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Running Immirzi Parameter and Asymptotic Safety Martin Reuter

1. Introduction

During the past decade the gravitational effective averageaction [1] has been used in a number
of studies trying to understand the renormalization behavior of Quantum Einstein Gravity (QEG)
at a nonperturbative level. An important motivation was Weinberg’s idea of Asymptotic Safety [2]
according to which gravity might be nonperturbatively renormalizable and predictive if there exists
a nontrivial renormalization group (RG) fixed point with a finite dimensional ultraviolet critical
manifold at which the infinite cutoff limit can be taken. All investigations carried out so far point
in the direction that the RG flow of the effective average action does indeed possess an RG fixed
point with the desired properties [3,4].

In a nutshell, the Asymptotic Safety program can be summarized roughly as follows [5]:

(i) Fix a set of fieldsΦ carrying the gravitational degrees of freedom.

(ii) Pick a groupG of gauge or symmetry transformations acting onΦ.

(iii) Define a “theory space” consisting of all action functionalsinvariant underG, i. e. T ≡

{A[Φ]|A invariant underG}.

(iv) Fix a coarse graining scheme onT , a background covariant continuum analogue of the
Kadanoff-Wilson block spin idea [1].

(v) Compute the corresponding “RG flow”(T , β ) whereβ is the vector field onT obtained by
applying an infinitesimal coarse graining stepA 7→ A+ β (A) to all actions, and interpretβ (A) as
an element of the tangent space TAT .

(vi) Compute the resulting “RG trajectories”Γ• : R → T , k 7→ Γk as the integral curves ofβ ,
i. e. solve the “flow equation” or “functional RG equation” (FRGE) d

dlnkΓk = β (Γk). For the
gravitational effective average action the coarse graining scheme is concretely defined by setting
β (Γk) = 1

2STr
[
(Γ(2)

k + Rk)
−1k∂kRk

]
whereΓ(2)

k is the functional Hessian ofΓk andRk a cutoff
kernel [1]. For this choice,Γk→0 coincides with the ordinary effective action, andΓk→∞ is closely
related to the bare actionS [6].

(vii) Determine the fixed points of the flow, i. e. try to solveβ (A⋆) = 0.

(viii) If there exists a fixed point, linearize the flow aboutA⋆ and solve the linear systemd
dlnkδΓk =

B δΓk whereB is the Jacobi matrix ofβ at A⋆. Its (negative) eigenvalues are the “critical expo-
nents”Θα and its eigenvectors are the “scaling fields” behaving as(δΓk)α ∝ k−Θα nearA⋆. We say
a scaling field is relevant (irrelevant) if it increases (decreases) when the mass scalek is lowered.

(ix) Try to find complete RG trajectories, i. e. trajectories for which both the ultraviolet (UV)
limit k → ∞ and the infrared (IR) limitk → 0 exist. Every such trajectory defines a quantum field
theory (in the sense ofall modes of the fundamental field being integrated out). The Asymptotic
Safety idea consists in taking the UV limit at a non-Gaussianfixed point (NGFP), i. e. to ensure
the UV-regularity of the trajectory by arranging it to hit a fixed point asymtotically:Γk → A⋆ for
k→ ∞.

For the case where the fundamental field is assumed to be the spacetime metricgµν
1 the

viability of the above program has been tested to some extentand significant evidence for the
existence of an appropriate NGFP was found. However, it is clear that other choices are equally
plausible here. In Einstein-Cartan gravity, for example, the field variables are constituted by the

1Together with a background metric and Faddeev-Popov ghosts, for technichal reasons.

2



P
o
S
(
C
N
C
F
G
2
0
1
0
)
0
0
3

Running Immirzi Parameter and Asymptotic Safety Martin Reuter

vielbeinea
µ and the spin connectionωab

µ assuming values in the Lie algebra of the Lorentz group.
Sinceωab

µ can carry spacetime torsion, Einstein-Cartan gravity has in general more degrees of
freedom than metric based general relativity; only in absence of “spinning” matter the theories
happen to possess equivalent classical field equations. Thedynamics of Einstein-Cartan theory is
encoded in the Hilbert-Palatini actionSHP[e,ω ] which is of first order in the spacetime derivatives.

Interest in the field variables(ea
µ , ωab

µ) stems also from several modern developments towards
the quantization of gravity which use related variables. This includes canonical quantum gravity
with Ashtekar’s variables [7, 8], loop quantum gravity [9],spin foam models [10], and group field
theory [11]. Here the Hilbert-Palatini action is usually generalized to the so-called Holst action
SHo [12] which contains an additional term, specific to four dimensions, whose associated coupling
is the Immirzi parameterγ . While the classical vacuum field equations implied bySHo are inde-
pendent of the dimensionless numberγ , the corresponding quantum theory seems to depend on it.
Within Loop Quantum Gravity (LQG),γ enters the eigenvalues of area and volume operators, as
well as the formula for the entropy of black holes [8].

In order to explore the possibility of constructing asymptotically safe quantum theories of
gravity in whichea

µ andωab
µ serve as the fundamental field variables, we perform a first analysis

of the Wilsonian RG flow on the corresponding theory space. InSection 2 of this contribution
we describe the flow equation used and the theory space it actson, and in Section 3 we present
the results obtained. Finally, Section 4 provides a short conclusion. For further details, we refer
to [13].

2. Construction of Theory Space and Flow Equation

2.1 Fields and gauge invariances

We start out from an a priori formal functional integralZ =
∫

D êa
µ Dω̂ab

µ exp
{
−S[ê, ω̂ ]

}
,

where the quantum fields ˆea
µ and ω̂ab

µ are defined on a fixed (differentiable) manifold without
boundary,M , and the bare actionS is invariant both under diffeomorphismsDiff(M ) and local
Lorentz rotations. We consider the euclidean form of the theory, so that the relevant group of gauge
transformations is the semidirect productG = Diff(M ) ⋉ O(4)loc. For every given co-frame ˆea

µ
ando(4)-valued connection̂ωab

µ onM we are provided with anO(4)-covariant derivative

∇̂µ ≡ ∂µ +
1
2

ω̂ab
µMab (2.1)

whereMab are the generators in the corresponding representation, and with the associated curvature
and torsion tensors

F̂ab
µν ≡ ∂µω̂ab

ν + ω̂a
cµ ω̂cb

ν − (µ ↔ ν) (2.2)

and

T̂a
µν ≡ ∂µ êa

ν + ω̂a
cµ êc

ν − (µ ↔ ν) , (2.3)

respectively.
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UnderO(4)loc we have

δL (λ )êa
µ = λ a

bêb
µ ,

δL(λ )ω̂ab
µ = −∂µλ ab+ λ a

cω̂cb
µ + λ b

cω̂ac
µ ≡−∇̂µλ ab (2.4)

where∇̂ is theO(4) covariant derivative pertaining tôωab
µ , while under diffeomorphisms

δD(w)êa
µ = Lwêa

µ ,

δD(w)ω̂ab
µ = Lwω̂ab

µ
(2.5)

whereLw denotes the Lie derivative along the generating vector fieldw.
In the quantum theory we also need to consider diffeomorphism ghosts and antighosts,C µ

andC̄µ , respectively, and likewiseΣab andΣ̄ab for the localO(4) transformations. We require all
ghost and antighost fields to transform underDiff(M ) andO(4)loc as tensors of the corresponding
type.

It then follows that the algebra of all gauge transformations is given by

[δD(w1),δD(w2)]Φ = δD([w1,w2])Φ
[δL(λ1),δL(λ2)]Φ = δL([λ1,λ2])Φ
[δD(w),δL(λ )]Φ = δL(Lwλ )Φ

∀Φ ∈ {êa
µ , ω̂ab

µ ,C µ , C̄µ ,Σab,Σab}

(2.6)

Here[w1,w2] denotes the Lie bracket of the vector fieldsw1 andw2, and[λ1,λ2] is the commutator
of two matrices. The algebra is a semidirect productDiff(M ) ⋉ O(4)loc with the local Lorentz
transformations playing the role of the invariant subalgebra.

In order to implement the gauge transformations on the spaceof functionalsA[êa
µ , ω̂ab

µ ,C µ , C̄µ ,

Σab, Σ̄ab] we introduce the corresponding Ward operatorsWD andWL such thatδD,L A = −WD,L A
to linear order in the transformation parameters. Explicitly,

WD(w) = −
∫

d4x
(

δD(w)êa
µ(x)

δ
δ êa

µ(x)
+ δD(w)ω̂ab

µ(x)
δ

δω̂ab
µ(x)

+ δD(w)C µ(x)
δ

δC µ(x)
+ δD(w)C̄µ(x)

δ
δ C̄µ(x)

+ δD(w)Σab(x)
δ

δΣab(x)
+ δD(w)Σ̄ab(x)

δ
δ Σ̄ab(x)

)
(2.7)

and analogously forWL . The Ward operators satisfy

[WD(w1),WD(w2)] = WD([w1,w2])

[WL(λ1),WL(λ2)] = WL([λ1,λ2])

[WD(w),WL(λ )] = WL(Lwλ )

(2.8)

Gauge invariant functionalsA[ê, ω̂ ,C , C̄ ,Σ, Σ̄] are characterized by the conditionsW D(w)A = 0 =

W L(λ )A for all w andλ .
In order to ultimatively arrive at a functional integral anda flow equation with the desired

invariance properties it is important to notice that the (ordinary) diffeomorphismsδD(w) are not
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covariant underO(4)loc. This is obvious from the fact that the Lie derivative involves partial rather
thanO(4)-covariant derivatives. We can, however, covariantize thediffeomorphisms by combining
them with an appropriateO(4) transformation. Introducing

δ̃D(w) ≡ δD(w)+ δL(w · ω̂) (2.9)

where(w·ω)ab≡wµωab
µ , the action of the modified diffeomorphisms̃δD involves covariant deriva-

tives∇̂µ in place of∂µ :

δ̃D(w)êa
µ = wρ∇̂ρ êa

µ +(∇̂µwρ)êa
ρ

δ̃D(w)ω̂ab
µ = −F̂ab

µνwρ

δ̃D(w)C µ = wρ∇̂ρC µ − (∇̂ρwµ)C ρ = wρ∂ρC µ − (∂ρwµ)C ρ

δ̃D(w)C̄µ = wρ∇̂ρ C̄µ +(∇̂µwρ)C̄ρ

δ̃D(w)Σab = wρ∇̂ρΣab

δ̃D(w)Σ̄ab = wρ∇̂ρ Σ̄ab

(2.10)

Associating in the usual way Ward operators̃WD(w) to the modified diffeomorphisms leads to the
following covariantized form of the gauge algebra:

[W̃D(w1),W̃D(w2)] = W̃D([w1,w2])−WL(w1w2 · F̂)

[WL(λ1),WL(λ2)] = WL([λ1,λ2])

[W̃D(w),WL(λ )] = 0

(2.11)

Here (w1w2 · F̂)ab ≡ wµ
1 wν

2 F̂ab
µν . Note that while the modified diffeomorphisms commute with

local Lorentz transformations, they no longer close among themselves; their commutator contains
anO(4)loc transformation whose parameter involvesF̂, the curvature of̂ω .

Note also that gauge invariant functionalsA are equivalently characterized by the conditions
W̃D(w)A = 0 = WL(λ )A for all w andλ .

2.2 Gauge fixing and modified diffeomorphisms

In order to arrive at a functional integral which can be computed (actuallydefined) by means
of a functional RG flow we introduce arbitrary background fields2 ēa

µ and ω̄ab
µ , decompose the

variables of integration as ˆea
µ ≡ ēa

µ + εa
µ , ω̂ab

µ ≡ ω̄ab
µ + τab

µ , and perform a background covariant
gauge fixing. This leads to a functional integral of the form

Z =
∫

Dεa
µ Dτab

µ exp
{
−S[ē+ ε , ω̄ + τ ]−Sgf[ε ,τ ; ē, ω̄ ]

}

×
∫

DC
µ
DC̄µ DΣab

DΣ̄abexp
{
−Sgh

}
(2.12)

2The background vielbein ¯ea
µ is assumed to be nondegenerate. As a result, it gives rise to awelldefined inverse

(ē µ
a ) ≡ (ēa

µ )−1, to a nondegenerate background metric ¯gµν ≡ ēa
µ ēb

ν δab, and to a completely covariant derivativēD ≡

∂ + ω̄ + Γ̄ ≡ ∇̄ + Γ̄ whereΓ̄ ≡ Γ̄(ē, ω̄) is fixed by the requirement̄Dµ ēa
ν = 0. Coordinate (frame) indices are denoted

by greek (latin) letters. While coordinate indices are lowered and raised by means of ¯gµν and its inverse ¯gµν , we lower
and raise frame indices withδab andδ ab, respectively.

5
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HereSgf andSgh denote the gauge fixing and corresponding ghost action, respectively,C µ andC̄µ

are the diffeomorphism ghosts, and similarlyΣab andΣ̄ab are those related to the localO(4). With
G denoting Newton’s constant, the gauge fixing is of the form

Sgf =
1

2αD ·16πG

∫
d4xēḡµν

FµFν

+
1

2αL

∫
d4xēG

ab
Gab

(2.13)

whereFµ andG ab break theDiff(M ) andO(4)loc gauge invariance, respectively. However, in
order to ultimately arrive at aDiff(M ) ⋉ O(4)loc invariant effective average action we employ
gauge conditions of the “background type” so thatSgf[ε ,τ ; ē, ω̄ ] is invariant under the combined
background gauge transformationsδ B

D,L acting on both(ε , τ) and(ē, ω̄) while, of course, it is not
invariant under the “true” (or “quantum”) gauge transformations, denoted byδ G

D andδ G
L , respec-

tively.

The true diffeomorphisms read

δ G
D(w)ēa

µ = 0,

δ G
D(w)εa

µ = Lw(ēa
µ + εa

µ) ,

δ G
D(w)ω̄ab

µ = 0,

δ G
D(w)τab

µ = Lw(ω̄ab
µ + τab

µ)

(2.14)

and theirO(4) counterparts are

δ G
L(λ )ēa

µ = 0,

δ G
L(λ )εa

µ = λ a
b(ē

b
µ + εb

µ) ,

δ G
L(λ )ω̄ab

µ = 0,

δ G
L(λ )τab

µ = −∂µλ ab+ λ a
c(ω̄cb

µ + τcb
µ)+ λ b

c(ω̄ac
µ + τac

µ) .

(2.15)

On the other hand, the background diffeomorphisms act as

δ B
D(w)ēa

µ = Lwēa
µ ,

δ B
D(w)εa

µ = Lwεa
µ ,

δ B
D(w)ω̄ab

µ = Lwω̄ab
µ ,

δ B
D(w)τab

µ = Lwτab
µ

(2.16)

and the backgroundO(4) transformations are

δ B
L(λ )ēa

µ = λ a
bēb

µ ,

δ B
L(λ )εa

µ = λ a
bεb

µ ,

δ B
L(λ )ω̄ab

µ = −∂µλ ab+ λ a
cω̄cb

µ + λ b
cω̄ac

µ ≡−∇̄µλ ab ,

δ B
L(λ )τab

µ = λ a
cτcb

µ + λ b
cτac

µ

(2.17)

where∇̄ denotes theO(4) covariant derivative constructed from̄ωab
µ .

Since no background split is introduced for the ghost fields,their true and background gauge
transformations happen to coincide. We require a tensorialtransformation law corresponding to

6
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their index structure:

δ B
D(w)C µ = δ G

D(w)C µ = LwC µ , δ B
L(λ )C µ = δ G

L(λ )C µ = 0,

δ B
D(w)C̄µ = δ G

D(w)C̄µ = LwC̄µ , δ B
L(λ )C̄µ = δ G

L(λ )C̄µ = 0,

δ B
D(w)Σab = δ G

D(w)Σab = LwΣab , δ B
L(λ )Σab = δ G

L(λ )Σab = λ a
cΣcb+ λ b

cΣac ,

δ B
D(w)Σ̄ab = δ G

D(w)Σ̄ab = LwΣ̄ab , δ B
L(λ )Σ̄ab = δ G

L(λ )Σ̄ab = λa
cΣ̄cb+ λb

cΣ̄ac .

(2.18)

Introducing Ward operatorsW B
D, W B

L for the background gauge transformations, andW G
D,

W G
L for the “gauge” or “true” ones we can verify that the former satisfy the algebra

[W B
D(w1),W

B
D(w2)] = W B

D([w1,w2])

[W B
L (λ1),W

B
L (λ2)] = W B

L ([λ1,λ2])

[W B
D(w),W B

L (λ )] = W B
L (Lwλ )

(2.19)

while the latter obey the relations

[W G
D(w1),W

G
D(w2)] = W G

D([w1,w2])

[W G
L (λ1),W

G
L (λ2)] = W G

L ([λ1,λ2])

[W G
D(w),W G

L (λ )] = W G
L (Lwλ )

(2.20)

Like their precursors before the background split, these commutation relations are notO(4)loc

covariant.
Within the background field setting we define modified diffeomorphisms according to

˜̃
δ B

D(w) ≡ δ B
D(w)+ δ B

L(w · ω̄) , (2.21)

˜̃
δ G

D(w) ≡ δ G
D(w)+ δ G

L(w · ω̄) . (2.22)

In terms of their Ward operators, the modified background diffeomorphisms satisfy the commuta-
tion relations

[
˜̃
W B

D(w1),
˜̃
W B

D(w2)] =
˜̃
W B

D([w1,w2])−W B
L (w1w2 · F̄)

[W B
L (λ1),W

B
L (λ2)] = W B

L ([λ1,λ2])

[
˜̃
W B

D(w),W B
L (λ )] = 0

(2.23)

while their “gauge” counterparts have the algebra

[
˜̃
W G

D(w1),
˜̃
W G

D(w2)] =
˜̃
W G

D([w1,w2])+W G
L (w1w2 · F̄)

[W G
L (λ1),W

G
L (λ2)] = W G

L ([λ1,λ2])

[
˜̃
W G

D(w),W G
L (λ )] = W G

L (w · ∇̄λ )

(2.24)

Both algebras, (2.23) and (2.24), respectively, are going to become important in a moment: The
“background” transformations and their commutators will determine the theory space on which the
RG flow is taking place, while the algebra of the “gauge” transformations determines the ghost
action [14].
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Concretely, we choose the gauge conditions to be linear inεa
µ and independent ofτab

µ [15]:

Fµ = ē ν
a

[
D̄νεa

µ + βDD̄µεa
ν
]
, (2.25a)

G
ab =

1
2

ḡµν[εa
µ ēb

ν − εb
ν ēa

ν
]
≡ ε [ab] (2.25b)

Thus, in total, there are three gauge fixing parameters:αD, αL andβD
3. Using (2.25a), (2.25b) in

(2.13) we can verify thatSgf[ε ,τ ; ē, ω̄ ] is indeed background gauge invariant:

W
B
L Sgf = 0 =

˜̃
W B

D Sgf ⇔ W
B
L Sgf = 0 = W

B
D Sgf . (2.26)

The ghost sector requires some care, and this is indeed the reason for considering the modified
diffeomorphisms. We would like the ghost actionSgh[ε ,τ ,C , C̄ ,Σ, Σ̄; ē, ω̄ ] to be background gauge
invariant, too. However, straightforwardly applying the Faddeev-Popov procedure to the original
transformations

δ G =

(
δ G

D(w)

δ G
L(λ )

)
(2.27)

we obtain, in thēΣ−C -sector, the ghost action4

SΣ̄−C

gf [C , Σ̄; ē, ω̄ ] = −
∫

d4xē

(
Σ̄ab

∂G ab

∂εc
ν

δ G
D(C )εc

ν

)∣∣∣∣
ε=0

(2.28)

which, with (2.25b), evaluates to

SΣ̄−C

gf [C , Σ̄; ē, ω̄ ] = −

∫
d4xēΣ̄ab ēbµ

LC ēa
µ . (2.29)

While this functional is invariant under background diffeomorphisms, it fails to be invariant un-
der theO(4)loc transformationsδ B

L(λ ), the reason being that the Lie derivative of anO(4) tensor
does not define anO(4) tensor. Rather, we haveLC (λ a

b ēb
µ) 6= λ a

bLC ēb
µ , sinceλ a

b(x) is a space-
time scalar which transforms nontrivially under diffeomorphisms. Stated differently,O(4)loc trans-
formations and (ordinary) diffeomorphisms do not commute,and this is exactly what the above
algebra relations express.

The way out consists in applying the Faddeev-Popov procedure to theO(4)
loc

-covariantized
(true) gauge transfomations

˜̃δ G =

( ˜̃
δ G

D(w)

δ G
L(λ )

)
. (2.30)

3As can be inferred from (2.13) and (2.25), the diffeomorphism gauge parameterαD is dimensionless whereas
the Lorentz-gauge parameterαL is of mass dimension−4. Therefore, it has to be rescaled properly. We perform this
rescaling by means of the mass parameterµ̄ that will be introduced in a moment. Within the (propertime)approximation
used, no scale derivatives of dimensionless couplings appear on the right-hand side of the flow equation. Therefore,
defining an additional factor ofg into αL will not lead to additional contributions; see the captionsof Tab. 1 and Fig. 1.

4We consider the caseεa
µ = 0 here [13].
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They are broken by the ten gauge fixing conditions
(

Fµ

G ab

)
≡
(
Q

I) (2.31)

for which we use a uniform notation where
(
QI
)
≡
(
Fµ
)

for I = 1, · · · ,4 and
(
QI
)
≡
(
G ab
)

for
I = 5, · · · ,10. Denoting, in the same fashion, the ten parameters of the gauge transformations as(
ΛI
)

=
(
wµ ,λ a

b

)
, the Faddeev-Popov determinant reads

det

(
δQI (x)
δΛJ(y)

)∣∣∣∣
Λ=0

, (2.32)

and exponentiating it we obtain a ghost action which has the structure

−

∫
d4xē

(
C̄µ

Σ̄ab

)T(
Ωµ

ν Ωµ
cd

Ωab
ν Ωab

cd

)(
C ν

Σcd

)
(2.33)

The Faddeev-Popov operatorΩ is rather complicated; here we must refer to [13] for its explicit
form. Suffice it to say that one can now check that he ghost action obtained is indeed invariant
under background gauge transformations:

W
B
L Sgh = 0 =

˜̃
W B

D Sgh ⇔ W
B
L Sgh = 0 = W

B
D Sgh . (2.34)

This property is the main prerequisite for arriving at a background gauge invariant effective average
action.

2.3 Theory space and flow equation

The functional integral (2.12) gives rise to the associatedeffective average action [1] in the
standard way: one adds aδ B-invariant mode cutoff to the bare action,

∆kS∝
∫

d4xē(ε ,τ)Rk (ε ,τ)T , (2.35)

couplesε and τ to sources, Legendre transforms the resulting generating functional lnZ , and
finally subtracts∆kS for the expectation value field in order to arrive at the running action:

Γk[ε ,τ ,ξ , ξ̄ ,ϒ, ϒ̄; ē, ω̄ ] ≡ Γk[e,ω , ē, ω̄ ,ξ , ξ̄ ,ϒ, ϒ̄] . (2.36)

Thereinε̄a
µ , τ̄ab

µ as well as

ea
µ ≡ 〈êa

µ〉 = ēa
µ + ε̄a

µ (2.37)

and

ωab
µ ≡ 〈ω̂ab

µ〉 = ω̄ab
µ + τ̄ab

µ (2.38)

denote the expectation value fields, while we write for the ghosts

ξ µ ≡ 〈C µ〉 , ξ̄µ ≡ 〈C̄µ〉 , ϒab ≡ 〈Σab〉 , ϒ̄ab ≡ 〈Σ̄ab〉 . (2.39)
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The average actionΓk may be considered a functional of either the fluctuationsε̄a
µ andτ̄ab

µ or the
complete classical fieldsea

µ andωab
µ .

Obviously the actionΓk is defined on a rather complicated theory spaceT consisting of func-
tionals depending on two independent vielbein variables(e, ē), two spin connections(ω , ω̄), as
well as on the diffeomorphism andO(4) ghosts and antighosts, respectively. The functionals inT

are constrained by the requirement of background gauge invariance:

T ≡
{

F
∣∣W B

D(w)F = 0 ∧ W
B
L (λ )F = 0 ∀ wµ , λ ab

}
. (2.40)

From the above functional integral based construction ofΓk one straightforwardly derives the
FRGE it satisfies:

∂kΓk =
1
2

STr
[
(Γ(2)

k +Rk)
−1∂kRk

]
. (2.41)

With the kernelRk[ē, ω̄ ] specified appropriately, the equation indeed defines a flow onT , i. e. it
does not generate background gauge invariance violating terms.

3. Results

We have solved the flow equation forΓk[e,ω , · · · ] on a three-dimensional truncated theory
space spanned by actions of the Holst type:

Γk[e,ω , · · · ] = −
1

16πGk

∫
d4x e

[
e µ

a e ν
b

(
Fab

µν −
1
γk

⋆Fab
µν

)

−2Λk

]
+Sgf +Sgh (3.1)

In practice we used, because of the enormous algebraic complexity of the calculations involved,
a slightly simplified version of the FRGE of the propertime type. An equation of the same type
has been used within the Einstein-Hilbert truncation of metric gravity [4], and virtually the same
results were found as with the exact RG equation in this truncation.

The truncation ansatz (3.1) consists of the Hilbert-Palatini action known from Einstein-Cartan
gravity, plus the Immirzi term which only exists in four dimensions; in fact⋆Fab

µν ≡ 1
2εab

cdFcd
µν

is the dual of the curvature ofω , F ≡ F(ω), with respect to the frame indices. BesidesGk, (3.1)
contains two more running parameters: the cosmological constantΛk and the Immirzi parameterγk.
The gauge fixing and ghost terms are assumed to retain their classical form for allk, except for the
replacementG→ Gk. The parametersαD, αL andβD are treated as constant in the approximation
considered. Thus the truncated theory space can be coordinatized by a triple(g,λ ,γ) wheregk ≡

Gk k2 andλk ≡ Λk/k2 are the dimensionless Newton’s and cosmological constant,respectively.
With t ≡ lnk, the RG equations are of the form∂tgk = βg ≡ (2+ ηN)gk, ∂tλk = βλ , ∂tγk = βγ

where the anomalous dimension of Newton’s constant,ηN, and the other beta functions are given
by

ηN(g,λ ,γ) = 16π g f+(λ ,γ)

βγ(g,λ ,γ) = 16π gγ
[
γ f−(λ ,γ)− f+(λ ,γ)

]
(3.2)

βλ (g,λ ,γ) = −2λ +8π g
[
2λ f+(λ ,γ)+ f3(λ ,γ)

]

10
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The functionsf± and f3 are extremely complicated and cannot be written down here. Besidesλ and
γ , they depend parametrically also on the three gauge fixing parameters and an additional parameter
µ̄ with the dimension of a mass. The latter is needed to give a uniform dimension to the fluctuations
ε̄a

µ andτ̄ab
µ : Only after a rescaling of the form̄εa

µ → µ̄ 1
2 ε̄a

µ , τ̄ab
µ → µ̄− 1

2 τ̄ab
µ the effective inverse

propagatorΓ(2)
k constitutes an operator with a welldefined spectrum and a welldefined trace. The

parameter̄µ might be treated as a running quantity in a more complete truncation.
We coordinatizeT by an atlas consisting of two charts. In order to cover the neighborhood of

the submanifoldγ = ±∞ in T , we introduce a new coordinatêγ . In the overlap|γ | ∈ ]0,+∞[ of
the (g,λ ,γ) - and the(g,λ , γ̂) -chart, the coordinatesγ and γ̂ are related by the transition function
γ̂(γ) = γ−1. With βγ̂(g,λ , γ̂) = −γ̂2βγ(g,λ , γ̂−1), the flow equation in thêγ-chart is given by

ηN(g,λ ,γ) = 16π g f+(λ , γ̂−1)

βγ̂(g,λ , γ̂) = 16π gγ̂
[

f+(λ , γ̂−1)− γ̂−1 f−(λ , γ̂−1)
]

(3.3)

βλ (g,λ , γ̂) = −2λ +8π g
[
2λ f+(λ , γ̂−1)+ f3(λ , γ̂−1)

]

We studied the system (3.2), (3.3) for various propertime cutoff functions and gauge param-
etersαD, αL and βD. Within our approximation,µ ≡ µ̄/k can be assumed to be a constant,k-
independent number.

For µ & 2 the RG flow displays the following features:
(i) It is reflection symmetric underγ →−γ .
(ii) The beta-functionsβg, βγ , βγ̂ andβλ contain simple poles atγ = γ̂ = ±1. However, those are
presumably an artifact of the approximation of the exact flowthat we employed. In fact, our analy-
sis strongly suggests that forγ not too close to±1 the functionsf± and f3 are actuallyindependent
of γ . For such values ofγ it is a rather precise approximation to replace them by functions f̃± and
f̃3 that only depend onλ , leading to the simpler system

∂t gk =
[
2+16π gk f̃+(λk)

]
gk

∂t γk = 16π gk γk

[
γk f̃−(λk)− f̃+(λk)

]
(3.4)

∂t λk = −2λk +8π gk

[
2λk f̃+(λk)+ f̃3(λk)

]

and likewise for theγ̂-chart. While the equations (3.4) are equivalent to (3.2) when |γ | 6≈ 1, a
detailed analysis [13] indicates that for|γ | → 1, too, the regular beta functions (3.4) rather than
those of (3.2) are likely to apply.
(iii) The system (3.4) and its analogue in theγ̂-chart implyβγ = 0 andβγ̂ = 0 for γ⋆ = 0 andγ̂⋆ = 0,
respectively. For each of the two sets of equations we find a fixed pointNGFP000 ≡ (g⋆

0,λ ⋆
0 ,γ⋆) and

NGFP∞∞∞ ≡ (g⋆
∞,λ ⋆

∞, γ̂⋆) of (3.2), (3.3) withg⋆
0,∞ > 0, λ ⋆

0,∞ < 0 andg⋆
0 6= g⋆

∞, λ ⋆
0 6= λ ⋆

∞. For the choice
µ = 5 we obtained the values shown in Tab. 1.
(iv) At both fixed points, theg andλ directions are to a very good approximation eigendirections
of the linearized flow onT , whereas this is exactly true for theγ- and γ̂-directions, respectively.
At NGFP000 andNGFP∞∞∞, both theg andλ directions are relevant scaling fields, i. e. their associated
critical exponentsΘ1 andΘ2 are real and positive. In contrast, atNGFP000 the Immirzi parameterγ
is irrelevant (Θγ < 0), whereas atNGFP∞∞∞ its inverseγ̂ is relevant (Θγ̂ > 0).
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NGFP000 g⋆
0 λ ⋆

0 g⋆
0 λ ⋆

0 Θ1 Θ2 Θγ

αD = 1 3.37 -6.78 -22.86 1.94 3.71 -1.98

αD = 10 1.36 -1.08 -1.47 2.46 -6.64 -0.43

αD = 0.1 3.65 -7.42 -27.09 2.28 3.73 -2.00

NGFP∞∞∞ g⋆
∞ λ ⋆

∞ g⋆
∞ λ ⋆

∞ Θ1 Θ2 Θγ̂

αD = 1 3.30 -4.18 -13.79 1.81 3.22 1.94

αD = 10 2.18 -1.83 -3.98 2.76 -2.40 1.34

αD = 0.1 3.86 -5.16 -19.89 2.55 3.32 2.01

Table 1: Properties of the fixed pointsNGFP000 and NGFP∞∞∞ of the (g,λ ,γ) - and the(g,λ , γ̂) -
system, respectively. The numerical values were obtained for the choiceµ = 5, βD = 0, αL =

16πgµ̄−4 with a sharp propertime cutoff.

(v) The three two-dimensional sections of the flow at each fixed point are presented in Fig. 1. These
plots were obtained for the choiceµ = 5, αD = 1, βD = 0, αL = 16πgµ̄−4 and by means of a sharp
propertime cutoff.

(vi) By letting γ → ∞ in (3.1) we can study the two-dimensional(g,λ ) -truncation, i. e. the Hilbert-
Palatini truncation, which isnot equivalent to the Einstein-Hilbert truncation of QEG. In this case,
we find a fixed point(g⋆,λ ⋆) with g⋆ > 0, λ ⋆ < 0 that exhibits the same features as the(g,λ ) -
sections of the two fixed pointsNGFP000 andNGFP∞∞∞ of the three-dimensional truncation. In par-
ticular, the flow basically looks like the ones depicted in Fig. 1(a) and Fig. 1(b), respectively.

(vii) For λ = 0, we obtain the(g,γ) - and(g, γ̂) -truncation, respectively, withβg, βγ andβγ̂ given
by (3.2) and (3.3), but with the functionsf± evaluated atλ = 0. In this case our results are com-
patible withβγ = 0 = βγ̂ ⇔ f+(0,γ)|γ=0,±∞ =

(
γ f−(0,γ)

)
|γ=0,±∞, i. e. the renormalization of the

remaining invariant would solely be given by the renormalization of Newton’s constant. While this
result needs to be corroborated by a more pecise treatment, we findg⋆|γ⋆=0 = g⋆|γ̂⋆=0 > 0 within
this truncation. These investigations suggest that the Immirzi parameter owes its RG running to a
nonzero cosmological constant.

(viii) With respect to variations of the regularization scheme ourresults are remarkably robust. The
signs of the fixed point coordinates and of most of the quantities that are expected to be universal are
gauge parameter independent, as well. Nevertheless, the quantitative gauge parameter dependence
of the universal quantities such as the productg⋆

0,∞ λ ⋆
0,∞ and the critical exponents is somewhat

stronger than in comparable calculations within metric gravity [4].

4. Conclusion

We find significant evidence for Asymptotic Safety of pure gravity in the Einstein-Cartan
approach. There seem to exist two NGFPs, located atγ = 0 andγ = ±∞, which in principle both
are suitable for taking the continuum limit there. By investigating how observables depend upon
γ in particular, one may determine the physical properties ofthe resulting quantum field theories.
Using either fixed point for the Asymptotic Safety construction, gravity is anti-screening in the

12
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(a) The(g,λ ) -section of the flow atNGFP000.
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(b) The(g,λ ) -section of the flow atNGFP∞∞∞.
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(c) The(g,γ) -section of the flow atNGFP000.
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(d) The(g, γ̂) -section of the flow atNGFP∞∞∞.
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(f) The (γ̂ ,λ ) -section of the flow atNGFP∞∞∞.

Figure 1: The two-dimensional sections of the flow nearNGFP000 andNGFP∞∞∞, respectively, for the
choiceµ = 5, αD = 1, βD = 0, αL = 16πgµ̄−4 with a sharp propertime cutoff. The arrows point in
the direction of decreasingk. 13
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UV, i. e. g⋆
0,∞ > 0, but in contrast to QEG the cosmological constant is negative in the fixed point

regime,λ ⋆
0,∞ < 0. However, this does not contradict present day observations sinceλ might very

well flow to positive values for IR scales of the order of typical astronomical distances. Future
investigations should aim at a better control of the gauge dependencies and at understanding the
phenomenological implications of the scale dependent Immirzi parameter.
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