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Geometry of the New Massive Gravity Domain Walls U. Camara dS

1. Massive higher derivatives gravity

The “higher derivatives" extensions of the Einstein gravity action involving squares of the
curvature invariants: R2, RµνRµν and RµνρτRµνρτ naturally appear in the supergravity models
derived from the (low energy) superstrings and also as 1-loop counter-terms in the perturbative
quantization of Einstein gravity [1]. The corresponding equations of motions contain up to fourth
order derivatives of the metrics gµν and a new mass scale m2, say R+ 1

m2 R2, related to the “graviton”
mass. Including of such terms is known to lead to certain causality and unitarity problems [1]
and to significant corrections to the Newton’s gravitational potential as well [2]. The question
arises whether one can find a particular combination of such terms that is free of the problems
mentioned above. A natural candidate appears to be the “topological" Gauss-Bonnet term: LG B =
R2−4RµνRµν +RµνρτRµνρτ , which is a total derivative in four dimensions. As is well known for
conformally flat solutions, i.e. of vanishing d > 3 Weyl tensor, the action of the Gauss-Bonnet-
Einstein gravity becomes identical to the new massive gravity (NMG) one [3]:

S =
1

κ2

∫
ddx
√
−g
{

εR+
1

m2

(
RµνRµν −

d
4(d−1)

R2
)
−κ

2
(1

2
|~∇σ |2 +V (σ)

)}
, (1.1)

where κ2 = 16πG and ε =±1. An important feature of this model is that for all d > 2 the equations
of motion for static domain wall (DW) solutions are of second order [6], independently of the
form of the matter potential. Although the GB-term in three dimensions is identically zero, the
action of d = 3 NMG model (obtained from the Pauli-Fierz Lagrangian [3]) again has the form
(1.1). As it was shown in ref.[3], the pure d = 3 NMG gravity has the remarkable property to
be ghost free (i.e. unitary) under certain restrictions on the values of the parameters. Its vacuum
(σ = const) sector contains two massive degrees of freedom (the “graviton” polarizations) and
unlike 3D Einstein gravity it admits physically interesting classical solutions - gravitational waves,
black holes, solitons, etc. [4],[6],[5].

The present paper is reviewing the specific new features of the superpotental method when
applied to d = 3 NMG-mater model (1.1) (see [6]). We consider as an example a particular su-
perpotential given by W (σ) = BcoshDσ , which turns out to generate bounded Higgs-like matter
potential V (σ) with few extrema σ∗A: i.e. V

′
(σ∗A) = 0 [8]. The use of the superpotential and related

(BPS-like) first order equations are known to provide a vast family of exact solutions of the corre-
sponding (2+1)-dimensional NMG model [5], [6], [7]. The most simplest of them are the vacuum
solutions determined by the (stable) extrema σ∗a,b = const of V (σ) and representing different AdS3

space-times of (negative) cosmological constants Λa,b = κ2

2 V (σ∗a,b). We are further interested in
the description of the geometric properties of a class of static flat DW’s defined (as usually [11])
by the following ansatz:

ds2 = dz2 + eϕ(z)(dx2−dt2), σ = σ(z), (1.2)

together with the specific boundary conditions (b.c.): eϕ(z→±∞)≈ e2
√
|Λe f f

a,b |z and σ(±∞) = σ∗a,b,
appropriate to the case of NMG models of at least two AdS-type vacua. Then the resulting DW’s
represent smooth solutions of the NMG-matter model interpolating between two such vacua config-
urations placed at the causal limits, i.e. z→±∞ ends (boundaries and/or horizons) of the effective
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Geometry of the New Massive Gravity Domain Walls U. Camara dS

asymptotically AdS3 (called (a)AdS3) space-times. Their main feature is that the matter energy is
concentrated around certain (d− 2)-dimensional subspace (i.e. a line for d = 3) that divides the
(a)AdS3 space-time in two parts containing (asymptotically) different AdS3 vacua (Λa,b,σ

∗
a,b) [11],

[8].
As usually the investigation of such DW’s is motivated by their important role in the de-

scription of the renormalization group (RG) flows and corresponding phase transitions in two-
dimensional QFT “holographically dual” to 3D massive gravity [9], [7] in the frameworks of
AdS3/CFT2 correspondence [14].

2. Domain Walls from Superpotential

Due to the particular choice of the relative coefficient of the “quadratic” terms in the action,
the equations of motions for flat static DW’s (1.2) derived from d = 3 NMG action (1.1) are of
second order:

σ̈ + σ̇ ϕ̇−V ′(σ) = 0, ϕ̇
2
(

1− ϕ̇2

16εm2

)
+ εκ

2(−σ̇
2 +2V (σ)) = 0,

ϕ̈

(
1− ϕ̇2

8εm2

)
+

1
2

ϕ̇
2
(

1− ϕ̇2

16εm2

)
+ εκ

2
(1

2
σ̇

2 +V (σ)
)

= 0. (2.1)

As in the case of DW’s of the pure Einstein Gravity (i.e. the m2 → ∞ limit of (1.1)) an ef-
fective method for construction of analytic non-perturbative solutions of eqs. (2.1) consists in the
introduction of an auxiliary function W (σ) called superpotential [5], [6], [9], [11] such that1:

κ
2V (σ) = 2(W ′)2

(
1− κ2W 2

2εm2

)2
−2εκ

2W 2
(

1− κ2W 2

4εm2

)
,

ϕ̇ =−2εκW, σ̇ =
2
κ

W ′
(

1− κ2W 2

2εm2

)
, (2.2)

where W ′(σ) = dW
dσ

, σ̇ = dσ

dz etc. Then for each given W (σ) we find that all the solutions of the
first order system (2.2) are solutions of the eqs. (2.1) as well.

The vacuum solutions of NMG gravity represent constant σ solutions of eqs. (2.2) that are
determined by the real roots of the following equations: (a) W ′(σ∗a ) = 0 and (b) W 2(σ∗b ) = 2εm2

κ2 .

Each one of them A = a,b describes AdS3 space, i.e. ds2 = dz2 +e−2ε

√
|ΛA

e f f |z(dx2−dt2), of cosmo-
logical constant ΛA

e f f =−κ2W 2(σ∗A). These values of ΛA
e f f are obtained from 3D scalar curvature

as follows:

R =−2ϕ̈− 3
2

ϕ̇
2 ≡ 8ε(W ′)2

(
1− κ2W 2

2εm2

)
−6κ

2W 2, (2.3)

and therefore we have Rvac = −6κ2W 2(σ∗A) = 6ΛA
e f f . Observe that all the type (b) vacua have by

construction equal cosmological constants Λ
(b)
e f f =−2εm2 =− 1

L2
b
. It becomes clear that the variety

of admissible vacua of NMG-matter model (1.1) is defined by the extrema of the potential V (σ)

1which represent an adapted d = 3 version of d = 5 Low-Zee superpotential [10] for the Gauss-Bonnet(GB) ex-
tended 5D gravity.
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Geometry of the New Massive Gravity Domain Walls U. Camara dS

and by the values of the parameters ε and m2. We are looking for DW’s interpolating between two
different AdS3 vacua (σ∗A,ΛA

e f f ), parametrized by the solutions of the following algebraic equations:

V ′(σ∗A) = 0 and 2ΛA
e f f

(
1+

ΛA
e f f

4εm2

)
= εκ2V (σ∗A).

Independently of the form of the superpotential W (σ), another important property of all the
DW’s solutions is the following simple “total derivative" form of the NMG domain walls action:

SNMG(DW ) =
2V0

κ

∫
∞

−∞

d
dz

[
eϕW (σ)

(
1+

κ2W (σ)2

2εm2

)]
dz, V0 =

∫
dxdt (2.4)

As in the case of 3D Einstein (massless) gravity DW’s [8],[9], [6] this form of SNMG(DW ) is derived
by substituting the Ist order equations (2.2) in the action of d = 3 NMG-matter model (1.1). Note
that the value of the action SNMG(DW ) is infinite due to 2D volume V0 = ∞ and to the divergent
scale factor as well. These divergences also reflect the fact that for planar DW’s the scalar matter
is uniformly distributed along the whole x-axis and therefore such DW’s have infinite energy. An
important characteristics of the gravitational properties of such DW’s is then given by the values of
their energy densities εDW = EDW

Lx
(equals of their tensions τDW ). In the case of (a)AdS3 geometries

it is given by [12]:

τDW = lim
Lx→∞

1
Lx

∑
A=±

vA

∫ Lx/2

−Lx/2
dxξ

iT (A)
i j ξ

j, T (A)
i j =− 2√

−γA

δSBY
NMG

δγ
i j
A

vA, i, j = 0,1 (2.5)

where A =± denote the two z→±∞ limits (∂M)A describing (a)AdS3 boundaries or/and horizons
of metrics γA

i j(x, t) = limz→±∞ γi j(x, t|z); v± = ±1 and ξ µ = (0,ξ i) is time-like Killing vector, or-

thogonal to both (∂M)A - surfaces and normalized as ξ iγA
i jξ

i = −1. The T (A)
i j is the Brown-York

(B-Y) “boundary” stress-tensor [12]. Since for pseudo-Riemannian manifolds with boundaries
and/or horizons (due to non-trivial b.c.’s) the action (1.1) has not well-posed variational problem,
an appropriate surface term (similar to the Gibbons-Hawking one 2

κ

∫
d2x
√
−γK) must be added to

SNMG . For the case of pure NMG gravity (i.e. action (1.1) with σ = const) such terms have been
introduced by Hohm and Tonni [13]:

SgGH =− 2
κ2 ∑

A=±
vA

∫
(∂M)A

dxdt
√
−γ

(
εK− 1

2
f K +

1
2

fi jKi j
)

(2.6)

where Ki j is the extrinsic curvature of 2D surface (∂M)A; fµν is the auxiliary Pauli-Fierz spin two
field [3], [13] whose “on-shell” form used in eq. (2.6) is given by fµν = 2

m2

(
Rµν − 1

4 gµνR
)

with
µ,ν = 0,1,2 and f = γ i j fi j , K = γ i jKi j. In the case of DW’s (1.2) we can use eqs. (2.2) in order
to get the following “boundary” form of the improved SBY

NMG = SNMG +SgGH action :

SBY
NMG(DW ) =− 2

κ
∑

A=±
vA

∫
(∂M)A

dxdt
√
−γW (σ)

(
1+

κ2W 2(σ)
2εm2

)
(2.7)

Then according to the definitions (2.5 ) and (2.6) one can easily derive the boundary (B-Y) stress-
tensor for the d = 3 NMG-matter model(1.1) model and the corresponding finite values of the DW’s
tensions as well:

T A
i j (DW ) =− 2

κ
W (σ∗A)

(
1+

κ2W 2(σ∗A)
2εm2

)
γ

A
i j, τDW =

2
κ

∑
A=±

vAWA

(
1+

κ2W 2
A

2εm2

)
(2.8)
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Geometry of the New Massive Gravity Domain Walls U. Camara dS

where WA = W (σ∗A). Note that in the m2→∞ limit the above formula reproduces the well know re-
sults for a flat DW’s tensions in 3D Einstein gravity obtained by the Israel’s thin wall approximation
[11].

3. On the geometry of DW’s

We are looking for DW’s of d = 3 NMG model (1.1) of Higgs-like (two equal minima) matter
potential interpolating between two different AdS3 vacua (σ∗A,ΛA

e f f ). The simplest superpotential
that carries all the desired properties is given by W = BcoshDσ . For this choice of W (σ) we
always have one type (a) vacuum at σ = 0 and of negative cosmological constant Λa

e f f = −κ2B2

(i.e. La = 1
κB ). We next consider the case when: B > 0, D > 0 and ε =−1, m2 < 0. Depending on

the values of the parameter B (i.e. of La) we can have few type (b) vacua:

σ
±
b =

1
D

ln

(
La

Lb
±

√
L2

a

L2
b
−1

)
, σ

+
b =−σ

−
b , (3.1)

(all of equal cosmological constants Λb
e f f =− 1

L2
b
), namely: (1) two b-vacua when Lb < La; (2) one

(degenerate) b-vacuum for Lb = La and (3) no one b-vacuum when Lb > La. Due to the reflection
symmetry σ → −σ of the superpotential we further restrict ourselves to consider DW’s in the
regions corresponding to σ > 0 only. Then the region (1+) contains two AdS3 vacua σa = 0 and
σ

+
b dividing it in two parts: 0 < σ < σ

+
b and σ

+
b < σ < ∞. The corresponding DW’s solutions are

obtained by direct integration of the first order system of eqs. (2.2):

e2εya( z
La

) =
(

coshDσ −1
coshDσ +1

)(
Lb coshDσ +La

Lb coshDσ −La

) Lb
La

, eϕ−ϕ0 =

(
L2

b cosh2 Dσ −L2
a

cosh2 Dσ −1

) 2
ya

, (3.2)

where we have introduced new parameters ya =− yb
2 = 2εD2

κ2

(
1− L2

b
L2

a

)
. They naturally appear in the

asymptotic forms of σ(z), say for ε =−1:

σ(z)
z→∞

≈ σ
+
b −σ

0
b e−yb

√
|Λb

e f f |z, σ(z)
z→−∞

≈ σa−σ
0
a e−ya

√
|Λa

e f f |z, (3.3)

where σ(∞) = σ
+
b , σ(−∞) = σa and σ0

a , σ0
b are certain constants determined by eqs. (3.2). For

example we have σ0
a = 2

D

(
La−Lb
La+Lb

) Lb
2La . It is worthwhile to mention that the yA’s determine the scaling

dimensions ∆A = 2−yA of the 2d field ΦA(x, t) dual to the 3d bulk field σ(z|x, t). According to the
AdS3/CFT2 correspondence principle for each NMG vacua (σA,ΛA

e f f ) they are given in terms of
the corresponding “effective” σ -field masses m2

A = V ′′(σA) as follows: m2
AL2

A = yA(yA−2).
The asymptotic behaviour of the scale factor eϕ(z) in the case of ε =−1:

eϕ z→∞= e2
√
|Λb

e f f |z→ ∞, eϕ z→−∞= e2
√
|Λa

e f f |z→ 0, (3.4)

indicates that the above DW’s solution (3.2) is interpolating smoothly between two AdS3 - type
(a) and type (b) vacua - and it represents particular (a)AdS3 space-time. The divergence of the
scale factor at z→ ∞ corresponds to AdS3 type of boundary of cosmological constant Λb

e f f , while

5
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the region z → −∞ of vanishing scale factor describes null Cauchy horizon, where the causal
description in the Poincare patch terminates. It becomes evident that the near horizon region can
be (asymptotically) described as another AdS3 of cosmological constant Λa

e f f , i.e. representing the
type (a) NMG vacua σa = 0.

The properties of the solution for σ ∈ [σ+
b ,∞) are rather different. For z→ ∞ we recover the

same “boundary" behaviour as the one corresponding to vacuum (b) and given by eqs. (3.3) and
(3.4). We find however that σ is divergent at z = 0 (i.e. σ(0) = ∞) with infinite scalar curvature,
indicating that now causal description is terminating at z = 0 with naked singularity.

In order to describe the causal structure of the (a)AdS3 space-times representing regular DW’s
solutions (i.e. 0 < σ < σ

+
b ) of the NMG-matter model relating two different AdS3 vacua it is

convenient to introduce new coordinates:

v =
∫ z

dz′e−
ϕ(z′)

2 + const, ds2 = Ω
−2(v)(dv2 +dx2−dt2), Ω(v) = e−

ϕ(z(v))
2 , . (3.5)

We can further choose the arbitrary constant above such that v to be defined on the half-line, i.e.
0 < v < ∞. Even without the knowledge of the explicit form of the conformal factor Ω2(v) it is
evident that this DW space-time has causal structure similar to the one of a “half" of the Minkowski
space M3, i.e. the one having the plane v = 0 as its boundary. It is therefore necessary to introduce
appropriate global coordinates (say for fixed x) −∞ < τ < ∞ and 0 < θ < π

v =
1
2

sinθ

cos
(

τ+θ

2

)
cos
(

τ−θ

2

) , t =
1
2

sinτ

cos
(

τ+θ

2

)
cos
(

τ−θ

2

) , ds2 =
eϕ(θ ,τ)(dθ 2−dτ2)

4cos
(

τ+θ

2

)
cos
(

τ−θ

2

) . (3.6)

Then the asymptotic behaviour of the metrics near the ends of the interval v ∈ (0,∞), namely

ds2 ≈ 1
Λ(b)

1
sin2

θ
(dθ

2−dτ
2), v→ ∞, θ ± τ → (2n+1)π,−(2n+1)π, n = 0,1, . . .

ds2 ≈ 1
Λ(a)

1
sin2

θ
(dθ

2−dτ
2), v→ 0, θ → 0, π, (3.7)

demonstrates that we indeed have two different AdS3 spaces representing the regions in the neigh-
bourhoods of the boundary and of the Cauchy horizon, as one can see from the corresponding
Penrose diagram shown at Fig.1.

4. Conclusions

The superpotential method described in Sect.2. (see also [6] for more details) provides an
effective tool for explicit construction of DW’s solutions of the NMG-matter model (1.1) for any
given superpotential W (σ) that admits at least two AdS3 NMG vacua (σA,ΛA

e f f ). As we have
shown in Sect. 3 on the particular example of W = BcoshDσ , the proper existence of such vacua
(and of DW’s between them) imposes certain restrictions on the shape of the corresponding matter
potential V (σ), namely: εm2 > 0 and Lb < La or equivalently 2εm2 > κ2B2. Under these conditions
and when ε = −1 and m2 < 0, we observe that the parameters yA defining the σ asymptotics are
of opposite signs: ya < 0 and yb > 0. As a consequence the 2d operators ΦA duals to σ have
rather different properties: Φb is relevant operator, while the Φa is irrelevant one, as required in
order that such DW represents an RG flow in 2d perturbed CFT dual to NMG-matter model. Since

6
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Θ

-Π

Π

Τ

Figure 1: Reduced Carter-Penrose diagram of DW’s space-time: the shaded region represents the original
Poincare patch with θ = 0,π lines corresponding to AdS3(Λb

e f f ) boundary, while the dotted lines to the
Chauchy horizon of near-horizon AdS3(Λa

e f f ) metrics.

in this case we also have m2
a > 0, one can conclude that the vacuum (a) is always a minima of

V (σ). It turns out that the type (b) vacuum represents one maxima of V (σ) (i.e. m2
b < 0) only if

further conditions are added, namely: 0 < yb < 2 which leads to the following restrictions on the
parameters of the model: 1− κ2

2D2 <
L2

b
L2

a
< 1. Let us mention that in this case the Breitenlohner-

Freedman unitarity condition [15] for scalar field in AdS3 background: Λb
e f f < m2

b < 0 is indeed
also satisfied. The complete description of DW’s properties includes also the values of their energy
densities and tensions τDW = EDW /Lx. According to eq. (2.8) we find that the tensions:

τDW (Lb,La) =
2(La−Lb)

κ2LaLb

(
2+(La +Lb)

Lb

L2
a

)
> 0. (4.1)

of the regular DW’s we have constructed in Sect. 3 above are always positive.
It is worthwhile to mention in conclusion that the methods for construction of DW solutions

of the NMG-matter model reported in the present paper provide a set of important ingredients
essentials in the description of the RG flows and phase transitions that occur in the corresponding
dual 2d non-conformal QFT’s [8], [9], [7].
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