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1. Non-Commutative Quantum Mechanics

The idea that space-time would have a non-commutative structure has attracted a lot of at-
tention since last decade, although it was proposed when Quantum Field Theory (QFT) was still
being born, plagued by ultra-violet divergences. In fact, the idea that non-commuting space-time
coordinates (for reviews, see [2 – 4]) would cure those divergences was proposed by Heisenberg,
being later formalized by Snyder (for a historical introduction, see [2, 5]). Before the revival in
non-commutative was boosted by achievements in String Theory in the late 1990s (see [2 – 4] ), the
issue of space-time non-commutativity was considered in an earlier work by Doplicher et al., who
constructed a unitary QFT based on a non-commutative space-time [6], motivated by the issue of
the description of the quantum nature of the space-time.

Since quantum mechanics can be interpreted as the one-particle sector of quantum field theory,
it is interesting to investigate the quantum mechanics defined on non-commutative spaces. Lately,
this Non-Commutative Quantum Mechanics (NCQM) has attracted interest (see, for instance, Ref.s
[7 – 11]). Specially, there have been studies about the energy levels of a quantum particle under the
action of the newtonian gravitational potential of the Earth, with the aim of obtaining an upper-
bound on the non-commutative parameter (see Ref.s [12, 15] ). All this has been motivated by the
experimental determination of the first energy levels of freely falling quantum ultracold neutrons
in a gravitational well (the GRANIT experiment), performed by Nesvizhevsky et al. [1, 16].

In this communication, we review the determination of the energy levels of a non-commutative
quantum particle in a gravitational well and the imposition of an upper-bound on the non-commuta-
tive parameter, reported by the authors recently in Ref. [17]. This was achieved by means of the
study of the self-adjoint extensions [18] of the Hamiltonian operator that describes the system.
It should be noted that the first study to treat the non-commutative gravitational quantum well
was done by Bertolami et al. [12]. Nonetheless, it was achieved in a non-commutative model
completely different from the one we have considered. For details and a comparative discussion
with the considerations in [12], as well as with other studies, we refer the reader to [17]. We
remark that we have assumed only spatial non-commutativity, in contrast to those works, which
considered non-commutativity of both configuration and momentum spaces (see [12]-[14]) or time-
space non-commutativity (see [15]). The Ref.s [12]-[14] treated the non-commutative gravitational
quantum well and used data from the GRANIT experiment to find upper-bounds on the value of the
momentum-momentum non-commutativity parameter, while in the Ref. [15] an upper bound on the
time-space component of the non-commutative matrix was found, by means of second quantization
techniques.

2. Non-commutative quantum mechanics

When space-space non-commutativity is considered, the extended phase space commutation
relations read

[x̂i, x̂ j] = iθi j , [p̂i, p̂ j] = 0 , [p̂i, x̂ j] =−ih̄δi j . (2.1)

The corresponding non-commutative Schrödinger equation reads

− h̄2

2m
52

Ψ+V ? Ψ = ih̄
∂Ψ

∂ t
, (2.2)
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where ? denotes the so-called Moyal product, defined by

(ψ ?φ)(x1,x2,x3) = ψ(x1,x2,x3)e
i
2

←−
∂ i θi j
−→
∂ j φ(x1,x2,x3) . (2.3)

The energy eigenvalue equation of NCQM can be obtained by means of the usual stationary
problem ansatz, namely

Ψ(~r, t) = ψ(~r)e−
i
h̄ Et ; − h̄2

2m
52

ψ +V e
i
2

←−
∂ i θi j
−→
∂ j ψ = Eψ . (2.4)

The gravitational well potential energy is

V (x,y,z) =

{
mgy , y > 0 , ∀x ,z ,
∞ , y = 0 , ∀x ,z .

(2.5)

As argued in [17], in order one can handle with a well-definite problem a local approximation
for the Moyal product is needed. It is easily achieved and is given by

V e
i
2

←−
∂ i θi j
−→
∂ j ψ 'V ψ +

i
2

θi j
∂V
∂xi

∂

∂x j
ψ . (2.6)

It follows that the time-independent Schrödinger equation reads

− h̄2

2m
∂ 2ψ

∂x2 −
mgiθ

2
∂ψ

∂x︸ ︷︷ ︸
Hxψ

− h̄2

2m
∂ 2ψ

∂y2 +mgyψ︸ ︷︷ ︸
Hyψ

= Eψ . (2.7)

3. Determination of the Energy Levels by Self-Adjoint Extensions

In this section, we consider the non-commutative version of the gravitational quantum well
and determine the energy spectrum of a particle trapped in it. We remark that usually the correct
definition of an operator is not addressed in most applications in physics, but rather an operator
is defined only by means of its law of action (the so-called formal operator), without any mention
about its domain of definition. Operators having the same formal expression but acting in different
domains can lead to different physics and this is a crucial question specially in quantum theory
[18]. Thus, in order to determine the spectrum of the non-commutative gravitational well, we have
carefully examined the domain of the differential operator we have to handle with. This is closed
related to the self-adjointness of the operator and will ultimately lead us to consider its self-adjoint
extensions. We refer the reader to [17] and references therein.

Note that we have H = Hx +Hy , where

Hx =−
h̄2

2m
∂ 2

∂x2 −
mgiθ

2
∂

∂x
and Hy =−

h̄2

2m
∂ 2

∂y2 +mgy , (3.1)

with domains D(Hx) =C∞
0 (R) and D(Hy) =C∞

0 (R∗+) . In spite of being Hermitian, neither Hx nor
Hy are self-adjoint operators, since the domains D(H∗x ) and D(H∗y ) are lager then D(Hx) and D(Hy),
respectively.
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The usual strategy to solve the above problem is based on the fact that the larger the domain
of an operator T , the smaller the domain of its adjoint T ∗ . So we basically have to extend T to
an operator Te so that D(Te) = D(T ∗e ). The construction of such extensions makes use of some
important mathematical results, which are described at some detail in the sequel.

Let K±(T ) be the vector spaces of the square integrable solutions of the equations T ψ =

±iλψ . The deficiency index, n± , are defined as n± = dimK±(T ) . Now we quote the theorem by
von Neumann which fully classifies the self-adjoint extensions of the Hermitian operators.

Theorem 1. Let T be a Hermitian operator on a Hilbert space H and let T be its closure. Then:
(a) T is essentially self-adjoint if and only if n+ = n− = 0 ;
(b) T has self-adjoint extensions if and only if n+ = n− ;
(c) There is a one-to-one correspondence between the unitary maps U : K+(T )→K−(T ) and the
self-adjoint extensions of T (which we shall denote by TU );
(d) The domain of TU is D(TU) =

{
ψ +ψ++Uψ+ ∈ D(T ∗) : ψ ∈ D(T ) , ψ+ ∈ D(U)

}
.

(e) The action of TU in D(TU) is given by T ∗(ψ +ψ++Uψ+) = T ψ + iψ+− iUψ+ .

Let us firstly apply the von Neumann theorem to the case of Hx :

− h̄2

2m
ψ
′′
±(x)−

mgiθ
2

ψ
′
±(x) =±iλψ±(z) , ψ±(x) = eω±x . (3.2)

In this case n+ = n− = 0, so that Hx is the unique self-adjoint extension of Hx . Formally Hx acts
just like Hx , but its domain is

D(Hx) = D(H∗x ) =
{

ψ ∈ L2(R)∩C0(R) : ψ
′ ∈ AC(R) , Hxψ ∈ L2(R)

}
. (3.3)

Now, we consider the case of Hy :

ψ
′′
±(z±)−

(
2m2g

h̄2

)
z±ψ±(z±) = 0 , z± = y∓ iλ/(mg) . (3.4)

In this case n+ = n− = 1. Formally the extensions of Hy acts just like Hy itself, but their domains
are given by

D(Hy,α) =
{

ψ ∈ L2(R∗+) : ψ
′′ ∈ L2

loc(R∗+) , H∗y ψ ∈ L2(R∗+) ,ψ(0) = α ψ
′
(0)
}
. (3.5)

The range of α can be extended so as to comprehend the case α = ∞ , which corresponds to
ψ
′
(0) = 0.

Among all the self-adjoint extensions of Hy , the only one which correctly describe the exper-
imental setup of the GRANIT experiment corresponds to the choice α = 0 in Eq. (3.5).

Now we proceed to the determination of the spectrum of H . We make use the ansatz ψ(x,y) =
eikxφ(y) to get

d2φ

dy2 +
2m2g

h̄2

(
Eθ

mg
− y
)

φ(y) = 0 , (3.6)

where

Eθ = E− h̄2k2

2m
− mgkθ

2
. (3.7)
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Now, by setting ξ = y−bθ

a , a =
(

h̄2

2m2g

)1/3
and bθ = Eθ

mg , we can put (3.6) in the form of an
Airy equation (see Ref. [19], for example),

d2φ(ξ )

dξ 2 −ξ φ(ξ ) = 0 , (3.8)

whose general solution is

φ(y) = AAi
(

y−bθ

a

)
+BBi

(
y−bθ

a

)
. (3.9)

The boundary conditions for φ(y) imply that Ai
(
−bθ

a

)
= 0, so that −bθ/a are the roots of

the Airy function Ai , i.e.,

bθ ,n =−aαn , (3.10)

where αn denotes the n -th zero of Ai . The result (3.10) combined with the definition of bθ

gives the spectrum of the Hamiltonian of a non-relativistic quantum particle trapped in the non-
commutative gravitational quantum well:

Ek,n,θ =
h̄2k2

2m
+

(
mg2h̄2

2

)1/3

.(−αn) +
mgkθ

2
. (3.11)

For θ → 0, we recover the text-book result of ordinary quantum mechanics. For discussions about
other characteristics of the above spectrum, we refer the reader to our paper in Ref. [17].

4. Conclusions

We have studied the free-fall of a particle under the action of a uniform gravitational field
in NCQM. Assuming noncommutativity only on configuration space and carefully studying the
self-adjointness of the Hamiltonian operator involved, as well as determining its self-adjoint ex-
tensions, we have exactly solved the noncommutative Schrödinger equation and determined the
energy eigenvalues. Instead of simply imposing by hand the usual boundary condition associated
with the reflecting mirror at the bottom of the gravitational well, we concluded that this condition
is among those permitted by the theory of self-adjoint extensions when applied to the original oper-
ator we started from. Obtaining the energy spectrum is specially important, since from the data of
the gravitational quantum well experiment with freely falling neutrons - the GRANIT experiment
[1], [16] - we can then set an upper-bound on the value of the spatial noncommutative parameter,
θ . Applying Eq. (3.11) to a neutron under the conditions (its horizontal velocity) of the GRANIT
experiment, we arrived at the bound discussed in Ref. [17]. We remark that our result can be
improved in the future, when more accurate experimental data will be available [16]. We note that
the works that considered the noncommutative gravitational quantum well have not established an
upper-bound on θ , but rather on the momentum-momentum noncommutativity parameter [12]-[14]
or on the time-space component of the noncommutative matrix [15].
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