities lmmneduced - after extracting gauge
artifacts - to the study of the evolution of a single fluctngtivariable. Thus, we conclude that the
guantum theory of cosmological perturbations must be ribthito the quantum theory of a single
free scalar field which we will denote lwy Since the background in which this scalar field evolves
is time-dependent, the masswfvill be time-dependent. The time-dependence of the mads wil
lead to quantum particle production over time if we startelelution in the vacuum state for
As we will see, this quantum particle production correspgotalthe development and growth of
the cosmological fluctuations. Thus, the quantum theoryoshmlogical fluctuations provides a
consistent framework to study both the generation and thiigon of metric perturbations. The
following analysis is based on Part Il of [34].

2.4.2 Outline of the Analysis

In order to obtain the action for linearized cosmologicattymdations, we expand the action
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to quadratic order in the fluctuating degrees of freedom. [ifear terms cancel because the
background is taken to satisfy the background equationsotibm

We begin with the Einstein-Hilbert action for gravity ane taction of a scalar matter field (for
the more complicated case of general hydrodynamical fltiongthe reader is referred to [34])

: 1 1
= A /—gf——— i He —
S /d XV =G~ o= R+ 5049046 ~V(#)] (2.53)
whereR is the Ricci curvature scalar.
The simplest way to proceed is to work in longitudinal gaugeyhich the metric and matter
take the form (assuming no anisotropic stress)

ds® = a(n)[(142¢(n,x))dn*— (1— 2¢(t,x))dx]
¢(n,x) = ¢o(n)+0¢(n,x). (2.54)

The two fluctuation variableg and ¢ must be linked by the Einstein constraint equations since
there cannot be matter fluctuations without induced metiictdlations.

The two nontrivial tasks of the lengthy [34] computation loé tquadratic piece of the action
is to find out what combination o and ¢ gives the variables in terms of which the action
has canonical kinetic term, and what the form of the timeetielent mass is. This calculation
involves inserting the ansatz (2.54) into the action (2.88panding the result to second order in
the fluctuating fields, making use of the background and ottmstraint equations, and dropping
total derivative terms from the action. In the context oflacfield matter, the quantum theory of
cosmological fluctuations was developed by Mukhanov [6%a6@ Sasaki [67]. The result is the
following contributionS'? to the action quadratic in the perturbations:

1 zZ
S? = E/d“x[\/z—v’iv,i +;v2] : (2.55)

where the canonical variablgthe “Sasaki-Mukhanov variable” introduced in [66] - sesod68])
is given by

!

_ %
v=aldp+ %cp] ) (2.56)
with 7# = & /a, and where
_ agg
zZ= A (2.57)

As long as the equation of state does not change over time)

z(n) ~an). (2.58)

Note that the variable is related to the curvature perturbatighin comoving coordinates intro-
duced in [53] and closely related to the variaBlesed in [51, 52]:

V=2%. (2.59)

The equation of motion which follows from the action (2.56)in momentum space)

1

Vi, 4 kv — Z;vk _ 0, (2.60)
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wherey is the k'th Fourier mode of. The mass term in the above equation is in general given
by the Hubble scale. Thus, it immediately follows that on kheagth scales, i.e. fok > ky, the
solutions fory, are constant amplitude oscillations . These oscillatioesze out at Hubble radius
crossing, i.e. whek = ky. On longer scalek(« ky), there is a mode of which scales ag This
mode is the dominant one in an expanding universe, but notamtaacting one.

Given the action (2.55), the quantization of the cosmolalgierturbations can be performed
by canonical quantization (in the same way that a scalaremiid on a fixed cosmological back-
ground is quantized [69]).

The final step in the quantum theory of cosmological pertiosha is to specify an initial
state. Since in inflationary cosmology all pre-existingsslaal fluctuations are red-shifted by the
accelerated expansion of space, one usually assumes (Ivetwih to a criticism of this point
when discussing the trans-Planckian problem of inflatipmasmology) that the field starts out
at the initial timet; mode by mode in its vacuum state. Two questions immediatalyrge: what
is the initial timet;, and which of the many possible vacuum states should be ichtiss usually
assumed that since the fluctuations only oscillate on suliblduscales, the choice of the initial
time is not important, as long as it is earlier than the timeewkscales of cosmological interest
today cross the Hubble radius during the inflationary phdde state is usually taken to be the
Bunch-Davies vacuum (see e.g. [69]), since this state igyeofpparticles at; in the coordinate
frame determined by the FRW coordinates Thus, we choosaitied conditions

vk(ni) = \/%( (2.61)
/ vk
V(i) = NG

wheren; is the conformal time corresponding to the physical ttme
Returning to the case of an expanding universe, the scaling

Vk ~ 2~ a (2.62)

implies that the wave function of the quantum variallevhich performs quantum vacuum fluc-
tuations on sub-Hubble scales, stops oscillating on sdHpbble scales and instead is squeezed
(the amplitude increases in configuration space but dezséasnomentum space). This squeezing
corresponds to quantum particle production. It is also drileeotwo conditions which are required
for the classicalization of the fluctuations. The seconddid@n is decoherence which is induced
by the non-linearities in the dynamical system which areitable since the Einstein action leads
to highly nonlinear equatiions (see [70] for a recent dis@rs of this point, and [71] for related
work).

Note that the squeezing of cosmological fluctuations on rsHpéble scales occurs in all
models, in particular in string gas cosmology and in the kguniverse scenario since also in
these scenarios perturbations propagate on super-Hubdllessfor a long period of time. In a
contracting phase, the dominant mode/obn super-Hubble scales is not the one given in (2.62)
(which in this case is a decaying mode), but the second modghwhales az P with an exponent
p which is positive and whose exact value depends on the bawwkdrequation of state.

Applications of this theory in inflationary cosmology, inetimatter bounce scenario and in
string gas cosmology will be considered in the respecticéiaes of these lecture notes.
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2.4.3 Quantum Theory of Gravitational Waves

The quantization of gravitational waves parallels the ¢j@ation of scalar metric fluctuations,
but is more simple because there are no gauge ambiguitide.thit at the level of linear fluctua-
tions, scalar metric fluctuations and gravitational wavesradependent. Both can be quantized on
the same cosmological background determined by the baskdrecale factor and the background
matter. However, in contrast to the case of scalar metri¢uations, the tensor modes are also
present in pure gravity (i.e. in the absence of matter).

Starting point is the action (2.53). Into this action we imislee metric which corresponds to a
classical cosmological background plus tensor metricdhtans:

ds? = a2(n)[dn?— (& +hij)dXdx], (2.63)
where the second rank tendwy(n,x) represents the gravitational waves, and in turn can be de-
composed as

hij(n,%) = hy (n,x)€ +hx(n,x)€; (2.64)
into the two polarization states. He@}, ande,?‘j are two fixed polarization tensors, ahd andhy
are the two coefficient functions.

To quadratic order in the fluctuating fields, the action cetssbf separate terms involvirg.
andhy. Each term is of the form

§2 = / d4xa—22 (W2~ (Oh)?], (2.65)
leading to the equation of motion
he + 2%/h](+ k’h = 0. (2.66)
The variable in terms of which the action (2.65) has candticetic term is
W = ah, (2.67)
and its equation of motion is
e + (R — %ﬁ)uk = 0. (2.68)

This equation is very similar to the corresponding equaf®60) for scalar gravitational inhomo-
geneities, except that in the mass term the scale fa¢tpy replacesz(n), which leads to a very
different evolution of scalar and tensor modes during theaéing phase in inflationary cosmology
during which the equation of state of the background mattanges dramatically.

Based on the above discussion we have the following thearthéogeneration and evolution
of gravitational waves in an accelerating Universe (firsiedigped by Grishchuk [72]): waves exist
as quantum vacuum fluctuations at the initial time on allexalThey oscillate until the length
scale crosses the Hubble radius. At that point, the odotfiatfreeze out and the quantum state of
gravitational waves begins to be squeezed in the sense that

w(n) ~a(n), (2.69)

which, from (2.67) corresponds to constant amplitudénof The squeezing of the vacuum state
leads to the emergence of classical properties of this, ftatan the case of scalar metric fluctua-
tions.
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Figure 9: Space-time diagram (sketch) showing the evolution of scaddnflationary cosmology. The
vertical axis is time, and the period of inflation lasts bedwg andtg, and is followed by the radiation-
dominated phase of standard big bang cosmology. Duringreil inflation, the Hubble radiud 1 is
constant in physical spatial coordinates (the horizonte)awhereas it increases linearly in time aftgr
The physical length corresponding to a fixed comoving lesgtie labelled by its wavenumbemcreases
exponentially during inflation but increases less fast tharHubble radius (namely #52), after inflation.

3. Inflationary Cosmology

3.1 Mechanism of Inflation

The idea of inflationary cosmology is to assume that there avpsriod in the very early
Universe during which the scale factor was acceleratimg,ai> 0. This implies that the Hubble
radius was shrinking in comoving coordinates, or, equividye that fixed comoving scales were
“exiting” the Hubble radius. In the simplest models of infiat, the scale factor increases nearly
exponentially. As illustrated in Figure 9, the basic geamef inflationary cosmology provides
a solution of the fluctuation problem. As long as the phasenfidition is sufficiently long, all
length scales within our present Hubble radius today caigirat the beginning of inflation with a
wavelength smaller than the Hubble radius at that time. [Tihispossible to create perturbations
locally using physics obeying the laws of special relagi\{in particular causality). As will be
discussed later, it is quantum vacuum fluctuations of méitsts and their associated curvature
perturbations which are responsible for the structure veeoie today.

Postulating a phase of inflation in the very early univerdegesothehorizon problenof the
SBB, namely it explains why the causal horizon at the tigaevhen photons last scatter is larger
than the radius of the past light conetag, the part of the last scattering surface which is visible
today in CMB experiments. Inflation also explains the nedandlss of the universe: in a decelerat-
ing universe spatial flatness is an unstable fixed point offyfmamics, whereas in an accelerating
universe it becomes an attractor. Another important asgfette inflationary solution of théat-
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ness problenis that inflation exponentially increases the volume of spadfithout inflation, it is
not possible that a Planck scale universe at the Planck tioieas into a sufficiently large universe
today.

3.2 Fluctuations in Inflationary Cosmology

We will now use the quantum theory of cosmological pertudret developed in the previous
section to calculate the spectrum of curvature fluctuatinrnsflationary cosmology. The starting
point are quantum vacuum initial conditions for the canahfluctuation variabley:

wim) = —= 3.1)
for all k for which the wavelength is smaller than the Hubble radiubainitial timet;.
The amplitude remains unchanged until the modes exit thebldutadius at the respective
timesty (k) given by
a l(ty(k)k=H. (3.2)
We need to compute the power spectrufy, (k) of the curvature fluctuatior? defined in
(2.59) at some late timewhen the modes are super-Hubble. We first relate the powetrapevia
the growth rate (2.62) of on super-Hubble scales to the power spectrum at thettjike and then
use the constancy of the amplitudevobn sub-Hubble scales to relate it to the initial conditions
(3.1). Thus

Za(kt) = A1) = Kz 2(0)w (D)l (3.3)
0 ) O

= K2 2(tn (K)) Vit (K)) 2
at)y2, 2 Ne
() @ M),
where in the final step we have used (2.58) and the constartbg amplitude of on sub-Hubble
scales. Making use of the condition (3.2) for Hubble raditessing, and of the initial conditions

(3.1), we immediately see that

at)\2,3 2 1,2
z2kt) ~ (==)K’k“k"H 3.4
and that thus a scale invariant power spectrum with am@iprdportional tdH? results, in agree-
ment with what was argued on heuristic grounds in the overeiginflation in the the first section.
To obtain the precise amplitude, we need to make use of taeaelbetweerz anda. We obtain
H4
Pakt) ~ = (3.5)
%o
which for any given value dfis to be evaluated at the tinig(k) (before the end of inflation). For

a scalar field potential (see following subsection)

V(p) =gt (3.6)

the resulting amplitude in (3.5) i&. Thus, in order to obtain the observed value of the power
spectrum of the order of 189, the coupling constarit must be tuned to a very small value.
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3.3 Models of Inflation

Let us now consider how it is possible to obtain a phase of otigical inflation. We will
assume that space-time is described using the equationermdr& Relativity*. In this case,
the dynamics of the scale factaft) is determined by the Friedmann-Robertson-Walker (FRW)
equations

&y = anep (3.7)

e a__ 46 3 (3.8)

a 3
where for simplicity we have omitted the contributions ofal curvature (since spatial curvature
is diluted during inflation) and of the cosmological constéince any small cosmological con-
stant which might be present today has no effect in the eamiyddse since the associated energy
density does not increase when going into the past). Fra® if3s clear that in order to obtain an

accelerating universe, matter with sufficiently negatikespure

1
p<-—3P (3.9)

is required. Exponential inflation is obtained foe= —p.

Conventional perfect fluids have positive semi-definitespuee and thus cannot yield inflation.
Quantum field theory can come to the rescue. We know that aipiése of matter in terms of
classical perfect fluids must break down at early times. Aprovied description of matter will be
given in terms of quantum fields. Matter which we observe yotansists of spin 1/2 and spin 1
fields. Such fields cannot yield inflation in the context of taeormalizable quantum field theory
framework. The existence of scalar matter fields is postdlad explain the generation of mass via
spontaneous symmetry breaking. Scalar matter fields (dérmtg) are special in that they allow
- at the level of a renormalizable action - the presence oterp@l energy ternv (¢ ). The energy
density and pressure of a scalar figlavith canonically normalized actioh

1
L = \/—g[éauqba“qb -V(9)] (3.10)
(where Greek indices are space-time indices@izthe determinant of the metric) are given by
1 1
p = 5(9)+5a (08 +V(4)
1 1
p = 5(¢)°—ga *(0$)*-V(9). (3.11)

Thus, it is possible to obtain an almost exponentially erlpaguniverse provided the scalar field
configuration® satisfies

2(0p)? < V(9), (3.12)
207 < V@), (3.13)

4Note, however, that the first model of exponential expansicspace [4] made use of a higher derivative gravita-
tional action.

5See [73, 74] for discussions of fields with non-canonicaktimterms.

6The scalar field yielding inflation is called tiflaton
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In the above[l, = a0 is the gradient with respect to physical as opposed to camgasdordi-
nates. Since spatial gradients redshift as the universaneisp the first condition will (for single
scalar field models) always be satisfied if it is satisfied ainitial time . It is the second condition
which is harder to satisfy. In particular, this conditioringgeneral not preserved in time even it is
initially satisfied.

In his original model [2], Guth assumed that inflation waseagated by a scalar field sitting
in a false vacuum with positive vacuum energy. Hence, theitions (3.12) and (3.13) are au-
tomatically satisfied. Inflation ends whentunnels to its true vacuum state with (by assumption)
vanishing potential energy. However, as Guth realized éifnthis model is plagued by a “graceful
exit" problem: the nucleation produces a bubble of true watwhose initial size is microscopic
[76] (see also [77] for a review of field theory methods which aseful in inflationary cosmol-
ogy). After inflation, this bubble will expand at the speedigffit, but it is too small to explain the
observed size of the universe. Since space between theesudippands exponentially, the proba-
bility of bubble percolation is negligible, at least in Bigi® gravity. For this reason, the focus in
inflationary model building shifted to the “slow-roll" patigm [78].

It is sufficient to obtain a period of cosmological inflatidrat theslow-roll conditionsfor ¢
are satisfied. Recall that the equation of motion for a homegeas scalar field in a cosmological
space-time is (as follows from (3.10)) is

d+3Hp = -V'(¢9), (3.14)

where a prime indicates the derivative with respeap tdn order that the scalar field roll slowly, it
is necessary that
¢ < 3H¢Q (3.15)

such that the first term in the scalar field equation of mot®d4) is negligible. In this case, the
condition (3.13) becomes

V/
(V)Z < 481G (3.16)
and (3.15) becomes
1
v < 241G. (3.17)
\Y,

There are many models of scalar field-driven slow-roll ifdlat Many of them can be divided
into three groups: small-field inflation, large-field inftatiand hybrid inflation. Small-field infla-
tionary modelsare based on ideas from spontaneous symmetry breakingtinl@ghysics. We
take the scalar field to have a potential of the form

V(9) = JA (62~ 07, (319)

whereg can be interpreted as a symmetry breaking scale Aaisch dimensionless coupling con-
stant. The hope of initial small-field models (“new inflatidi@8]) was that the scalar field would
begin rolling close to its symmetric poiit= 0, where thermal equilibrium initial conditions would

7In fact, careful studies [75] show that since the gradiertsehse even in a non-inflationary backgrounds, they can
become subdominant even if they are not initially subdomtina
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localize it in the early universe. At sufficiently high tenmatures,¢ = 0 is a stable ground state of
the one-loop finite temperature effective poter¥tale ) (see e.g. [77] for a review). Once the tem-
perature drops to a value smaller than the critical tempezdt, ¢ = 0 turns into an unstable local
maximum of\Vy(¢), and¢ is free to roll towards a ground state of the zero tempergiatential
(3.18). The direction of the initial rolling is triggered lopiantum fluctuations. The reader can eas-
ily check that for the potential (3.18) the slow-roll conalits cannot be satisfieddf < my, where
mp is the Planck mass which is related@o If the potential is modified to a Coleman-Weinberg
[79] form

A

1, 1
V() = 4¢4[|n‘%—z]+1—6)\v4 (3.19)

(wherev denotes the value of the minimum of the potential) then the/sbll conditions can be
satisfied. However, this corresponds to a severe fine-twfitige shape of the potential. A further
problem for most small-field models of inflation (see e.g. ][R0 a review) is that in order to
end up close to the slow-roll trajectory, the initial fieldagty must be constrained to be very
small. Thisinitial condition problemof small-field models of inflation effects a number of recentl
proposed brane inflation scenarios, see e.g. [81] for a sksm.

There is another reason for abandoning small-field inflatiaadlels: in order to obtain a suffi-
ciently small amplitude of density fluctuations, the intdi@n coefficients ofp must be very small.
This makes it inconsistent to assume thagtarted out in thermal equilibrium [82]. In the absence
of thermal equilibrium, the phase space of initial conditigs much larger for large values of

This brings us to the discussion of large-field inflation msdimitially proposed in [83] under
the name “chaotic inflation”. The simplest example is predidy a massive scalar field with
potential

V(9) = %mzrbz, (3.20)

wherem is the mass. It is assumed that the scalar field rolls tow#el®itigin from large values
of |¢|. It is a simple exercise for the reader to verify that the stolWconditions (3.16) and (3.17)

are satisfied provided

1
o] > ﬁmpl- (3.21)

Values of|¢| comparable or greater tham, are also required in other realizations of large-field
inflation. Hence, one may worry whether such a toy model casistently be embedded in a re-
alistic particle physics model, e.g. supergravity. In mangh model¥/ (¢ ) receives supergravity-
induced correction terms which destroy the flatness of thenpial for |¢| > my. As can be seen
by applying the formulas of the previous subsection to themqal (3.20), a value ah~ 103GeV
is required in order to obtain the observed amplitude of iefisctuations. Hence, the configura-
tion space range witf$| > mp butV(¢) < m‘[‘)I dominates the measure of field values. It can also
be verified that the slow-roll trajectory is a local attradtofield initial condition space [75], even
including metric fluctuations at the perturbative level][84

With two scalar fields it is possible to construct a class ofiel® which combine some of
the nice features of large-field inflation (large phase spdideitial conditions yielding inflation)
and of small-field inflation (better contact with conventibiparticle physics). These are models
of hybrid inflation [85]. To give a prototypical example, ciher two scalar field$ and x with a
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potential
1 1 1

V(#.x) = ZAx(X* = 092+ SmPe% - Sg79°x 7. (3.22)
In the absence of thermal equilibrium, it is natural to asstinat|¢ | begins at large values, values
for which the effective mass gf is positive and hencg begins aty = 0. The parameters in the
potential (3.22) are now chosen such thais slowly rolling for values of¢ | somewhat smaller
thanmy,, but that the potential energy for these field values is dateih by the first term on the
right-hand side of (3.22). The reader can easily verify fbathis model it is no longer required
to have values ofp| greater thamy, in order to obtain slow-rolling The field¢ is slowly rolling
whereas the potential energy is determined by the conimib@itom x. Once|¢| drops to the value

A
|| = VA (3.23)

e —
g

the configuratiory = 0 becomes unstable and decays to its ground jgtate o, yielding a graceful

exit from inflation. Since in this example the ground statg @f not unique, there is the possibility

of the formation of topological defects at the end of inflati®ee [86, 87, 88] for reviews of

topological defects in cosmology).

3.4 Reheating in Inflationary Cosmology

During the inflationary period the energy density of mat&rdimes completely dominated by
the energy of the inflaton field. The density of regular mgttee kind of matter which is observed
today) is exponentially diluted. An essential part of anfjaitionary model is the mechanism by
which the energy density is transferred to regular mattéreaénd of the period of inflation. This is
the so-called “reheating" process. It typically beginghwatnon-perturbative decay process called
“preheating”. We will give a brief overview of reheating inig subsection (for an in-depth recent
review the reader is referred to [89].

3.4.1 Preheating

After the slow-roll conditions break down, the period of @&ifbn ends, and the inflatgh be-
gins to oscillate around its ground state. Due to couplirigh t other matter fields, the energy of
the universe, which at the end of the period of inflation isexila@ompletely irp, gets transferred to
the matter fields of the particle physics Standard Modetialhy, the energy transfer was described
perturbatively [90]. Later, it was realized [91, 92, 93, 844t through a parametric resonance in-
stability, particles are very rapidly produced, leadingtfast energy transfer (“preheating”). The
guanta later thermalize, and thereafter the universe es@s described by SBB cosmology.

Let us give a brief overview of the theory of reheating in itiflaary cosmology. We assume
that the inflatonp is coupled to another scalar fiejdand take the interaction Lagrangian to be

1
Lot = —ngrpzxz, (3.24)

whereg is a dimensionless coupling constant.

8Note that the slow-roll conditions (3.16) and (3.17) werewéel assuming thatl is given by the contribution of
¢ toV which is not the case here.
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In the initial perturbative analysis of reheating [90] thecdy of the coherently oscillating
inflaton field¢ is treated perturbatively. The interaction ratef processes in which tw¢ quanta
interact to produce a pair gf particles is taken as the decay rate of the inflaton. The anflat
dynamics is modeled via an effective equation

d+3HP+Tp = -V (). (3.25)

For small coupling constant, the interaction ratés typically much smaller than the Hubble pa-
rameter at the end of inflation. Thus, at the beginning of thasp of inflaton oscillations, the
energy loss into particles is initially negligible compat® the energy loss due to the expansion
of space. Itis only once the Hubble expansion rate decrdasevalue comparable 10 that x
particle production becomes effective. It is the energysitgrat the time whetd = I which de-
termines how much energy ends ugxiparticles and thus determines the “reheating temperature"
the temperature of the SM fields after energy transfer.

T ~ (Fmg) "2 (3.26)

Sincerl is proportional to the square of the coupling constantich is generally very small, per-
turbative reheating is slow and produces a reheating teatperwhich can be very low compared
to the energy scale at which inflation takes place.

There are two main problems with the perturbative decayyaitatlescribed above. First of
all, even if the inflaton decay were perturbative, it is natified to use the heuristic equation (3.25)
since it violates the fluctuation-dissipation theorem:yistems with dissipation, there are always
fluctuations, and these are missing in (3.25). For an imgtefiective equation of motion see e.qg.
[95].

The main problem with the perturbative analysis is that #sloot take into account the co-
herent nature of the inflaton fiel@l. At the beginning of the period of oscillationgs is not a
superposition of free asymptotic single inflaton statesyéilner a coherently oscillating homoge-
neous field. The large amplitude of oscillation implies tias well justified to treat the inflaton
classically. However, the matter fields can be assumed tocdtan their vacuum state (the red-
shifting during the period of inflation will remove any matfgarticles present at the beginning of
inflation). Thus, matter fieldg must be treated quantum mechanically. The improved apbroac
to reheating initiated in [91] (see also [96]) is to considseating as a quantum productionyof
particles in a classica)l background.

We expand the fielg is terms of the usual creation and annihilation operatoise Mode
functions satisfy the equation

2
K+ 3HX + (% + +gzd>(t)zsin2(mt)> X« = 0, (3.27)

whered(t) is the amplitude of oscillation af.

The first level of approximation [91] is to neglect the expansof space, to estimate the
efficiency of reheating in this approximation, and to cheelf-sonsistency of the approximation.
The equation (3.27) then reduces to

X+ <k2+m)2(+gzd>zsin2(mt)) Xk =0, (3.28)
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and®(t) is constant. The equation is the Mathieu equation [97] wisaonventionally written in
the form

Xv + (Ak—2qcos Z)xk = O, (3.29)

where we have introduced the dimensionless time variablemt and a prime now denotes the
derivative with respect ta. Comparing the coefficients, we see that
K2 4 P 22
X g
A= T 9=
The equation (3.29) describes parametric resonance sicdhmmechanics. From the examples
in classical mechanics in which this equation arises we kttat there are bands & values
(depending on the frequeney of the external source) which exhibit exponential insigbilFor
the general theory of the Mathieu equation the reader isrezfeo [97]. For values ok in a

resonance band, the growth yf can be written as

(3.30)

Xk ~ e, (3.31)

where L is called the Floquet exponent. In the model we are consigern this subsection,
resonance occurs for all long wavelength modes - roughlgikspg all modes with

k? < gmb. (3.32)

This is calledbroad-band resonanc®2, 94]. The Floquet exponent is of order 1, and this implies
very efficient energy transfer from the coherently osdiligtinflaton field to a gas of particles.
This initial stage of energy transfer is callpdeheating The time scale of the energy transfer
is short compared to the cosmological time sddle! at the end of inflation [91]. Hence, the
approximation of neglecting the expansion of space iscmikistent.

It is possible to perform an improved analysis which keepskrof the expansion of space.
The first step [94] is to rescale the field variable to extraetdosmological red-shifting

Xc(t) = alt)xu(t). (3.33)

and to work in terms of conformal time. The fiel} obeys an equation without cosmological
damping term which is very similar to (3.29), except that dseillatory correction term to the
mass is replaced by a more general periodic function of théocmal timen. The Floquet theory
of [97] also applies to the resulting equation, and we reaehconclusion that the exponential
instability of x (modulated bya(t)) persists when including the effects of the expansion ofspa
For details the reader is referred to [94] or to the recerieve{89].

3.4.2 Preheating of Metric Perturbations

A parametric resonance instability should be expectedIfdiedds which couple to the oscil-
lating inflaton condensate. In particular, metric fluctoasi should also be effected. As was shown
in [54], there is no parametric resonance instability foigavavelength modes in the case of purely
adiabatic perturbations (see also [38]). However, in tles@nce of entropy fluctuations, parametric
amplification of cosmological perturbations driven by tiseitiating inflaton condensate is possible
[57, 58] (see also [98]).
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To study the preheating of metric fluctuations, we refer ladke formalism of cosmological
perturbations developed in Subsection (2.3.4). In thegms of an entropy perturbati@s, the
“conservation" equation (2.51) for the variakje(which describes the curvature perturbation in
comoving gauge) gets replaced by

— 55. 3.34

If long wavelength fluctuations of a matter fiefdwhich coupled to the inflatogy (x corresponds
to an entropy mode) undergo exponential growth during tidtgeas they do in the case of a model
with broad parametric resonance, then this will induce goegntial growth oBSwhich will via
(3.34) induce an exponentially growing curvature perttiooa

For an elegant formalism to compute the source term in (3rB®rms of the scalar fieldg
andy the reader is referred to [99]. This resonant growth of gytiftuctuations is only important
in models in which the entropy fluctuations are not supprkskeing inflation. Some recent ex-
amples were studied in [100, 101, 102]. The source for ttatability need not be the oscillations
of the inflaton field. In SUSY models, the decay of flat diraesiacan also induce this instability
[103].

3.5 Problems of Inflation

In spite of the phenomenological success of the inflatioqemadigm, conventional scalar
field-driven inflation suffers from several important coptel problems.

The first problem concern the nature of the inflaton, the sdadll which generates the in-
flationary expansion. No particle corresponding to thetekion of a scalar field has yet been
observed in nature, and the Higgs field which is introducegie elementary particles masses in
the Standard Model of particle physics does not have thenegtjflatness of the potential to yield
inflation, unless it is non-minimally coupled to gravity H]0 In particle physics theories beyond
the Standard Model there are often many scalar fields, bstiit general very hard to obtain the
required flatness properties on the potential

The second problem (themplitude problem) relates to the amplitude of the spectrum of
cosmological perturbations. In a wide class of inflationaigdels, obtaining the correct amplitude
requires the introduction of a hierarchy in scales, namHEDp]

V(¢)
A

<1012, (3.35)

whereA¢ is the change in the inflaton field during the minimal lengthhef inflationary period,
andV(¢) is the potential energy during inflation.

A more serious problem is theans-Planckian problem [106]. Returning to the space-time
diagram of inflation (see Figure 10), we can immediately dedinat, provided that the period
of inflation lasted sufficiently long (for GUT scale inflatidhe number is about 70 e-foldings),
then all scales inside the Hubble radius today started dit ayphysical wavelength smaller than
the Planck scale at the beginning of inflation. Now, the themfrcosmological perturbations is
based on Einstein’s theory of General Relativity coupled simple semi-classical description of
matter. Itis clear that these building blocks of the theagyinapplicable on scales comparable and
smaller than the Planck scale. Thus, the key successfuicfigdof inflation (the theory of the
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Figure 10: Space-time diagram (sketch) of inflationary cosmology whee have added an extra length
scale, namely the Planck length (majenta vertical line). The symbols have the same mearsnig a

Figure 5. Note, specifically, that - as long as the period @iaiion lasts a couple of e-foldings longer
than the minimal value required for inflation to address thabfems of standard big bang cosmology - all
wavelengths of cosmological interest to us today start btiteabeginning of the period of inflation with a
wavelength which is smaller than the Planck length.

origin of fluctuations) is based on suspect calculationsesitew physicsnustenter into a correct
computation of the spectrum of cosmological perturbatidrie key question is as to whether the
predictions obtained using the current theory are semsitithe specifics of the unknown theory
which takes over on small scales.

One approach to study the sensitivity of the usual predistiof inflationary cosmology to
the unknown physics on trans-Planckian scales is to studgntmlels of ultraviolet physics which
allow explicit calculations. The first approach which wasaigL07, 108] is to replace the usual lin-
ear dispersion relation for the Fourier modes of the fluaunatby a modified dispersion relation, a
dispersion relation which is linear for physical wavenunstemaller than the scale of new physics,
but deviates on larger scales. Such dispersion relations uged previously to test the sensitivity
of black hole radiation on the unknown physics of the UV [1090]. It was found [107] that if
the evolution of modes on the trans-Planckian scales isadligibatic, then substantial deviations
of the spectrum of fluctuations from the usual results arsiptes Non-adiabatic evolution turns
an initial state minimizing the energy density into a statdol is excited once the wavelength
becomes larger than the cutoff scale. Back-reaction sffefdihese excitations may limit the mag-
nitude of the trans-Planckian effects if we assume thattiofidook place [111, 112, 113]. On the
other hand, large trans-Planckian effects may also pretierdnset of inflation.

A fourth problem is thesingularity problem. It was known for a long time that standard Big
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Bang cosmology cannot be the complete story of the earlyeusivbecause of the initial singularity,
a singularity which is unavoidable when basing cosmologyEarstein’s field equations in the
presence of a matter source obeying the weak energy camglifsee e.g. [114] for a textbook
discussion). Recently, the singularity theorems have geeeralized to apply to Einstein gravity
coupled to scalar field matter, i.e. to scalar field-drivetationary cosmology [115]. It was shown
that, in this context, a past singularity at some point ircepa unavoidable. Thus we know, from
the outset, that scalar field-driven inflation cannot be thimate theory of the very early universe.

The Achilles heel of scalar field-driven inflationary cosoy may be theosmological con-
stant problem. We know from observations that the large quantum vacuunggred field theo-
ries does not gravitate today. However, to obtain a periodftdtion one is using the part of the
energy-momentum tensor of the scalar field which looks likeeviacuum energy. In the absence of
a solution of the cosmological constant problem it is uncleaether scalar field-driven inflation is
robust, i.e. whether the mechanism which renders the goevdicuum energy gravitationally inert
today will not also prevent the vacuum energy from gravitiuring the period of slow-rolling of
the inflaton field. Note that the approach to addressing temotogical constant problem making
use of the gravitational back-reaction of long range flubbua (see [116] for a summary of this
approach) does not prevent a long period of inflation in thity emiverse.

A final problem which we will mention here is the concern tha £nergy scale at which
inflation takes place is too high to justify an effective figdldory analysis based on Einstein gravity.
In simple toy models of inflation, the energy scale duringghgod of inflation is about 16GeV,
very close to the string scale in many string models, andawfar from the Planck scale. Thus,
correction terms in the effective action for matter and gyamnay already be important at the
energy scale of inflation, and the cosmological dynamics beyather different from what is
obtained when neglecting the correction terms.

In Figure 11 we show once again the space-time sketch ofiority cosmology. In addition
to the length scales which appear in the previous versiotisiofigure, we have now shaded the
“zones of ignorance”, zones where the Einstein gravityctiffe action is sure to break down. As
described above, fluctuations emerge from the short distame of ignorance (except if the period
of inflation is very short), and the energy scale of inflaticigm put the period of inflation too close
to the high energy density zone of ignorance to trust theigtiods based on using the Einstein
action.

The arguments in this subsection provide a motivation fois@ering alternative scenarios of
early universe cosmology. Below we will focus on two scemgrthematter bouncendstring gas
cosmology It is important to emphasize that these are not the onlyraltve scenarios. Others
include thePre-Big-Bang scenarifil17] and theEkpyrotic paradign{118].

4. Matter Bounce

Thematter bouncescenario is a non-singular cosmology in which time runs fromto +oo.
Negative times correspond to a contracting phase, pogithes to expansion. It is assumed that
the bounce phase is shért

9Short means short compared to the time it takes light to ktawer distances of about 1mm, the physical length
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Figure 11: Space-time diagram (sketch) of inflationary cosmologyudiig the two zones of ignorance -
sub-Planckian wavelengths and trans-Planckian densitressymbols have the same meaning as in Figure
5. Note, specifically, that - as long as the period of inflatasis a couple of e-foldings longer than the min-
imal value required for inflation to address the problemsafidard big bang cosmology - all wavelengths
of cosmological interest to us today start out at the beginoif the period of inflation with a wavelength
which is in the zone of ignorance.

As indicated in Figure 6, the fluctuations which we obsenadayohave exited the Hubble
radius early in the contracting phase. The warakterin matter bounceshould emphasize that we
are assuming that the phase during which the fluctuationshaae observe today are exiting the
Hubble radius is dominated by cold pressure-less mattewixg the contracting phase as the time
reverse of the expanding phase we are living in, this lastrapion we have made does not seem
very restrictive. In fact, one could expect that some entrigpgenerated during the bounce, in
which case the matter phase during the contracting periaddaast up to higher energy densities
than it does in the expanding phase.

4.1 Models for a Matter Bounce and Background Cosmology

It follows from the singularity theorems of General Relayisee e.g. [114]) that in order
to obtain a non-singular bounce we must either invoke mattdch violates the weak energy
condition, or go beyond General Relativity. A review of wagsbtain a non-singular cosmology
is given in [20]. The major challenges in constructing a sorgular bouncing cosmology include

which corresponds to to the largest comoving scales we wbseday (assuming that the energy scale of the bounce is
about 185GeV).
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the following: first, the model should be free of ghost-likeigations, since a model with ghosts
will be unstable [119]. Next, the background cosmology $thdne stable towards the addition of
radiation to the matter sector. Finally, the homogeneodssatropic background trajectory should
also be stable against anisotropic stress.

In the following we will only mention a few recent attemptsiainthe author of these lecture
notes has been involved in. We will first discuss models abthiby modifying the matter sector
of the theory, and then models where the gravitational settihe theory is changed.

Introducing quintom matter [120] yields a way of obtainingan-singular bouncing cosmol-
ogy, as discussed in [19]. Quintom matter is a set of two mf#kls, one of them regular matter
(obeying the weak energy condition), the second a field wijosite sign kinetic term, a field
which violates the energy conditions. We can [19] model bathtter components with scalar
fields. Let us denote the mass of the regular @nebyy m, and byM that of the fieldp with wrong
sign kinetic term. We assume that early in the contractirasplboth fields are oscillating, but that
the amplitudes of ¢ greatly exceeds the corresponding amplituda)f @ such that the energy
density is dominated by. Both fields will initially be oscillating during the conttting phase,
and both amplitudes grow at the same rate. At some peinill become so large that the oscil-
lations of ¢ freeze outl®. Then, .o will grow only slowly, whereass will continue to increase.
Thus, the (negative) energy density@irwill grow in absolute values relative to that ¢f The total
energy density will decrease towards 0. At that poliht= 0 by the Friedmann equations. It can
in fact easily be seen that > 0 whenH = 0. Hence, a non-singular bounce occurs. The Higgs
sector of the Lee-Wick model [121] provides a concrete za#ithn of the quintom bounce model,
as studied in [25]. Quintom models like all other models wittgative sign kinetic terms suffer
from an instability problem [119] in the matter sector ane aence problematic. In addition, they
are unstable against the addition of radiation (see e.@]]BAd anisotropic stress.

An improved way of obtaining a non-singular bouncing cossgglusing modified matter is
by using a ghost condensate field [123]. The ghost condensatechanism is the analog of the
Higgs mechanism in the kinetic sector of the theory. In thggdimechanism we take a fiegl
whose mass when evaluatedgat= 0 is tachyonic, add higher powers @f to the potential term
in the Lagrangian such that there is a stable fixed ppiatv = 0, and thus when expanded about
@ = v the mass term has the “safe" non-tachyonic sign. In the glmglensate construction we
take a fieldp whose kinetic term

X =—-g"oupd, @ 4.1)

appears with the wrong sign in the Lagrangian. Then, we agldehipowers oK to the kinetic
Lagrangian such that there is a stable fixed pXigt ¢ and such that when expanded abXut c?
the fluctuations have the regular sign of the kinetic term:

7 = %M“(X ~ @) -V(p), (4.2)

whereV (@) is a usual potential functiotM is a characteristic mass scale and the dimensiogs of
are chosen such thtis dimensionless.
In the context of cosmology, the ghost condensate is
@ =ct (4.3)

10This corresponds to the time reverse of entering a regioargéHield inflation.
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and breaks local Lorentz invariance. Now let us expand tmedgeneous component gfabout
the ghost condensate:
@(t) = ct+m(t). 4.4)

If 71 < O then the gravitational energy density is negative, andrasiogular bounce is possible.
Thus, in [123] we constructed a model in which the ghost cosde field starts at negative values
and the potentiaV/ (@) is negligible. Asg approachesp = 0 it encounters a positive potential
which slows it down, leading tar < 0 and hence to negative gravitational energy density. Taus,
non-singular bounce can occur. We take the potential to ltieecform

Vig)~ o (4.5)

for |@| > M, whereM is the mass scale above which the higher derivative kinetrog are impor-
tant. For sufficiently large values of, namely

a > 6, (4.6)

the energy density in the ghost condensate increases thatethat of radiation and anisotropic
stress at the universe contracts . Hence, this bouncingatoggnis stable against the addition of
radiation and anisotropic stress.

Turning to the second way of obtaining a non-singular bounamely by modifying the grav-
itational action, we should emphasize that modificationthefgravitational action are expected at
the high densities at which the bounce will occur. Concresargles were already mentioned in the
Introduction: the higher derivative Lagrangian resultirgn the nonsingular universe construction
of [17], the model of [16] which is based on a non-local higterivative action which is ghost-
free about Minkowski space-time, mirage cosmologies [X85lilting from the effective action of
gravity on a brane which is moving into and out of a high-ctux@ throat in a higher-dimensional
space-time.

More recently, interest has focused on a non-singular bognmosmology which emerges
from Horava-Lifshitz gravity [22]. Horava-Lifshitz grayi is a power-counting renormalizable
guantum theory of gravity which is based on anisotropicisgabetween space and time. In one
sense it is a very conservative approach to quantum grawvttyei sense that the dynamical degrees
of freedom are the usual ones: the spatial mejficthe lapse functiomN and the shift vectoN;.
There are no extra dimensions or new degrees of freedom sushirrgs. On the other hand, it
is a very radical approach in the sense that it gives up looa¢ttz invariance and space-time
diffeomorphism invariance. The residual symmetries aoallgotational invariance and spatial
diffeomorphism. On the other hand, there is a scaling symymstder

x—Ix , t— %, 4.7

wherel is the scaling parameter. The Lagrangian is constructearnitam all terms which are

consistent with the residual symmetries and with powemnting renormalizability with respect

to the above scaling symmetry. The action does not containhagher time derivative terms,

but it does contain higher space derivative terms. Thesestdominate in the ultraviolet. In the
infrared, the extra terms are sub-dominant. Thus, in theviefl the theory is supposed to flow
towards General Relativity.
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The extra spatial derivative terms in the gravitationalarchave an important effect in the
very early universe at high energy densities. As shown i, [Rthe spatial sections have a non-
vanishing spatial curvature constdqtthen the higher-derivative terms in the action will lead to
terms in the Friedmann equations which act as ghost radiatiml ghost anisotropic stress, i.e.
terms of gravitational origin and negative effective eyedgnsity which scale as—* anda®,
respectively. Starting with a contracting universe don@ddy regular matter, eventually the ghost
terms will catch up and yield a non-singular bounce in anafmghow the ghost matter in the
quintom model does.

The analysis of the spectrum of cosmological perturbat@nscales of current observational
interest is, however, independent of the details of the biogrnphase, as long as that phase is short
compared to the time it takes light to travel over the lengthles of current interest, and as long
as no extra degrees of freedom (extra when compared to thisBeyan Einstein gravity) become
important!l. We now turn to a discussion of the evolution of fluctuationa generic matter bounce
model.

4.2 Fluctuations in a Matter Bounce

First we will consider fluctuations in a matter bounce withextra degrees of freedom. In this
case, we need only focus on the usual fluctuation variablEhe equation of motion its Fourier
modevy is

4

Vet (€= % v = 0, (4.8)

If the equation of state of the background is time-indepatdienz ~ a and hence the negative
square mass term in (4.8)HE. Thus, on length scales smaller than the Hubble radiusplbéans
of (4.8) are oscillating, whereas on larger scales theyrageh in, and their amplitude depends on
the time evolution of.

In the case of an expanding universe the dominant mode stziales az. However, in a
contracting universe it is the second of the two modes wharhidates. If the contracting phase is
matter-dominated, i.e(t) ~ t%3 andn(t) ~ t¥/3 the dominant mode of scales ag —* and hence

w(n) = cn?+cnt, (4.9)

wherec; andc, are constants. The mode is the mode for whicl is constant on super-Hubble
scales. However, in a contracting universe it is¢henode which dominates and leads to a scale-
invariant spectrum [13, 14, 15]:

Pr(k,n) ~ Kw(n)Pa3(n
~ K3vic(nH (K)) P (

~ const

(4.10)

)
nu(K) )2 o312
n

where we have made use of the scaling of the dominant modg tiie Hubble radius crossing
condition Ny (k) ~ k=1, and the assumption that we have a vacuum spectrum at Hududilesr
crossing.

11This last condition is very relevant in the case of the Hoaishitz bounce where we do have to worry about
extra gravitational degrees of freedom. We will come badkimissue at the end of the following subsection.
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Up to this point, the analysis shows that in the contractihgse the curvature fluctuations
are scale-invariant. In non-singular bouncing cosmokgiee fluctuations can be followed in an
unambiguous way through the bounce. This was done in theatdke higher derivative bounce
model of [16] in [23], and in a non-singular bouncing miragsmology model the analysis was
performed in [18]. In the case of the Quintom and Lee-Wickrimas, respectively, the fluctuations
were followed through the bounce in [24] and [25], respetyiv Finally, in the case of the non-
projectable versiod? of the HL bounce, the evolution of the fluctuations through lounce was
recently studied in [26].

The equations of motion can be solved numerically withoyiraximation. Alternatively,
we can solve them approximately using analytical techriquéey to the analytical analysis are
the General Relativistic matching conditions for fluctaas across a phase transition in the back-
ground [126, 127]. These conditions imply that bdﬂandf are conserved at the bounce, where

1 Ko
32—
However, as stressed in [128], these matching condition®oly be used at a transition when the
background metric obeys the matching conditions. Thisishmcase if we were to match directly
between the contracting matter phase and the expandingnpéatse.

In the case of a non-singular bounce we have three phasemiittakcontracting phase with
a fixed equation of state (e.gt = 0), a bounce phase during which the universe smoothly teansi
between contraction and expansion, and finally the expgnplirase with constaw. We need
to apply the matching conditions twice: first at the traositbetween the contracting phase and
the bounce phase (on both sides of the matching surface ihersm is contracting), and then
between the bouncing phase and the expanding phase. Thendote of the studies of [23, 18,
24, 25, 26] is that on length scales large compared to the d¢ifrtbe bounce, the spectrum of
curvature fluctuations is not changed during the bounceeph&ince typically the bounce time
is set by a microphysical scale whereas the wavelength diifitions which we observe today is
macroscopic (about 1mm if the bounce scale is set by thecfgaptiysics GUT scale), we conclude
that for scales relevant to current observations the sp@ds unchanged during the bounce. This
completes the demonstration that a non-singular mattandsleads to a scale-invariant spectrum
of cosmological perturbations after the bounce provided the initial spectrum on sub-Hubble
scales is vacuum. Initial thermal fluctuations were folldvilerough the bounce in [27]. Note that
perturbations are processed during a bounce and this srthb¢even if the background cosmology
were cyclic, the full evolution including linear fluctuati® would be non-cyclic [32].

The above analysis is applicable only as long as no new degfdecedom become relevant
at high energy densities, in particular during the bouncasph In non-singular bounce models
obtained by modifying the matter sector, new degrees oflfreearise from the extra matter fields.
They can thus give entropy fluctuations which may compete thi¢ adiabatic mode studied above.
In the quintom bounce model this issue has recently beernestud [129]. It was found that
fluctuations in the ghost field which yields the bounce arenpairtant on large scales since they
have a blue spectrum. However, entropy fluctuations duetta kxw-mass fields can be important.
They yield the “matter bounce curvaton" mechanism. Thedcspm is also scale-invariant.

N

=+ (4.12)

125ee below for the specification of this case.
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In non-singular bouncing models obtained by modifying thevigational sector of the theory
the identification of potential extra degrees of freedom @erdifficult. As an example, let us
mention the situation in the case of the Horava-Lifshitzrmm The theory has the same number
of geometric degrees of freedom as General Relativity, ésg symmetries. Thus, more of the
degrees of freedom are physical. Recall from the discugsidime theory of cosmological pertur-
bations in Section 2 that there are ten total geometricaledsgof freedom for linear cosmological
perturbations, four of them being scalar, four vector and t®nsor. In Einstein gravity the sym-
metry group of space-time diffeomorphisms is generatetieatdvel of linear fluctuations by four
functions, leaving six of the ten geometrical variables lagsjcal - two scalar, two vector and two
tensor modes. In the absence of anisotropic stress the maihdealar variables is reduced by one,
and the Hamiltonian constraint relates the remaining scaédric fluctuation to matter.

In Horava-Lifshitz gravity one loses one scalar gauge degféreedom, namely that of space-
dependent time reparametrizations. Thus, one expectstanpdw/sical degree of freedom. It has
been recently been shown [130] that in the projectable mersf the theory (in which the lapse
function N(t) is constrainted to be a function of time only) the extra degyescalar cosmolog-
ical perturbations is either ghost-like or tachyonic, defisg on parameters in the Lagrangian.
Thus, the theory appears to be ill-behaved in the contexbsiology. However, in the full non-
projectable version (in which the laplt, x) is a function of both space and time, the extra degree
of freedom is well behaved. It is important on ultravioleales but decouples in the infrared [131].

4.3 Key Predictions of the Matter Bounce

Canonical single field inflation models predict very smalhf®aussianities in the spectrum
of fluctuations. One way to characterize the non-Gausgarig via the three point function of the
curvature fluctuation, also called the “bispectrum”. Adired in [132], the bispectrum induced
in the minimal matter bounce scenario (no entropy modesidered) has an amplitude which is
at the borderline of what the Planck satellite experimetitlvei able to detect, and it has a special
form. These are specific predictions of the matter bounceastewith which the matter bounce
scenario can be distinguished from those of standard iflaty models (see [133] for a recent
detailed review of non-Gaussianities in inflationary cokgg and a list of references). In the
following we give a very brief summary of the analysis of n@aussianities in the matter bounce
scenario.

Non-Gaussianities are induced in any cosmological modeplsi because the Einstein equa-
tions are non-linear. In momentum space, the bispectrurtacenamplitude and shape informa-
tion. The bispectrum is a function of the three momenta. Mamna conservation implies that the
three momenta have to add up to zero. However, this stileeavrich shape information in the
bispectrum in addition to the information about the oveaatiplitude.

A formalism to compute the non-Gaussianities for the cumeafluctuation variabl& was
developed in [134]. Working in the interaction represeatat the three-point function of is
given to leading order by

< q(t, k) (t, k) (t,ks) > (4.12)

\ S
=i [ dt < [Z(tk)Z(tR) (1K), Lin(t)] >
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wheret; corresponds to the initial time before which there are any-@aussianities. The square
parentheses indicate the commutator, Badis the interaction Lagrangian

The interaction Lagrangian contains many terms. In pdeicthere are terms containing the
time derivative of¢. Each term leads to a particular shape of the bispectrumm &xpanding uni-
verse such as in inflationary cosmolo(",]y: 0. However, in a contracting phase the time derivative
of ¢ does not vanish since the dominant mode is growing in timencelgthere are new contribu-
tions to the shape which have a very different form from thapghof the terms which appear in
inflationary cosmology. The larger value of the amplitudéhefbispectrum follows again from the
fact that there is a mode function which grows in time in thetacting phase.

The three-point function can be expressed in the followiegegal form:

— — — T P2
< {(k){(ke)Z(ke) > = (2m)"3(S '“)n_fé

o (ku, Kz, Ks) | (4.13)

wherek; = k| and. is the shape function. In this expression we have factoretheudependence
on the power spectru®, . In inflationary cosmology it has become usual to expresbitpectrum

in terms of a non-Gaussianity paramefgr. However, this is only useful if the shape of the three
point function is known. As a generalization, we here us]13

Yoo 10 .7 (K1, ko, K3)
| 8|\ (K, k2, k3) = —————=—=. (4.14)
n 3 Tk
The computation of the bispectrum is tedious. In the castefatter bounce (no entropy
fluctuations) the result is

3

—9zlq6kj3+521q-5kj‘ (4.15)
i#] i#]

66 3 KK 10 klé‘kfkﬁ} .

This equation describes the shape which is predicted. Séthe terms (such as the last two) are
the same as those which occur in single field slow-roll irdlatibut the others are new. Note, in
particular, that the new terms are not negligible.

If we project the resulting shape functiert onto some popular shape masks we

| B = —%5, (4.16)
for the local shapek{ < k, = k3). This is negative and of ordé€d(1). For the equilateral form

(ky = ko = ks) the result is

255

i
BN = %4

(4.17)
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and for the folded formk; = 2k, = 2k3) one obtains the value

Bl = -3 (4.18)
These amplitudes are close to what the Planck CMB sateljierenent will be able to detect.

The matter bounce scenario also predicts a change in the sfape primordial power spec-
trum on small scales [135]: scales which exit the Hubbleusdt the radiation phase retain a blue
spectrum since the squeezing rate on scales larger thanutbigldHradius is insufficient to give
longer wavelength modes a sufficient boost relative to tleetshwavelength ones.

4.4 Problems of the Matter Bounce

The main problem of the matter bounce scenario is that theiphyvhich yields the non-
singular bounce is not (yet) well established. It is cleadyguired to go beyond conventional
guantum field theory coupled to General Relativity to obtiich a bounce. New Planck-scale
physics needs to be invoked to obtain the required backgreoamology. We remind the reader
that it is precisely the absence of such new physics whicliséz be invoked to argue for an
inflationary background evolution.

In terms of the trans-Planckian problem for cosmologicatttlations, the bouncing cosmol-
ogy has a clear advantage: the wavelength of the fluctuatidrish we are interested in always
remains in the far infrared compared to the ultraviolet esalf the new physics. It can be shown
that the correction terms due to the new ultraviolet physitthe evolution of fluctuations of inter-
est to observers are negligible (see e.g. [26]).

The second main problem of the matter bounce scenario mayetsenhsitivity of the bounce
to assumptions on the initial conditions in the far past. aimplitude of the classical initial fluctu-
ations must be small in order for the homogeneous backgrdundmics not to be perturbed, and
for the vacuum fluctuations to dominate on the scales retauathe infrared (see e.g. [136] for
a criticism of initial conditions in a related scenario, fee-Big-Bang scenario). In addition, the
initial shear must be very small. In some bouncing cosmolmgkgrounds the bouncing solution
is unstable to the smallest addition of shear. This, howéw@iot the case in other models such as
the Horava-Lifshitz bounce [21] or the ghost condensatanbe(i123].

The matter bounce scenario does not address the cosmalogitsant problem, but on the
other hand the scenario does not depend on how the cosmallogitstant problem is solved. Note
that inflationary cosmology is NOT robust in this respect.

5. String Gas Cosmology

Another scenario of early universe cosmology which canigean explanation for the current
data is string gas cosmology. It is an “emergent univers87]-cenario in which the universe
begins in a long hot and almost static phase. The key inpot ftoing theory is that matter is a gas
of closed fundamental strings compared to a gas of poinicestas is assumed in Standard Big
Bang cosmology.
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5.1 Principles and Background

5.1.1 Principles

String theory may be the best candidate we have at the prasenfor a quantum theory
of gravity which unifies all four forces of nature. This theds, however, currently not yet well
understood beyond perturbation thed?y For applications to early universe cosmology, however,
a non-perturbative understanding will be essential.

In the absence of a non-perturbative formulation of strimepty, the approach to string cos-
mology which we have suggesteslring gas cosmologf28] (see also [29], and [11, 139, 140] for
reviews and more complete list of references), is to focusyonmetries and degrees of freedom
which are new to string theory (compared to point partickEpties) and which will be part of any
non-perturbative string theory, and to use them to developva cosmology. The symmetry we
make use of iF-duality , and the new degrees of freedom aregtrang oscillatory modesand the
string winding modes

String gas cosmology is based on coupling a classical baakgrwhich includes the graviton
and the dilaton fields to a gas of closed strings (and possihigr basic degrees of freedom of
string theory such as “branes" [141]). All dimensions ofcgpare taken to be compact, for reasons
which will become clear later. For simplicity, we take albsipl directions to be toroidal and denote
the radius of the torus bR. Strings have three types of statésomentum modeghich represent
the center of mass motion of the striragcillatory modesvhich represent the fluctuations of the
strings, andvinding modesounting the number of times a string wraps the torus.

Since the number of string oscillatory states increasesrexially with energy, there is a
limiting temperature for a gas of strings in thermal equilim, the Hagedorn temperatur§30]
Ty. Thus, if we take a box of strings and adiabatically decraheebox size, the temperature
will never diverge. This is the first indication that strirtgebry has the potential to resolve the
cosmological singularity problem.

The second key feature of string theory upon which stringcgamology is based iB-duality.

To introduce this symmetry, let us discuss the radius degrarelof the energy of the basic string
states: The energy of an oscillatory mode is independerR, ashomentum mode energies are
quantized in units of AR, i.e.
|§2
En=nu—>, (5.1)
wherels is the string length angl is the mass per unit length of a string. The winding mode
energies are quantized in unitsifi.e.

Em = muR, (5.2)

where bottm andm are integers. Thus, a new symmetry of the spectrum of sttatgsemerges:
Under the change

R— 1/R (5.3)

L3Note that there are concrete proposals for a non-pertuebégimulation such as the AAS/CFT correspondence
[138].
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in the radius of the torus (in units &f) the energy spectrum of string states is invariant if wigdin
and momentum quantum numbers are interchanged

(n,m) — (m,n). (5.4)

The above symmetry is the simplest element of a larger symmgedup, the T-duality symmetry
group which in general also mixes fluxes and geometry. Tligstertex operators are consistent
with this symmetry, and thus T-duality is a symmetry of pdsadive string theory. Postulating that
T-duality extends to non-perturbative string theory lefd®] to the need of adding D-branes to
the list of fundamental objects in string theory. With thddaion, T-duality is expected to be a
symmetry of non-perturbative string theory. Specificalhduality will take a spectrum of stable
Type lIA branes and map it into a corresponding spectrumatfistType IIB branes with identical
masses [143].

As discussed in [28], the above T-duality symmetry leadsitequivalence between small and
large spaces, an equivalence elaborated on further in 4%},

5.1.2 Background Cosmology

That string gas cosmology will lead to a dynamical evolutibthe early universe very differ-
ent from what is obtained in standard and inflationary cosgyotan already be seen by combining
the basic ingredients from string theory discussed in tle®ipus subsection. As the radius of a
box of strings decreases from an initially very large valngaintaining thermal equilibrium -, the
temperature first rises as in standard cosmology sincerihg states which are occupied (the mo-
mentum modes) get heavier. However, as the temperatureag@s the Hagedorn temperature,
the energy begins to flow into the oscillatory modes and theese in temperature levels off. As
the radiusk decreases below the string scale, the temperature begiestease as the energy be-
gins to flow into the winding modes whose energy decreasBdasreases (see Figure 12). Thus,
as argued in [28], the temperature singularity of early erse cosmology should be resolved in
string gas cosmology.

The equations that govern the background of string gas dogmare not known. The Ein-
stein equations are not the correct equations since thegtdibey the T-duality symmetry of string
theory. Many early studies of string gas cosmology were dbaseusing the dilaton gravity equa-
tions [146, 147, 148]. However, these equations are natfaatory, either. Firstly, we expect that
string theory correction terms to the low energy effectigtiam of string theory become dominant
in the Hagedorn phase. Secondly, the dilaton gravity egusityield a rapidly changing dilaton
during the Hagedorn phase (in the string frame). Once tlaatilbecomes large, it becomes in-
consistent to focus on fundamental string states rather bhane states. In other words, using
dilaton gravity as a background for string gas cosmologysdus correctly reflect the S-duality
symmetry of string theory. Recently, a background for gtgas cosmology including a rolling
tachyon was proposed [149] which allows a background in thgddorn phase with constant scale
factor and constant dilaton. Another study of this probleasgiven in [150].

Some conclusions about the time-temperature relatiorrimysgas cosmology can be derived
based on thermodynamical considerations alone. One [ldgsibthat R starts out much smaller
than the self-dual value and increases monotonically. Ffigure 12 it then follows that the time-
temperature curve will correspond to that of a bouncing adsgy. Alternatively, it is possible
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T-dual Phase TH

InR

Figure 12: The temperature (vertical axis) as a function of radiusiflomtal axis) of a gas of closed strings
in thermal equilibrium. Note the absence of a temperaturgusarity. The range of values & for which

the temperature is close to the Hagedorn temperdiyu@epends on the total entropy of the universe. The
upper of the two curves corresponds to a universe with lageopy.

a

1/2

tR

Figure 13: The dynamics of string gas cosmology. The vertical axisespnts the scale factor of the
universe, the horizontal axis is time. Along the horizoratais, the approximate equation of state is also
indicated. During the Hagedorn phase the pressure is riigglidue to the cancellation between the positive
pressure of the momentum modes and the negative presstiewiitding modes, after tintg the equation

of state is that of a radiation-dominated universe.

that the universe starts out in a meta-stable state near dgedérn temperature, ti¢éagedorn
phase and then smoothly evolves into an expanding phase dondifigteadiation like in standard
cosmology (Figure 13). Note that we are assuming that ngttbel scale factor but also the dilaton
is constant in time.

The transition between the quasi-static Hagedorn phasthamddiation phase at the tieis
a consequence of the annihilation of string winding modassiring loops (see Figure 14). Since
this process corresponds to the production of radiationdevete this time by the same symbol
tr as the time of reheating in inflationary cosmology. As painteit in [28], this annihilation
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- O

Figure 14: The process by which string loops are produced via the it of winding strings. The
top and bottom lines are identified and the space betweer thes represents space with one toroidal
dimension un-wrapped.

process only is possible in at most three large spatial dsinas. This is a simple dimension
counting argument: string world sheets have measure z&sattion probability in more than
four large space-time dimensions. Hence, string gas cagipohay provide a natural mechanism
for explaining why there are exactly three large spatialatisions. This argument was supported
by numerical studies of string evolution in three and fowatg dimensions [151] (see also [152]).
The flow of energy from winding modes to string loops can be efled by effective Boltzmann
equations [153] analogous to those used to describe the fl@mergy between infinite cosmic
strings and cosmic string loops (see e.g. [86, 87, 88] fdeves).

Several comments are in place concerning the above meohark#st, in the analysis of
[153] it was assumed that the string interaction rates wiare-independent. If the dynamics of
the Hagedorn phase is modelled by dilaton gravity, thedtiléd rapidly changing during the phase
in which the string frame scale factor is static. As discdsige[154, 155] (see also [156]), in
this case the mechanism which tells us that exactly threiagpdmensions become macroscopic
does not work. Another comment concerns the isotropy oftiheetlarge dimensions. In contrast
to the situation in Standard cosmology, in string gas cosgylthe anisotropy decreases in the
expanding phase [157]. Thus, there is a natural isotrapizamechanism for the three large spatial
dimensions.

5.1.3 Moduli Stabilization

In the following, we shall assume that either the mechani$if2®] for setting in motion
the preferential expansion of exactly three spatial dinogissworks, or, alternatively, that three
dimensions are distinguished from the beginning as beirgelaln either case, we must address
the moduli stabilization problem, i.e. we must show thatrtiw#i (radions) and shapes of the extra
dimensions are stabilized. This is a major challenge imgtmotivated field theory models of
higher dimensions. The situation in string gas cosmologgush better in comparison: all moduli
except for the dilaton are stabilized without the need abitticing extra ingredients such as fluxes
or special non-perturbative effects.

Radion stabilization in the string frame was initially stedlin [158]. The basic idea is that
the winding modes about the extra spatial dimensions peawidonfining force which prevents the
radii from increasing whereas the momentum modes providece fwhich resists the complete
contraction. Thus, there will be a stable minimum of theafie potential for the radion.

In order to make contact with late time cosmology, it is intpot to consider the issue of
radion stabilization when the dilaton is frozen, or, moreagally, in the Einstein frame. As was
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discussed in [159, 160] (see also earlier comments in [1883)existence of string modes which
are massless at the self-dual radius is crucial in obtairadgn stabilization in the Einstein frame
(for more general studies of the importance of massless siaddring cosmology see [161, 162]).
Such massless modes do not exist in all known string thecfiesy exist in the Heterotic theory,
but not in Type Il theories [142]. The following discussiataken from [163].

Let us consider the equations of motion which arise from tngphe Einstein action to a
string gas. In the anisotropic setting when the metric istato be

ds? = dt? —a(t)2dx? — % by (t)2dy2 , (5.5)

a=1

where they, are the internal coordinates, the equation of motiorbfobecomes

i 6 bB o Hmn
ba+(3H—i— Z —)ba = 287'[(37,7 (5.6)

p=1Ba 08 fm  /Qmn

wherepimy, is the number density dim,n) strings,em, is the energy of an individudgim, n) string,
andg is the determinant of the metric. The source terfrdepends on the quantum numbers of the
string gas, and the sum runs over all momentum and windingoeurectorsn andn, respectively
(note thatn andm are six-vectors, one component for each internal dimehsiéthe number of
right-moving oscillator modes is given By, then the source term for fixed andn vectors is

7= (r;_:)z_;ngbg+Di_l[(n,n)+(n,m)+2(|\|—1)}. (5.7)

To obtain this equation, we have made use of the mass speofratring states and of the level
matching conditions. In the case of the bosonic supersttimg masdM of a string state with
fixedmn, N andN, whereN andN are the number of right- and left-moving oscillator statasa
six-dimensional torus whose radii are givenkyis

My

MZZ(E

)?— Y n2b? +2(N+R-2), (5.8)
a

and the level matching condition reads

N = (n,m)+N, (5.9)

where(n,m) indicates the scalar product eandmin the trivial metric.

There are modes which are massless at the self-dual rhgiesl. One such mode is the
graviton withn = m= 0 andN = 1. The modes of interest to us are modes which contain winding
and momentum, namely

e N=1,(mm)=1,(mn)=—-1and(nn)=1;
e N=0,(mm)=1,(mn)=1and(nn)=1;

e N=0(mm)=2,(mn)=0and(nn) = 2.

51



Cosmology Robert H. Brandenberger

Note that these modes survive in the Heterotic string thdmury do not survive the GSO [142]
truncation in Type Il string theories.

In string theories which admit massless states (i.e. steltésh are massless at the self-dual
radius), these states will dominate the initial partitiandtion. The background dynamics will then
also be dominated by these states. To understand the efffinetse strings, consider the equation
of motion (5.6) with the source term (5.7). The first two teiimghe source term correspond to an
effective potential with a stable minimum at the self-dwadius. However, if the third term in the
source does not vanish at the self-dual radius, it will lead positive potential which causes the
radion to increase. Thus, a condition for the stabilizatbi, at the self-dual radius is that the
third term in (5.7) vanishes at the self-dual radius. Thihéscase if and only if the string state is
a massless mode.

The massless modes have other nice features which are explodetail in [160]. They
act as radiation from the point of view of our three large disiens and hence do not lead to a
over-abundance problem. As our three spatial dimensioms, dhe potential which confines the
radion becomes shallower. However, rather surprisingtyrins out the the potential remains steep
enough to avoid fifth force constraints.

In the presence of massless string states, the shape misdutiea be stabilized, at least in the
simple toroidal backgrounds considered so far [164]. Tdysthis issue, we consider a metric of
the form

ds? = dt? — dx? — Gpdy™dy", (5.10)

where the metric of the internal space (here for simplicitypsidered to be a two-dimensional
torus) contains a shape modulus, the angle between the tlesayf the torus:

Guu=GCp=1 (5.11)

and
Gio =Gy = sinB, (5.12)

wheref = 0 corresponds to a rectangular torus. The ratio betweemwthttoidal radii is a second
shape modulus. However, from the discussion of the pre@olbsection we already know that each
radion individually is stabilized at the self-dual radidus, the shape modulus corresponding to
the ratio of the toroidal radii is fixed, and the angle is théy@hape modulus which is yet to be
considered.

Combining the 00 and the 12 Einstein equations, we obtainradraic oscillator equation for
6 with 8 = 0 as the stable fixed point.

6+ 8K Y2%e72%9 = 0, (5.13)

whereK is a constant whose value depends on the quantum numbeies sifitlg gas. In the case
of an expanding three-dimensional space we would havermiutaan additional damping term in
the above equation of motion. We thus conclude that the simpeilus is dynamically stabilized
at a value which maximizes the area to circumference ratio.

The only modulus which is not stabilized by string windingdamomentum modes is the
dilaton. Recently, it has been show [165] that a gaugino eosdtion mechanism (similar to those
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used in string inflation model building) can be introducedchigenerates a stabilizing potential
for the dilaton without interfering with the radion stahdtion force provided by the string winding
and momentum modes.

In the next subsection we turn to the predictions of string gasmology for observations.
These predictions do not depend on the details of the theatypnly on three inputs. The first
is the existence of a quasi-static initial phase in thermailiorium. The second condition is the
applicability of the Einstein field equations for fluctuatsoon infrared scales (scales of the order of
1mm), many orders of magnitude larger than the string saaléthe third is a holographic scaling
of the specific heat capacity. The role of the last conditidhbg#come manifest below.

5.2 Fluctuations in String Gas Cosmology

5.2.1 Overview

At the outset of this section, let us recall the mechanism bigkvinflationary cosmology leads
to the possibility of a causal generation mechanism for edsgical fluctuations which yields an
almost scale-invariant spectrum of perturbations. Theespiane diagram of inflationary cosmol-
ogy is sketched in Figure 5.

During the period of inflation, the Hubble radius

() = 2 (5.14)

is approximately constant. In contrast, the physical lerdta fixed co-moving scale (labelled ky
in the figure) is expanding exponentially. In this way, inatitbnary cosmology scales which have
microscopic sub-Hubble wavelengths at the beginning ddiiiafh are red-shifted to become super-
Hubble-scale fluctuations at the end of the period of inftatidfter inflation, the Hubble radius
increases linearly in time, faster than the physical wagtle corresponding to a fixed co-moving
scale. Thus, scales re-enter the Hubble radius at late.times

Since inflation red-shifts any classical fluctuations whicight have been present at the be-
ginning of the inflationary phase, fluctuations in inflatipnaosmology are generated by quantum
vacuum perturbations. The fluctuations begin in their quanvacuum state at the onset of in-
flation. Once the wavelength exceeds the Hubble radius,ezqme of the wave-function of the
fluctuations sets in (see [34, 33]). This squeezing plus gedherence of the fluctuations due to
the interaction between short and long wavelength modesrgtd by the intrinsic non-linearities
in both the gravitational and matter sectors of the theagg (1, 70] for recent discussions of this
aspect and references to previous work) lead to the clédigsittan of the fluctuations on super-
Hubble scales.

Let us now turn to the cosmological background of string gesrology represented in Figure
13. This string gas cosmology background vyields the spgawe-diagram sketched in Figure 15.
As in Figure 5, the vertical axis is time and the horizontékalenotes the physical distance. For
timest < tg, we are in the static Hagedorn phase and the Hubble radinfingé. Fort > tg, the
Einstein frame Hubble radius is expanding as in standantholog)y. The timdg is when the string
winding modes begin to decay into string loops, and the deater starts to increase, leading to
the transition to the radiation phase of standard cosmology
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Figure 15: Space-time diagram (sketch) showing the evolution of fixednoving scales in string gas
cosmology. The vertical axis is time, the horizontal axiphigsical distance. The solid curve represents the
Einstein frame Hubble radiud —* which shrinks abruptly to a micro-physical scalérafind then increases
linearly in time fort > tr. Fixed co-moving scales (the dotted lines labele#gndk,) which are currently
probed in cosmological observations have wavelengthshwénie smaller than the Hubble radius beftre
They exit the Hubble radius at timggk) just prior totr, and propagate with a wavelength larger than the
Hubble radius until they reenter the Hubble radius at titpés.

Let us now compare the evolution of the physical wavelengtfiesponding to a fixed co-
moving scale with that of the Einstein frame Hubble radist(t). The evolution of scales in
string gas cosmology is identical to the evolution in staddand in inflationary cosmology for
t > tg. If we follow the physical wavelength of the co-moving scalkich corresponds to the
current Hubble radius back to the tirgg then - taking the Hagedorn temperature to be of the order
106 GeV - we obtain a length of about 1 mm. Compared to the striatpsand the Planck scale,
this is in the far infrared.

The physical wavelength is constant in the Hagedorn phase sipace is static. But, as we
enter the Hagedorn phase going back in time, the Hubble sattuerges to infinity. Hence, as
in the case of inflationary cosmology, fluctuation modes agib-Hubble during the Hagedorn
phase, and thus a causal generation mechanism for fluctaasipossible.

However, the physics of the generation mechanism is vefgrdift. In the case of inflationary
cosmology, fluctuations are assumed to start as quantunuwaperturbations because classical
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inhomogeneities are red-shifting. In contrast, in the Hage phase of string gas cosmology there
is no red-shifting of classical matter. Hence, it is the flations in the classical matter which

dominate. Since classical matter is a string gas, the dorfhectuations are string thermodynamic

fluctuations.

Our proposal for string gas structure formation is the felig [31] (see [166] for a more
detailed description). For a fixed co-moving scale with wawaberk we compute the matter
fluctuations while the scale in sub-Hubble (and therefoewitational effects are sub-dominant).
When the scale exits the Hubble radius at tin(le) we use the gravitational constraint equations to
determine the induced metric fluctuations, which are thepggated to late times using the usual
equations of gravitational perturbation theory. Sincedbales we are interested in are in the far
infrared, we use the Einstein constraint equations forlatobns.

5.2.2 Spectrum of Cosmological Fluctuations

We write the metric including cosmological perturbatiossalar metric fluctuations) and grav-
itational waves in the following form (using conformal time

d = a2(n) {(1+2®)dn? — [(1—20)3; + hjj]dXdx } . (5.15)

We have fixed the gauge (i.e. coordinate) freedom for theasoagtric perturbations by adopting
the longitudinal gauge and we have taken matter to be fremisbtiopic stress. The spatial tensor
hij (x,t) is transverse and traceless and represents the graviavanes.

Note that in contrast to the case of slow-roll inflation, acahetric fluctuations and gravita-
tional waves are generated by matter at the same order inobogical perturbation theory. This
could lead to the expectation that the amplitude of grdeital waves in string gas cosmology
should be generically larger than in inflationary cosmoldllyis expectation, however, is not real-
ized [167] since there is a different mechanism which sugg@e the gravitational waves relative to
the density perturbations (namely the fact that the grawital wave amplitude is set by the ampli-
tude of the pressure, and the pressure is suppressedeadtative energy density in the Hagedorn
phase).

Assuming that the fluctuations are described by the peruBiastein equations (they are
not if the dilaton is not fixed [168, 169]), then the spectra ofraofogical perturbationsh and
gravitational waves are given by the energy-momentum fluctuations in the folhguvay [166]

(|P(k)[2) = 16m°G?k 48T %(k)8T %(K)), (5.16)
where the pointed brackets indicate expectation values, an
(Ih(k)|?) = 162Gk H(8T';(K)AT'j(K)), (5.17)

where on the right hand side of (5.17) we mean the averagetbgecorrelation functions with
i # j, andh is the amplitude of the gravitational wavks

Let us now use (5.16) to determine the spectrum of scalaiafietctuations. We first calculate
the root mean square energy density fluctuations in a sptiesglios R = k1. For a system in

14The gravitational wave tensbrj can be written as the amplitudtemultiplied by a constant polarization tensor.
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thermal equilibrium they are given by the specific heat cip&; via

(0p?) = o (5.18)
~5Cv. .

The specific heat of a gas of closed strings on a torus of r&lasn be derived from the partition
function of a gas of closed strings. This computation wasezout in [170] with the result

R?/¢3
CV ~ 2_|_ /

m . (5.19)

The specific heat capacity scales holographically with ihe ef the box. This result follows
rigorously from evaluating the string partition functionthe Hagedorn phase. The result, however,
can also be understood heuristically: in the Hagedorn ptiesstring winding modes are crucial.
These modes look like point particles in one less spatiabdsion. Hence, we expect the specific
heat capacity to scale like in the case of point particlesimless dimension of spaée

With these results, the power spectritk) of scalar metric fluctuations can be evaluated as
follows

Po(k)

Z—;ke’]m(k)]z (5.20)
= 8G*k 1< |6p(k)>> .

= 8G%k% < (6M)? >R

— 8G%*k % < (6p)? >r

T 1

_ 2
=86 B1-T/Ty’

where in the first step we have used (5.16) to replace the tatmecvalue of ®(k)|? in terms of
the correlation function of the energy density, and in theoed step we have made the transition
to position space

The first conclusion from the result (5.20) is that the spentis approximately scale-invariant
(P(k) is independent o). It is the ‘holographic’ scalin@y (R) ~ R? which is responsible for the
overall scale-invariance of the spectrum of cosmologiealysbations. However, there is a sniall
dependence which comes from the fact that in the above equiati a scalék the temperaturd
is to be evaluated at the timigk). Thus, the factof1— T /Ty) in the denominator is responsible
for giving the spectrum a slight dependencekosince the temperature slightly decreases as time
increases at the end of the Hagedorn phase, shorter watreengwhicht; (k) occurs later obtain
a smaller amplitude. Thus, the spectrum has a slight red tilt

5.2.3 Key Prediction of String Gas Cosmology

As discovered in [167], the spectrum of gravitational waigeslso nearly scale invariant.
However, in the expression for the spectrum of gravitalieveves the factof1— T /Ty) appears
in the numerator, thus leading to a slight blue tilt in thecspen. This is a prediction with which
the cosmological effects of string gas cosmology can béndisished from those of inflationary

15We emphasize that it was important for us to have compadgsganensions in order to obtain the winding modes
which are crucial to get the holographic scaling of the thmdymamic quantities.
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cosmology, where quite generically a slight red tilt for\grational waves results. The physical
reason is that large scales exit the Hubble radius earli@nwhe pressure and hence also the
off-diagonal spatial components ©f, are closer to zero.

Let us analyze this issue in a bit more detail and estimatelithensionless power spectrum
of gravitational waves. First, we make some general comsnéntslow-roll inflation, to leading
order in perturbation theory matter fluctuations do not ¢é®up tensor modes. This is due to the
fact that the matter background field is slowly evolving méi and the leading order gravitational
fluctuations are linear in the matter fluctuations. In ourecdke background is not evolving (at
least at the level of our computations), and hence the darhmatric fluctuations are quadratic in
the matter field fluctuations. At this level, matter fluctoas induce both scalar and tensor metric
fluctuations. Based on this consideration we might expettttour string gas cosmology scenario,
the ratio of tensor to scalar metric fluctuations will be &r¢han in simple slow-roll inflationary
models. However, since the amplitudef the gravitational waves is proportional to the pressure,
and the pressure is suppressed in the Hagedorn phase, thieidengf the gravitational waves will
also be small in string gas cosmology.

The method for calculating the spectrum of gravitationalegas similar to the procedure out-
lined in the last section for scalar metric fluctuations. &onode with fixed co-moving wavenum-
ber k, we compute the correlation function of the off-diagonadtsgd elements of the string gas
energy-momentum tensor at the titnd) when the mode exits the Hubble radius and use (5.17) to
infer the amplitude of the power spectrum of gravitationalves at that time. We then follow the
evolution of the gravitational wave power spectrum on siibaible scales for > tj(k) using the
equations of general relativistic perturbation theory.

The power spectrum of the tensor modes is given by (5.17):

Ph(k) = 162G?k 43 (8T' (k)T j(K)) (5.21)

for i # j. Note that the® factor multiplying the momentum space correlation furm:kixﬁT‘j gives
the position space correlation functi(i)ﬁji j(R) , namely the root mean square fluctuatiorT b,-fin
a region of radiuR = k! (the reader who is skeptical about this point is invited teaththat the
dimensions work out properly). Thus,

Pu(k) = 16m°G*k*C'';(R). (5.22)
The correlation functio€';'; on the right hand side of the above equation follows from lieerhal
closed string partition function and was computed exjidit [171] (see also [11]). We obtain

Ph(K) ~ 16nzGZIT—3(1—T/TH)In2 [%(1—T/TH)] : (5.23)
S S
which, for temperatures close to the Hagedorn value redioces
Ph(k) ~ = (1—T/Tw)In W(l—T/TH) . (5.24)
S

S

This shows that the spectrum of tensor modes is - to a firsbappation, namely neglecting the
logarithmic factor and neglecting ttkedependence of (tj(k)) - scale-invariant.
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On super-Hubble scales, the amplitud®f the gravitational waves is constant. The wave
oscillations freeze out when the wavelength of the modeseshe Hubble radius. As in the
case of scalar metric fluctuations, the waves are squeezberéas the wave amplitude remains
constant, its time derivative decreases. Another way tdtsgsqueezing is to change variables to

Y(n,x) = a(n)h(n,x) (5.25)

in terms of which the action has canonical kinetic term. T¢t@a in terms ofiy becomes
1 a//
s— 5 /(v ww+ S07) (5.26)

from which it immediately follows that on super-Hubble s=aly ~ a. This is the squeezing of
gravitational waves [72].

Since there is n&-dependence in the squeezing factor, the scale-invariairibe spectrum at
the end of the Hagedorn phase will lead to a scale-invariahtiee spectrum at late times.

Note that in the case of string gas cosmology, the squeeaatgri(n ) does not differ substan-
tially from the squeezing fact@(n ) for gravitational waves. In the case of inflationary cosrgglo
z(n) anda(n) differ greatly during reheating, leading to a much largeresgying for scalar metric
fluctuations, and hence to a suppressed tensor to scataofdtiictuations. In the case of string
gas cosmology, there is no difference in squeezing betweesdalar and the tensor modes.

Let us return to the discussion of the spectrum of gravitatiovaves. The result for the power
spectrum is given in (5.24), and we mentioned that to a firpt@pmation this corresponds to
a scale-invariant spectrum. As realized in [167], the ldgaric term and the&k-dependence of
T(ti(k)) both lead to a small blue-tilt of the spectrum. This featsrehiaracteristic of our scenario
and cannot be reproduced in inflationary models. In inflaigrmodels, the amplitude of the
gravitational waves is set by the Hubble constdntThe Hubble constant cannot increase during
inflation, and hence no blue tilt of the gravitational wavedpum is possible.

A heuristic way of understanding the origin of the slighteliit in the spectrum of tensor
modes is as follows. The closer we get to the Hagedorn terypserdahe more the thermal bath is
dominated by long string states, and thus the smaller ttespre will be compared to the pressure
of a pure radiation bath. Since the pressure terms (stspiyaking the anisotropic pressure terms)
in the energy-momentum tensor are responsible for the temsdes, we conclude that the smaller
the value of the wavenumbé&r(and thus the higher the temperatdré;(k)) when the mode exits
the Hubble radius, the lower the amplitude of the tensor mottecontrast, the scalar modes are
determined by the energy density, which increas@satk)) ask decreases, leading to a slight red
tilt.

The reader may ask about the predictions of string gas cogimdbr non-Gaussianities. The
answer is [172] that the non-Gaussianities from the thestralg gas perturbations are Poisson-
suppressed on scales larger than the thermal wavelengtie iHdgedorn phase. However, if the
spatial sections are initially large, then it is possiblatth network of cosmic superstrings [173]
will be left behind. These strings - if stable - would achievecaling solution (constant number
of strings crossing each Hubble volume at each time [86, 8], Such strings give rise to linear
discontinuities in the CMB temperature maps [174], linesclttan be searched for using edge
detection algorithms such as the Canny algorithm (see [fbrsgcent feasibility studies).
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5.3 Problems of String Gas Cosmology

The main problem of the current implementation of string gasmology is that it does not
provide a quantitative model for the Hagedorn phase. Thieisrs of string gas cosmology raised
in [169, 176] are based on assuming that dilaton gravity lshbe the background. However, as
mentioned earlier, this is not a reasonable assumptiore she coupling of string gas matter to
dilaton gravity is not S-duality invariant. The quasi-atatarly Hagedorn phase should also have
constant dilaton. In addition, we do not expect that at highsities such as the Hagedorn density
an simple effective action such as that of dilaton gravityf efoply. Nevertheless, to make the
string gas cosmology scenario into a real theory, it is @luoi obtain a good understanding of the
background dynamics. For some initial steps in this dioectiee [149].

A second problem of string gas cosmology is the size probkemd the related entropy prob-
lem). If the string scale is about 1@eV as is preferred in early heterotic superstring modies) t
the radius of the universe during the Hagedorn phase musabg arders of magnitude larger than
the string scale. Without embedding string gas cosmologyadrbouncing cosmology, it seems un-
natural to demand such a large initial size. This problenagpears if the Hagedorn phase is
preceded by a phase of contraction, as in the model of [1AZhi$ case, however, it is non-trivial
to arrange that the Hagedorn phase lasts sufficiently longgiatain thermal equilibrium over the
required range of scales.

It should be noted, however, that some of the conceptuallgmabof inflationary cosmology
such as the trans-Planckian problem for fluctuations, daarisg in string gas cosmology. As in
the case of the matter bounce scenario, the basic mechahitb®m scenario is insensitive to what
sets the cosmological constant to its observed very smiakkva

6. Conclusions

In these lectures | have argued that it is possible to exgpbysics of the very early universe
using current cosmological observations. Given the largeuat of new data which is expected
over the next decade, early universe cosmology will be avitdfield of research. The information
about the very early universe is transferred to the curiamd mainly via imprints on the spectrum
of cosmological fluctuations. Thus, the theory of cosmalalyfluctuations is the key tool of mod-
ern cosmology. It links current observations with earlyvense cosmology. The theory can be
applied to any background cosmology, not just inflationarsneology. | have illustrated the appli-
cation of the theory of cosmological perturbations to theeenarios of the very early universe, the
inflationary scenario, the matter bounce paradigm, andgstras cosmology.

The Hubble radius plays a key role in the evolution of fludarsd. On sub-Hubble scales the
microphysical forces dominate, whereas on super-Hublallesenatter forces freeze out and grav-
ity dominates. In order to have a causal mechanism of steidtumation, it is therefore crucial
that scales of current interest in cosmology originate af early times inside the Hubble radius,
and that they then propagate over an extended period of tirsager-Hubble scales. This propaga-
tion on super-Hubble scales is required in order to obtadrstiueezing of the perturbations which
is required to explain the acoustic oscillations in the dagpower spectrum of CMB anisotropies.

The inflationary scenario is the current paradigm of earlivanse cosmology. It explains
important conceptual problems of Standard Big Bang Cosgypknd most importantly it provided
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a mechanism to explain the origin of structure in the uniwetia causal physics. The perturbations
begin as quantum vacuum fluctuations on sub-Hubble scatesy @xit the Hubble radius during
the phase of inflationary expansion of space and are thereaede Inflationary cosmology has
been predictive: it predicted the detailed shape of thelangower spectrum of CMB anisotropies
more than 15 years before the observations. However, it oiitant to realize that any theory
which provides a scale-invariant spectrum of primordiaivature fluctuations and which admits
a period during which the scales which are observed todalve\autside of the Hubble radius
will have the same predictions, as already realized mone thdecade before the development
of inflationary cosmology by Sunyaev and Zel'dovich [178Hdmy Peebles and Yu [179] (see
also [36, 37]). Thus, it is incorrect to claim that the cutrebservations confirm the inflationary
scenario. In fact, current realizations of inflationaryroofogy suffer from some basic conceptual
problems. This motivates the search for an improved uratedgtg of the very early universe.

| have described two alternative early universe scenaties;matter bounce”, and “string gas
cosmology". Both lead to a scale-invariant spectrum of aume fluctuations and involve squeez-
ing of the perturbations on super-Hubble scales and areritagseement with current observations.
The challenge for alternative scenarios is to identify wlpeedictions with which the new scenar-
ios can be distinguished from those of inflation. In the cdgbe@matter bounce the prediction we
have identified is a particular shape of the bispectrum, éncise of string gas cosmology the key
prediction is a slight blue tilt in the spectrum of gravitetal waves.

It is important to realize that physics of the very early @nge is determined by physics of
the highest energy scales, scales many orders of magnitgdertthan those which are probed
in accelerator experiments. Thus, a better understandiggiantum gravity (e.g. string theory)
might lead to completely new possibilities for cosmologg. tlirn, it is only through cosmology
that physics of the highest energies can be probed.
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