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1. Introduction

During the past decade the gravitational effective avesatjen [1] has been used in a number
of studies trying to understand the renormalization beajravi Quantum Einstein Gravity (QEG)
at a nonperturbative level. An important motivation was hideirg’s idea of Asymptotic Safety [2]
according to which gravity might be nonperturbatively nenalizable and predictive if there exists
a nontrivial renormalization group (RG) fixed point with aiféndimensional ultraviolet critical
manifold at which the infinite cutoff limit can be taken. AfiMestigations carried out so far point
in the direction that the RG flow of the effective averagearctioes indeed possess an RG fixed
point with the desired properties [3, 4].

In a nutshell, the Asymptotic Safety program can be sumradninughly as follows [5]:
() Fix a set of fieldsp carrying the gravitational degrees of freedom.

(ii) Pick a groupG of gauge or symmetry transformations actingdn

(iii) Define a “theory space” consisting of all action functionaigariant underG, i.e. 7
{A[®]|A invariant undeiG}.

(iv) Fix a coarse graining scheme afi, a background covariant continuum analogue of the
Kadanoff-Wilson block spin idea [1].

(v) Compute the corresponding “RG flow?”, B) wheref is the vector field onZ obtained by
applying an infinitesimal coarse graining st&p- A+ (A) to all actions, and interprgg(A) as

an element of the tangent spacgq.

(vi) Compute the resulting “RG trajectorie§’, : R — .7, k— Ik as the integral curves g,

i.e. solve the “flow equation” or “functional RG equation”R&E) ﬁ(rk = B(lk). For the
gravitational effective average action the coarse grgisicheme is concretely defined by setting
B(Tk) = %STr[(Fl((2> + %) " koZ] whererf(z) is the functional Hessian dfy and % a cutoff
kernel [1]. For this choicel k.o coincides with the ordinary effective action, ahg .., is closely
related to the bare actidB[6].

(vii) Determine the fixed points of the flow, i. e. try to so@éA,) = 0.

(viii) If there exists a fixed point, linearize the flow abdytand solve the linear systeﬁi“ﬁérk =

A Ol whereZ is the Jacobi matrix of at A,. Its (negative) eigenvalues are the “critical expo-
nents”®, and its eigenvectors are the “scaling fields” behavingdig), 0 k~© nearA,. We say

a scaling field is relevant (irrelevant) if it increases (@ases) when the mass schis lowered.

(ix) Try to find complete RG trajectories, i.e. trajectories fdmieth both the ultraviolet (UV)
limit k — o and the infrared (IR) limik — O exist. Every such trajectory defines a quantum field
theory (in the sense @il modes of the fundamental field being integrated out). Then#xgtic
Safety idea consists in taking the UV limit at a non-Gausé$ieed point (NGFP), i.e. to ensure
the UV-regularity of the trajectory by arranging it to hit add point asymtoticallyl x — A, for

K — oo,

For the case where the fundamental field is assumed to be #uetspe metriag,,® the
viability of the above program has been tested to some exedtsignificant evidence for the
existence of an appropriate NGFP was found. However, itdardhat other choices are equally
plausible here. In Einstein-Cartan gravity, for exampthe field variables are constituted by the

Together with a background metric and Faddeev-Popov gHostechnichal reasons.
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vielbein€?, and the spin connectiowa?, assuming values in the Lie algebra of the Lorentz group.
Since a)aﬁ can carry spacetime torsion, Einstein-Cartan gravity hageineral more degrees of
freedom than metric based general relativity; only in abseof “spinning” matter the theories
happen to possess equivalent classical field equationsdyifenics of Einstein-Cartan theory is
encoded in the Hilbert-Palatini acti@yp[e, w] which is of first order in the spacetime derivatives.
Interest in the field variable®? a)aﬁ) stems also from several modern developments towards
the quantization of gravity which use related variablesisTincludes canonical quantum gravity
with Ashtekar’s variables [7, 8], loop quantum gravity [8hin foam models [10], and group field
theory [11]. Here the Hilbert-Palatini action is usuallyngealized to the so-called Holst action
S0 [12] which contains an additional term, specific to four diteiens, whose associated coupling
is the Immirzi parametey. While the classical vacuum field equations impliedSpy are inde-
pendent of the dimensionless numlyethe corresponding quantum theory seems to depend on it.
Within Loop Quantum Gravity (LQG)y enters the eigenvalues of area and volume operators, as
well as the formula for the entropy of black holes [8].
In order to explore the possibility of constructing asyntigtgly safe quantum theories of
gravity in which€?,; and a)ai"l serve as the fundamental field variables, we perform a fildyais
of the Wilsonian RG flow on the corresponding theory spaceSdntion 2 of this contribution
we describe the flow equation used and the theory space ibac@nd in Section 3 we present
the results obtained. Finally, Section 4 provides a shantlesion. For further details, we refer
to [13].

2. Construction of Theory Space and Flow Equation

2.1 Fields and gauge invariances

We start out from an a priori formal functional integedl = [ &, 26" exp{ — S& &)},
where the quantum fields,”and cI)aB are defined on a fixed (differentiable) manifold without
boundary,.#, and the bare actio§ is invariant both under diffeomorphisniiff(.#) and local
Lorentz rotations. We consider the euclidean form of thetheso that the relevant group of gauge
transformations is the semidirect prod@&t= Diff(.#) x O(4)ioc. For every given co-frame?;
ando(4)-valued connectiombaﬁ on.# we are provided with a@(4)-covariant derivative

~ 1.
Oy E(?u+§a)aEMab (2.1)
whereMgp, are the generators in the corresponding representatidnyigimthe associated curvature

and torsion tensors

'fan = 5;1(1’35 + a)%ud’c?/ - (M A V) (2-2)
and
fﬁv = aHéav + Cbetl:uécv —(U=v), (2.3)
respectively.
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UnderO(4)oc we have

& (A&,
& ()@,

AL,
A+ A6, + ABGRS

_ﬁuAab

(2.4)

wherell is theO(4) covariant derivative pertaining tﬁ)aﬁ, while under diffeomorphisms

O (W)€,
& (W),

= gwéa 5
- gwd)aLEJ

(2.5)

where.%,, denotes the Lie derivative along the generating vector field
In the quantum theory we also need to consider diffeomonplghosts and antighostg;*
and‘ﬁu, respectively, and likewisE2 and S ap for the localO(4) transformations. We require all

ghost and antighost fields to transform unBéff (.#) andO(4),,.

type.

as tensors of the corresponding

It then follows that the algebra of all gauge transformaiangiven by

%o
(&
%o

<C

(W1), Op(W2)]®P = Op([wWi, Wo])®
(A1), (A)]® = & ([A1,A2])®
(W), 8 (A)]® =& (L)P
P e {8, 0%, CH, 6y, T, Zap)

(2.6)

Here|w;,w,| denotes the Lie bracket of the vector fieldsandw,, and[A1,A] is the commutator
of two matrices. The algebra is a semidirect proddidt(.#) x O(4),,. With the local Lorentz
transformations playing the role of the invariant subatgeb

In order to implement the gauge transformations on the spidfoactionalsA[é,, cba?,, %“,ﬁ,
yab, Zab] We introduce the corresponding Ward operatétsand#{ such thatdp A= —#p | A
to linear order in the transformation parameters. Expficit

= [ox(® ;

Su 58
+ dp (W)

WO SR 1

o

5
+ (W) % 5%,

55

+ BWEPN 5ps

u(X)

+ 8p (W) Zap 2.7)

(X)

o
0Zan(X) >

and analogously fo¥ . The Ward operators satisfy

[#b(W1), #b (W)]
(L (A1), 7L (A2)]
7o (W), ZL(A)]

#o (W1, We))
= W1([A1,A2))
= V/L (gw)\)

(2.8)

] are characterized by the conditio#sp (W) A= 0=

Gauge invariant functional&[é, d),%,%_,z,
W (A)AforallwandA.
In order to ultimatively arrive at a functional integral aadlow equation with the desired

invariance properties it is important to notice that thedjeary) diffeomorphismsyp(w) are not
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covariant unde©(4),,.. This is obvious from the fact that the Lie derivative inesvpartial rather
thanO(4)-covariant derivatives. We can, however, covariantizedifieomorphisms by combining
them with an appropriat®(4) transformation. Introducing

dp (W) = dp (W) + & (W- Q) (2.9)

where(w- )2 = wH wa?,, the action of the modified diﬁeomorphisrﬁv@ involves covariant deriva-
tives [, in place ofd,:
DWE, = wlp&, + ()&,
BWiF = Fhwe

dp(W)EH = wPO,EH — (OpwH)EP =wP 3,6+ — (dpWH) 6P (2.10)
j‘g( )Cu = Wp?pcgqu(Dqu)Cgp .
§B( ) ab _ nglpgab

dp (W)

Associating in the usual way Ward operato%(w) to the modified diffeomorphisms leads to the
following covariantized form of the gauge algebra:

[#o(Wi), #o(W2)] = #o([wa,Wa]) — #4 (waws - F)
(M), L (A2)] = #L([A1,A2)) (2.12)

Po(w), #7L(A)] =0

Here (wiw; - F)® = wiwy F25, . Note that while the modified diffeomorphisms commute with
local Lorentz transformations, they no longer close ambegniselves; their commutator contains
anO(4),,. transformation whose parameter involfesthe curvature ofo.

Note also that gauge invariant function@sare equivalently characterized by the conditions
#o(W)A=0=#{(A)Afor allwandA.

2.2 Gauge fixing and modified diffeomorphisms

In order to arrive at a functional integral which can be cotedyactuallydefined by means
of a functional RG flow we introduce arbitrary backgrounddéléau and a_)az, decompose the
variables of integration o= €, + €9, cba?, = a_)a?, + raZ, and perform a background covariant
gauge fixing. This leads to a functional integral of the form

¥ = /.@sa;l 2710 exp{ — Se+ &, w+ 1] — Syrle, ;€ @) }

« / DEH D, T DT apexpl — Syn} 2.12)

2The background vielbeiaa,fis assumed to be nondegenerate. As a result, it gives risevialdefined inverse
(_“) = @a“)il, to a nondegenerate background megyic = éa“ ébvéab, and to a completely covariant derivatiize=
0+ w+T =0+T wherel =T (e w) is fixed by the requiremeri?, €%, = 0. Coordinate (frame) indices are denoted
by greek (latin) letters. While coordinate indices are Imueand raised by means gf, and its inversg¥, we lower
and raise frame indices witBy, and 32°, respectively.
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Here Sy andS;n denote the gauge fixing and correiponding ghost actionectisely, and%;
are the diffeomorphism ghosts, and similaX§P andZ, are those related to the loc@l(4). With
G denoting Newton’s constant, the gauge fixing is of the form

1 _
¥ 205 167G / dxeg FuFy

1 (2.13)
- 4., acpab

+ 0 /d Xe¥®Y
where %, and%3° break theDiff(.#) and O(4),c gauge invariance, respectively. However, in
order to ultimately arrive at ®iff(.#) x O(4)1oc invariant effective average action we employ
gauge conditions of the “background type” so tBg{e, T;€ w) is invariant under the combined
background gauge transformatioﬁ%L acting on both(e, T) and(e, w) while, of course, it is not
invariant under the “true” (or “gquantum”) gauge transfotimas, denoted byS and 3¢, respec-
tively.

The true diffeomorphisms read

5§(W)@u =Y,
o3 (W)SEL = ZLu(€,+£%),
2.14
53(W)e, = 0, @19
W) T = Zu(0® +130)
and theirO(4) counterparts are
52()\)@"‘“ =0,
SP(A)e, = A%(e,+¢5), (2.15)
5E(N)® =0,
SEA)T® = =0+ A3 (0%, 4+ 1) + AB(W, + %)
On the other hand, the background diffeomorphisms act as
BWE, = %,
Sp(W)ed, = Zued,,
_ 2.16
Sp(W) %), = Luw™,, (2.16)
W)t = Lyt
and the backgroun@(4) transformations are
6%()\)5""“ = A%,
Sp(A)e, = A%ed,, B (2.17)
SE(A)@%), = —FuA+ A2 + A0S = —0,A%, '
SE(A)T®, = A% +AB13¢

where[ denotes th®©(4) covariant derivative constructed froﬁf"ﬁ.
Since no background split is introduced for the ghost fidlasiy true and background gauge
transformations happen to coincide. We require a tensteakformation law corresponding to



Running Immirzi Parameter and Asymptotic Safety Martin Reuter

their index structure:

SBW)EH = SSW)EH = Ly, SB(A)EH = 5Z(A)EH =0,

SBB(W)E, = SS(W)E), = LGy, OE(N)Ey =068(A)6, =0, (2.18)
5B(W)§ab _ 58(W)§ab — gwgab, 5? ()\)Eab — 5(5()\)§ab _ )\aczcb+)\bc_zac’ .
58 (W)Zap = 58(W)zab = ZwZab, 5? (A)Zap= 5%()\ )Zab = )\aczcb+ )\bczac-

Introducing Ward operatorg B, # B for the background gauge transformations, &,
w € for the “gauge” or “true” ones we can verify that the formetisfg the algebra

[ B(wi), # B(wa)] = #B(lwr,we))
B W EN)] = #B(M. M) (2.19)
WBW), ZEA)] = WB(LA)

while the latter obey the relations

G G

D D

gmo,%mzn = W E([A1A2) (2.20)
G

D L

Like their precursors before the background split, thesaroatation relations are nd(4)
covariant.
Within the background field setting we define modified diffesphisms according to

loc

5B (w) = 5B (w) + 53w &), (2.21)
?g(w) =55 (W) + 68 (W- ). (2.22)

In terms of their Ward operators, the modified backgrounfidihorphisms satisfy the commuta-
tion relations

B (1), #B(ws)] =
B (A), 7B (A)]

WBw), #B(A)] =

W8 ([wn,wo)) — # B (wawsy - F)
#B([M1,A2)) (2.23)
0

while their “gauge” counterparts have the algebra

7 s
W EM), W EM)] = #E((A,Ae) (2.24)
% S(w-0

L

Both algebras, (2.23) and (2.24), respectively, are gaingecome important in a moment: The
“background” transformations and their commutators walletmine the theory space on which the
RG flow is taking place, while the algebra of the “gauge” tfansations determines the ghost
action [14].
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Concretely, we choose the gauge conditions to be lineaf,iand independent afaﬁ [15]:

Fu=&[Dyed, + PoDue?] (2.25a)

@b _ %gﬂv (62,8, — £b,&,] = glad (2.25b)

Thus, in total, there are three gauge fixing paramet@ss:a,. andfp3. Using (2.25a), (2.25b) in
(2.13) we can verify tha®(€, T;€ w)| is indeed background gauge invariant:

PeSy=0="BS & #PS=0="ES. (2.26)

The ghost sector requires some care, and this is indegdatb_enéor considering the modified
diffeomorphisms. We would like the ghost actiSgi(€, 7,4, %, 2, Z; €, )] to be background gauge
invariant, too. However, straightforwardly applying thaddeev-Popov procedure to the original

transformations
35(w)
o (2.27)
()
we obtain, in the — ¢-sector, the ghost actifn
S Crep 5o 4 =5 99% ¢ c
016,560 =— [ d'xe | Zap 95° o3 (%)es, (2.28)
v e=0
which, with (2.25b), evaluates to
¢, 580 = - /d“xéfabéb“.,%géau. (2.29)

While this functional is invariant under background diffiearphisms, it fails to be invariant un-
der theO(4),,. transformation®® (1), the reason being that the Lie derivative of@(%) tensor
does not define af(4) tensor. Rather, we ha\Lé?g()\%éb“) # )\%zgé"“, sinceAd(x) is a space-
time scalar which transforms nontrivially under diffeorpbisms. Stated differently)(4),,. trans-
formations and (ordinary) diffeomorphisms do not commaiag this is exactly what the above
algebra relations express.

The way out consists in applying the Faddeev-Popov proeetiutheO(4)
(true) gauge transfomations

loc-Covariantized

36 — (%EV")> . (2.30)
or(A)

3As can be inferred from (2.13) and (2.25), the diffeomorphigauge parametarp is dimensionless whereas
the Lorentz-gauge parametey is of mass dimensior-4. Therefore, it has to be rescaled properly. We perform this
rescaling by means of the mass paramgttrat will be introduced in a moment. Within the (propertirapproximation
used, no scale derivatives of dimensionless couplingsaappe the right-hand side of the flow equation. Therefore,
defining an additional factor @finto a; will not lead to additional contributions; see the captioh3ab. 1 and Fig. 1.
“We consider the casg), = 0 here [13].
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They are broken by the ten gauge fixing conditions

(5;;) = (2" (2.31)

for which we use a uniform notation whe(e?') = (%) for | =1,---,4 and(2') = (¥4?) for
| =5,---,10. Denoting, in the same fashion, the ten parameters ofabgegtransformations as
(A") = (wH,A3), the Faddeev-Popov determinant reads

o (G

(2.32)

)
N=0

and exponentiating it we obtain a ghost action which hasttietsire

—\T
_{ %, Qf, ok €Y
— [ dxe| 2H v cd 2.33
fose(22) (a2 ) (=) e
The Faddeev-Popov operatQris rather complicated; here we must refer to [13] for its &kl

form. Suffice it to say that one can now check that he ghosbraabtained is indeed invariant
under background gauge transformations:

WBSh=0=#BSn < #BSh=0=7BS. (2.34)

This property is the main prerequisite for arriving at a lgaokind gauge invariant effective average
action.

2.3 Theory space and flow equation

The functional integral (2.12) gives rise to the associaffelctive average action [1] in the
standard way: one addsd&-invariant mode cutoff to the bare action,

ASD /d“xe?(s, AR (2.35)

couplese and 1 to sources, Legendre transforms the resulting generatingtibnal InZ”, and
finally subtract?\Sfor the expectation value field in order to arrive at the ragraction:

M, 7,6,&,Y, Y60 =ile 0,6 ®,&,E,Y,Y]. (2.36)

Thereing?,, T_a'f, as well as

@, = (&) =&,+5, (2.37)
and
W™ = (%) = 0™ + 1 (2.38)

denote the expectation value fields, while we write for thesgh

EH=(EH), &4 =(6,), YO = (Z) | Yap= (Zap). (2.39)
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The average actiohy may be considered a functional of either the quctuati&_ﬁ]sand F"E, or the
complete classical fields), andwaﬁ.

Obviously the actioriry is defined on a rather complicated theory sp&teonsisting of func-
tionals depending on two independent vielbein varialje®), two spin connection$w, w), as
well as on the diffeomorphism ar@(4) ghosts and antighosts, respectively. The functionalg in
are constrained by the requirement of background gaugeame:

9;{F|Wg(w)FZOA #BAF=0V wﬂ,)\ab}. (2.40)

From the above functional integral based constructionadne straightforwardly derives the
FRGE it satisfies:

ATk = %STr[(Fl(f) + %) A (2.41)

With the kernelZx|e, w| specified appropriately, the equation indeed defines a flo#on e. it
does not generate background gauge invariance violatintgte

3. Results

We have solved the flow equation fbkle,w,---] on a three-dimensional truncated theory
space spanned by actions of the Holst type:

_ 1 4 UaV ab 1 ab
Mg w, -] = 16”Gk/d xe[ea 8 (F o= F W)

_2/\4 + Syt + S (3.1)

In practice we used, because of the enormous algebraic egitypbf the calculations involved,
a slightly simplified version of the FRGE of the propertim@dy An equation of the same type
has been used within the Einstein-Hilbert truncation ofriaejravity [4], and virtually the same
results were found as with the exact RG equation in this atio.

The truncation ansatz (3.1) consists of the Hilbert-Pailaittion known from Einstein-Cartan
gravity, plus the Immirzi term which only exists in four dimsons; in factF a8, = 320 F,
is the dual of the curvature @b, F = F(w), with respect to the frame indices. Besidag (3.1)
contains two more running parameters: the cosmologicataot’\ and the Immirzi parametex.
The gauge fixing and ghost terms are assumed to retain tassgichl form for alk, except for the
replacemenG — Gg. The parameterap, a, andfp are treated as constant in the approximation
considered. Thus the truncated theory space can be cotizdihdy a triple(g, A, y) wheregy =
Gyk? and A, = Ay/K? are the dimensionless Newton's and cosmological congtespectively.

With t = Ink, the RG equations are of the fordgx = By = (2+ NN) K, GAk = B, Gk = By
where the anomalous dimension of Newton’s constaqt,and the other beta functions are given

by

MN(G,A,y) = 16mg fi(A,Y)
By(g.A.y) = 16mgy|yf (A,y)— (A, (3:2)

Br(g.A.Y) = ~2A +8mg[2A (A, y) + (2, V)]

10
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The functionsf.. and f3 are extremely complicated and cannot be written down hegsiddsA and
v, they depend parametrically also on the three gauge fixirappeters and an additional parameter
u with the dimension of a mass. The latter is needed to givefammidimension to the fluctuations

ca ab . : —1— b — 1 =p . .
€9, and7®): Only after a rescaling of the forgf), — uz %, 1), — u~2 1% the effective inverse

propagatoi” ff) constitutes an operator with a welldefined spectrum and wefaied trace. The
parameteu might be treated as a running quantity in a more complete#tion.

We coordinatizeZ by an atlas consisting of two charts. In order to cover thghtsrhood of
the submanifold/ = + in .7, we introduce a new coordinafe In the overlapy| € |0,+o][ of
the (g,A,y)- and the(g, A, y)-chart, the coordinateg andy are related by the transition function
y(y) =y L. With By(g,A,¥) = —V?B,(9,A, ¥ 1), the flow equation in thg-chart is given by

nn(g.A,y) = 16mg fL (A7)
By(9.A.9) = 16mg |t (A, 77— (A7) (33)

Br(@.A.9) = ~2A +8mg[2A £, (A, 771 + (A, 771

We studied the system (3.2), (3.3) for various propertimef€functions and gauge param-
etersap, a. and Bp. Within our approximationu = u/k can be assumed to be a constdat,
independent number.

For u = 2 the RG flow displays the following features:

() Itis reflection symmetric under — —y.

(ii) The beta-functiongy, By, By and B, contain simple poles gt= y = +1. However, those are
presumably an artifact of the approximation of the exact tlost we employed. In fact, our analy-
sis strongly suggests that fginot too close tat1 the functionsf,. and f3 are actuallyindependent
of y. For such values of it is a rather precise approximation to replace them by fanstf, and
f3 that only depend on, leading to the simpler system

OO = [24- 167K f~+()\k)] Ok
8 v = 26mgip | e - () — 1 ()| (3.4)
G Ak = —2 A+ 8o [ZAk fi (M) + f~3()\k)]

and likewise for they-chart. While the equations (3.4) are equivalent to (3.2pmvly| # 1, a
detailed analysis [13] indicates that fgf — 1, too, the regular beta functions (3.4) rather than
those of (3.2) are likely to apply.

(iii) The system (3.4) and its analogue in frehart imply B, = 0 andf3; = 0 for y* = 0 andy* =0,
respectively. For each of the two sets of equations we findeal fpointNGFPg = (g5, A, y*) and
NGFP« = (g5, A, V*) of (3.2), (3.3) withgg ., > 0, Ao < 0andgg # 05, Ag # As. For the choice

U = 5 we obtained the values shown in Tab. 1.

(iv) At both fixed points, the andA directions are to a very good approximation eigendirestion
of the linearized flow onZ, whereas this is exactly true for tlye and y-directions, respectively.
At NGFPg andNGFP,, both theg andA directions are relevant scaling fields, i. e. their assediat
critical exponent®; and®;, are real and positive. In contrast,NGFPg the Immirzi parametey

is irrelevant @, < 0), whereas aNGFP its inversey is relevant ©y > 0).

11
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NGFPo | gy | A | A, | @] @ | o |
ap=1 |3.37]|-6.78| -22.86] 1.94] 3.71 | -1.98
op=10 | 1.36| -1.08| -1.47 | 2.46]| -6.64| -0.43
ap=0.1|3.65| -7.42| -27.09| 2.28| 3.73 | -2.00
NGFPw | g5 | A5 | gAs | @ | @ | o |
ap=1 |3.30]-4.18| -13.79] 1.81] 3.22 | 1.94
ap =10 | 2.18] -1.83| -3.98 | 2.76| -2.40| 1.34
ap=01]3.86] -5.16 | -19.89] 2.55| 3.32 | 2.01

Table 1: Properties of the fixed poinéGFPy and NGFP,, of the (g,A,y)- and the(g,A,y)-
system, respectively. The numerical values were obtainedhe choiceu =5, p =0, o, =
16mg 4 with a sharp propertime cutoff.

(v) The three two-dimensional sections of the flow at each fixéuk poe presented in Fig. 1. These
plots were obtained for the choige=5, ap = 1, Bp = 0, a. = 16mgu—* and by means of a sharp
propertime cutoff.

(vi) By letting y — o in (3.1) we can study the two-dimensiorigl A ) -truncation, i. e. the Hilbert-
Palatini truncation, which iaot equivalent to the Einstein-Hilbert truncation of QEG. listhase,
we find a fixed point(g*,A*) with g* > 0, A* < 0 that exhibits the same features as tbe} ) -
sections of the two fixed pointdGFPg andNGFP,, of the three-dimensional truncation. In par-
ticular, the flow basically looks like the ones depicted ig.HRi(a) and Fig. 1(b), respectively.

(vii) For A =0, we obtain theg, y)- and(g, y) -truncation, respectively, witfy, B, and By given

by (3.2) and (3.3), but with the functiorfs. evaluated aA = 0. In this case our results are com-
patible withB, = 0= By < £,(0,y)|y=0,+0 = (Y f-(0,¥))|y=0,+w, i. €. the renormalization of the
remaining invariant would solely be given by the renornsian of Newton’s constant. While this
result needs to be corroborated by a more pecise treatmerftndg*|,-—o = g*|y~—o > 0 within
this truncation. These investigations suggest that theitenparameter owes its RG running to a
nonzero cosmological constant.

(viii) With respect to variations of the regularization schemeresults are remarkably robust. The
signs of the fixed point coordinates and of most of the quastihat are expected to be universal are
gauge parameter independent, as well. Nevertheless, #mitgtive gauge parameter dependence
of the universal quantities such as the prodgfgt Ag., and the critical exponents is somewhat
stronger than in comparable calculations within métric/'[l;ya{4].

4. Conclusion

We find significant evidence for Asymptotic Safety of purevifsain the Einstein-Cartan
approach. There seem to exist two NGFPs, locatgd=a0 andy = +, which in principle both
are suitable for taking the continuum limit there. By invgating how observables depend upon
y in particular, one may determine the physical propertiethefresulting quantum field theories.
Using either fixed point for the Asymptotic Safety constime} gravity is anti-screening in the
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(a) The(g,A)-section of the flow aNGFPy. (b) The(g,A)-section of the flow aNGFPe.

(e) The(y,A)-section of the flow aNGFPy. (f) The (y,A)-section of the flow aNGFPe.

Figure 1: The two-dimensional sections of the flow nd@&FPg andNGFP., respectively, for the
choiceu =5, ap =1, Bp =0, a. = 16mmg—* with a sharp propertime cutoff. The arrows point in
the direction of decreasirlg 13
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UV, i.e. g5, > 0, but in contrast to QEG the cosmological constant is negati the fixed point
regime,Af;O < 0. However, this does not contradict present day obsenasiceA might very
well flow to positive values for IR scales of the order of tygdi@astronomical distances. Future
investigations should aim at a better control of the gaugedencies and at understanding the
phenomenological implications of the scale dependent laimparameter.
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