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1. Introduction

From a quantum field theoretic point of view an “elementary particle" is an irreducible rep-
resentation of the Poincaré group. In scattering experiments multiparticle states are defined by
collections (symmetrized tensor products) of such representations. It is clear that if one wants to
handle a quantum field theory (QFT) (even a trivial non-interacting one) in a generic curved space
the lack of global Poincaré symmetries renders the definition of particle cumbersome [1]. In space-
times with enough symmetry however one can still construct “asymptotic" particle states but in this
case different observer might disagree on the particle content of a quantum state. This fundamental
observation lies at the basis of the celebrated Hawking effect.
A fact that has been appreciated relatively recently about certain types of non-commutative field
theories is that their formulation in momentum space leads to a field theory living on a Lie group
(see [2] and references therein).

Field theories on momentum group manifolds, although exhibiting highly non-trivial mathe-
matical structure possess several nice features. Indeed the curvature in momentum space introduces
a natural cut off scale which is compatible with relativistic transformations which are now deter-
mined by the action of the Lorentz group on the (portion of) homogeneous space describing the
group manifold (see e.g. [3] for details).
Interestingly enough curved momenta are encountered in three dimensional gravity where due to
the topological nature of the theory particles need to be introduced as defects in the space-time
manifold [4, 5, 6]. This suggested speculations that this type of field theories could be relevant for
regimes of semiclassical gravity when the local degrees of freedom of the gravitational field can be
neglected [7, 8].
In this talk I review the basics of quantization of a relativistic particle with momentum living on
a Lie group taking as a “case study" the momentum sector of the κ-Poincaré algebra [9]. After a
quick discussion on the relation between the phase space of classical relativistic particle and that
of a Klein-Gordon field I recall the steps that lead from the latter to the Hilbert space of a QFT.
As in the case of QFT in curved space-times a free quantum field with curved momentum space
manifests interesting features. On one side in quantizing the theory one encounters an ambiguity
in the definition of a “one-particle" Hilbert space due to the lack of a preferred set of coordinates
on the momentum group manifold [2]. At the multi-particle level the non-abelian composition law
for the field modes, induced by the non-trivial group structure of momenta, leads to a “momentum-
shifting" symmetrization [10, 11, 12, 13, 14]. The latter will be responsible for a Planckian “fine
structure" of the Fock space [15]. I will conclude by briefly discussing some interesting conse-
quences that the non-trivial Fock space structures might have for entanglement and decoherence.

2. From particles to (quantum) fields

The most general description of the phase space of a classical relativistic point particle is
given by a construction known as co-adjoint orbit [16]. This formulation is alternative to the usual
one in terms of cotangent bundle of a configuration space and it is particularly useful for systems
possessing symmetries. In the present context this description is advantageous since for theories
defined on a “non-commutative space-time" the operational description of configuration space is
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not straightforward (and recently subject of debate, see e.g. [17, 18] and references therein).
We consider a classical mechanical system which admits a continuous group of symmetries G. We
take its phase space manifold to be given by the orbit of the symmetry group G on the dual space
g∗ of its Lie algebra g. Since G acts via its co-adjoint representation this is what we call the “co-
adjoint orbit". On this manifold the symplectic structure is given by the natural Poisson bracket on
functions on g∗ given

{ f ,g}(Y )≡ 〈Y, [(d f )Y ,(dg)Y ]〉 , (2.1)

where (d f )Y ,(dg)Y ∈ (g∗)∗ ' g and 〈Y,ξ 〉 ≡ Y (ξ ) is the natural pairing of dual vector spaces. For
a relativistic point particle we specialize to G being the Poincaré group ISO(3,1) = SO(3,1)nR3,1

and thus g∗ = iso∗(3,1) ≡ so∗(3,1)⊕ (R3,1)∗. Co-adjoint orbits Om,s are given by hyper-surfaces
on iso∗(3,1) determined by two Casimir functions labelled by the mass and spin of the particle (see
[19] for details). We are ultimately interested in the quantization of a scalar field so we focus on
a spinless particle. The “momentum sector" of its phase space manifold Om,0 is obtained from the
restriction of the action of the Lorentz group to the dual space t∗ ⊂ iso∗(3,1) and it is given by the
mass shell Mm ⊂ t∗ ≡ R3,1

C1(p) = (p0)2−p2 = m2 . (2.2)

From its definition as a orbit of a symmetry group Mm has a natural structure of a homogeneous
space, indeed Mm ' SO(3,1)/SO(3). As a homogeneous space Mm admits an invariant measure on
its space of functions C∞(Mm) which can be written as a “δ -measure"

dµm = dV δ (C1(p)) , (2.3)

where dV is the ordinary volume four-form on R3,1. We can also view elements of C∞(Mm) as
distributions on (R3,1)∗ given by

φ̃(p) = δ (C1(p)) f̃ (p) (2.4)

with f̃ (p) ∈C∞((R3,1)∗). A necessary and sufficient condition for a distribution to be of the form
above is that

(C1(p)−m2)φ̃(p) = 0 (2.5)

which is nothing but the Fourier transform of the Klein-Gordon equation. Notice also that the
measure dµm allows us to define an invariant inner product

(φ1,φ2) = i
∫

d4k δ (k2−m2)φ 1(k)φ2(k) , (2.6)

which in turn is related via Fourier transform of the field to the Wronskian of the Klein-Gordon
equation

ω(φ1,φ2) =
∫

Σ

(φ2∇µφ1−φ1∇µφ2)dΣ
µ , (2.7)

via the relation (φ1,φ2) =−iω(φ 1,φ2). It turns out that the space of solutions to the Klein Gordon
equation S , equipped with the symplectic structure given by the Wronskian above provides a
“covariant" description of the phase space of a classical field [20].
In order to discuss field quantization let us consider the complexified space of solutions S C ≡
S ⊗C. The key step [21, 22] in building a “one-particle" Hilbert space is the introduction of a
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complex structure J on S (and S C) i.e. a map J : S →S such that J2 =−1. The introduction of
J gives rise to a decomposition S C = S C+⊕S C− into two subspaces, S C+ and S C− spanned,
respectively, by the eigenvectors of J with eigenvalues ±i i.e. J(φ±) = ±i(φ±). To this rather
abstract construction can be given an intuitive physical interpretation. If the background space-
time is static using the timelike Killing vector Lt one can decompose any real solution φ ∈S into
normal modes (e.g. plane waves) of positive and negative energy components with respect to Lt

φ = φ
++φ

− . (2.8)

Then the map J =−(−LtLt)
−1/2Lt is such that

Jφ = iφ++(−i)φ− , (2.9)

i.e. J is a complex structure on S and it provides a decomposition of S C in positive and negative
energy subspaces. Such decomposition is crucial in the constructions of the Hilbert space because
it allows to define a positive definite inner product starting from the symplectic product ω . Indeed
looking at the discussion above it would seem that functions on Mm together with the natural inner
product 2.6 would already provide us with a Hilbert space. However Mm = M+

m ∪M−m is a two-
sheeted hyperboloid consisting of positive M+

m and negative mass-shell M−m , which via Fourier
transform provide the support for positive and negative energy solutions. One can easily check that
the inner product 2.6 is not positive definite for functions on Mm but it is if we restrict to M+

m or
equivalently to S C+. Thus the “one-particle" Hilbert space will be given by the space of functions
C∞(M+

m ) endowed with the inner product 2.6. Starting from the one-particle Hilbert space one can
construct the full bosonic Fock space from the direct sum of “symmetrized" n-tensor products of
the one-particle space H .
Given a “one-particle" observable O , i.e. a self adjoint operator on H , its action on multiparticle
states is given by the second quantized operator [23]

dΓ(O)≡ 1+O +(O⊗1+1⊗O)+(O⊗1⊗1+1⊗O⊗1+ 1⊗1⊗O)+ ... (2.10)

Such expression is simply telling us that the operator O acts on multiparticle states as a derivative
i.e. following the Leibniz rule. The expression above can be re-written in terms of what mathe-
maticians call coproduct ∆O = O⊗1+1⊗O of the operator O

dΓ(O)≡ 1+O +∆O +∆2O + ...+∆nO + ... (2.11)

where ∆nO = (∆⊗ 1) ◦∆n−1, ∆1 ≡ ∆ with n ≥ 2. The coproduct encodes information on how
observables act on a multi-component quantum system and, in our specific case, on the additivity
properties of observables for the multiparticle sector of a quantum field Hilbert space.
We showed that the complex structure J and the coproduct ∆ are ingredients needed to build the
Hilbert space of a quantum field from the classical field phase space. The first is needed to single
out a notion of positive energy which determines the notion of particle and antiparticle the second
is essential in the description of composite system and the observables associated with them. In the
following we will see how both such objects play a crucial role when we attempt to quantize fields
for which Mm is embedded into a group manifold.
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3. Phase space with group valued momenta

We saw that at the phase space level we speak of “four-momentum" of a classical relativistic
particle referring to coordinates on the space t∗ dual to the algebra of translation generators. When
moving to field theory we essentially work with functions on t∗ and thus the central objects become
plane waves which are “characters" namely elements of the group T ∗ dual to the translation group.
Momenta in this case are labels of such waves or coordinates on T ∗. In ordinary relativistic theories
T ∗ as a manifold is simply Minkowski and its Lie algebra t∗, as tangent space to the identity, can
be identified with T ∗ itself. Thus the two notions of momenta coincide as “global coordinates" on
Minkowski space.
What happens if we introduce a non-trivial bracket on t∗, or, in a suggestive but somewhat mis-
leading analogy with a standard relativistic particle, we introduce “non-commutative space-time
coordinates"? The first obvious consequence is that the the group law on T ∗ is now non-abelian,
namely we have “group-like" plane waves with a non-abelian composition1

epeq ≡ ep⊕q 6= eq⊕p ≡ eqep , (3.1)

and non-trivial group inversion
(ep)

−1 ≡ e	p . (3.2)

Notice how t∗ as a vector space is still Minkowski space but T ∗ is a group manifold and that the
two notions of momenta discussed above no longer coincide! How this new state of affairs affects
the quantization procedure, namely the choice of the complex structure J and the co-product ∆, is
the principal subject of this talk, before we move on, however, I would like to briefly recall why
we should be interested in fields with “group-valued" momenta.
As mentioned in the Introduction the main motivation for looking at non-trivial Lie brackets on t∗

comes from the description of point particles in three dimensional gravity. It is well known that
the latter is a topological theory since it does not possess local degrees of freedom and it can be
formulated as a Chern-Simons theory [25]. A way to couple point particles to such theory is to
introduce punctures on the manifold. The main point is that in order to describe the phase space
of these particles/punctures, in particular to construct the Poisson structure, one needs to introduce
a r-matrix i.e. an element of g⊗ g where g is the Lie algebra of the gauge group. Such r-matrix
defines a “co-commutator", a map δ : g→ g⊗g which in turns induces an non-trivial Lie-bracket
on g∗ (for details of the construction see [26]). In the case of vanishing cosmological constant it
has been shown [6] that t∗ ≡ su(1,1) i.e. T ∗ ≡ SU(1,1) and thus momenta, as field modes, i.e.
labels of plane waves, are coordinates on a hyperboloid in R3,1.
In four dimensions we find a similar “bending" of momentum space in the translation sector of the
κ-Poincaré algebra. This algebra was initially proposed in the context of quantum deformation of
relativistic symmetries with no apparent connection with gravity [9]. A decade after its introduction
it was realized [27] that the dual to the algebra of translation generators is the Lie algebra given by

[P∗µ ,P
∗
ν ] =−

i
κ
(P∗µδ

0
ν −P∗ν δ

0
µ) , (3.3)

1Notice how the non-vanishing Lie bracket on t∗ does not affect the abelian group structure of T , rather it introduces
a non-trivial Poisson-Lie structure on the latter (for more details see e.g. [24]).
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or identifying the elements of t∗ as space-time coordinates

[xi,x j] = 0 , [x0,x j] =
i
κ

x j , (3.4)

a non-commutative space-time known as κ-Minkowski space. Momenta are now coordinates on
the non-abelian group T ∗ = B obtained by exponentiating the Lie algebra above. As a manifold
this group is given by “half" de Sitter space [28]

−η
2
0 +η

2
1 +η

2
2 +η

2
3 +η

2
4 = κ

2 ; η0−η4 > 0 (3.5)

where ηµ are coordinates in R4,1, five dimensional Minkowski space in which the hyperboloid is
embedded and κ , related to the “momentum space" cosmological constant, is a UV energy scale
which according to the analogy with the three dimensional gravity case it is usually identified with
the Planck energy. Let’s now look at the non-trivial composition law of the group-valued plane
waves. This can be formally obtained using the Baker-Campbell-Hausdorff formula ( see e.g. [29])
but of course the explicit expression for the addition of spatial momenta and energies will depend
on the choice of coordinates on the group manifold. Let us consider, for example, the following
one-parameter family of group splittings

ep ≡ e−i 1−β

2 p0P∗0 eip jP∗j e−i 1+β

2 p0P∗0 , (3.6)

with 0 ≤ |β | ≤ 1. It can be shown [11, 2] that for each different splitting one has the following
non-abelian additions of momenta

p⊕β q = (p0 +q0; p j e
1−β

2κ
q0
+q j e−

1+β

2κ
p0
) , (3.7)

while the group inversion will reflect in the non-trivial “antipode"

	β p = (−p0;−e
−β

κ
p0

pi) . (3.8)

Fixing a particular set of coordinates on T ∗ we can illustrate other salient features of the deformed
κ-Poincaré algebra. We focus on the case β = 1 corresponding to “flat-slicing" coordinates

η0(p0,p) = κ sinh p0/κ +
p2

2κ
ep0/κ ,

ηi(p0,p) = −pi ep0/κ ,

η4(p0,p) = −κ cosh p0/κ− p2

2κ
ep0/κ . (3.9)

This “basis" of the κ-Poincaré algebra was first used in [27] to exhibit the connection of the latter
with κ-Minkowski non-commutative space-time and has been widely used in field theoretic appli-
cations [10, 30, 31]. One of the consequences of the curvature of the momentum manifold is that
the adjoint action of boosts on translation generators in this basis is non-linear [32],

[N j,Pl] = iδl j

(
κ

2

(
1− e−

2P0
κ

)
+

1
2κ

~P2
)
+

i
κ

PlPj . (3.10)

while rotations act in the usual way. Perhaps the most important aspect that the non-trivial group
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structure of T ∗ introduces is the change in the rule for extending the action of the algebra generators
to tensor product representation i.e., according to the discussion at the end of Section the co-
product. Indeed the non-trivial momentum composition law 3.7 for plane waves translates into
a non-abelian combination of momenta for a two-particle state. Since this is just a tensor product
of irreducible representations of the algebra this behaviour can be recast in terms of a modified
co-product for spatial translation generators

∆(Pi) = Pi⊗1+ exp(−P0/κ)⊗Pi (3.11)

with the ordinary composition rule for energies is encoded in a ordinary (“Leibniz-like") co-product
for time translations generators

∆(P0) = P0⊗1+1⊗P0 . (3.12)

It turns out that the structure of the κ-Poincaré algebra is, in technical terms, that of a Hopf algebra
and as such it also determines the way the other generators act on tensor product representations2.
One has

∆(N j) = N j⊗1+ e−P0/κ ⊗N j +
ε jkl

κ
Pk⊗Ml (3.13)

∆(Mi) = Mi⊗1+1⊗Mi , (3.14)

from which we can see that rotations act in the usual way while the action of boost is non-Leibniz as
for spatial translations. In the limit of the deformation parameter κ going to infinity one recovers
the ordinary Poincaré algebra and the Leibniz prescription for the action on tensor products of
representations. There remains one important object to discuss at the algebraic level: the invariant
Casimir operator. This plays a central role in the context of field theory since it represents the
“momentum version" of the d’Alembertian and it determines the mass shell. In the next Section
we will discuss the issues that we have to deal with when the mass shell is embedded in a curved
manifold and thus there is no preferred set of coordinates for its description in terms of energy and
spatial momenta.

4. A new quantization ambiguity

As discussed in Section 2 the “one-particle" Hilbert space of a quantum field can be built
starting from functions on the mass shell, using the natural invariant measure associated with a
homogeneous space to define a inner product on it and finally introducing a complex structure to
select a subspace on which the latter is positive definite. While the first two steps can be carried out
rather straightforwardly also in the case of a curved momentum space manifold [31] we will see
that, unlike the case of ordinary QFT in Minkowski space, in curved momentum space one does not
have a preferred notion of “positive energy" or choice of complex structure. In order to show this let
us recall that in principle even for ordinary momentum space embedded in R3,1 one could choose
a new set of coordinates obtained from non-linear redefinitions of ordinary “cartesian" momenta.
These would combine into a non-linear Casimir and change the composition rule of momenta.

2Notice that also the ordinary Poincaré algebra equipped with the ordinary Leibniz rule action on tensor product
representation is a Hopf algebra although trivial.
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However in the flat momentum space case one does have a preferred choice of coordinates in
momentum space. The are precisely the cartesian coordinates, which correspond to a representation
of translations as local symmetry generators P0, Pi [33] for which the Casimir is the usual C1(P) =
P2

0 −P2 and

∆Pµ = Pµ ⊗1+1⊗Pµ , (4.1)

i.e. we are choosing translation generators which act according to the Leibniz rule. In the algebra
of polynomials of generators of a Lie algebra such elements are called “primitive". The complex
structure we use to define a notion of positive energy will be, as usual J = i P0

|P0| from which we

can construct a projector on the positive mass-shell P+ = 1
2

(
1+ P0

|P0|

)
. Now we come to our main

point. When momentum space is a group manifold there is no preferred choice of complex structure
since there are no primitive elements among the polynomials of translation generators [34]. Even
if we choose a set of coordinates P0, Pi for which the Casimir is the ordinary C1(P) = P2

0 −P2

we will have a non-Leibniz action of the latter on multiparticle states i.e. no matter what choice
of translation generators, their coproduct will always be non symmetric i.e. σ ◦ ∆ 6= ∆ (where
σ(a⊗b) = b⊗a).
To give a concrete example we consider the flat slicing coordinates of the previous section. The
mass Casimir expressed in terms of the translation generators associated to these coordinates will
be

C κ
1 (P) =

(
2κ sinh

(
P0

2κ

))2

−P2eP0/κ . (4.2)

For a massless field the Hilbert space will be built from functions on deformed mass shell Mκ
m

defined by ω±κ (p) = −κ log
(

1∓ |p|
κ

)
. The time translation generator associated with these coor-

dinates can be used to define a complex structure and a projector which singles out the positive
mass-shell. The Hilbert space will be given by C∞(Mκ+

m ) equipped with inner product

(φ1,φ2)κ =
∫

Mκ+
m

dµ(p)
2ωκ(p)

φ̄1(p)φ2(p) (4.3)

where dµ(p) = e3p0/κ

(2π)4 d p0 d3p is the Haar measure on momentum group manifold. It is easily
checked that for “transplanckian" (|k|> κ) modes 4.3 is no longer positive definite. Thus to obtain
the κ-one particle Hilbert space it does not suffice to restrict to functions on the positive mass-shell
but also to modes whose modulus does not exceed the UV deformation parameter κ . It is interest-
ing to notice that the presence of such cut-off does not conflict with Lorentz symmetry since it can
be shown [32] that under finite boosts constructed from the deformed action 3.10 the modulus of a
field mode approaches κ as the boost parameter goes to infinity.
Notice that the same construction can be repeated for any other set of coordinates on the momen-
tum group manifold and in particular for the coordinate sets defined by the group splitting 3.6 for
various values of the parameter β . The positive definite inner product will of course not be af-
fected by the change of coordinates in the group, an indication that, unlike the case of quantum
fields in curved space-times, all constructions share the same vacuum state. For different choices
of momentum coordinates, however, the modes labelling the one particle states will obey different
energy-momentum dispersion relations.
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The curvature in momentum space will also introduce important new features in the multiparti-
cle sector of the theory. For simplicity we restrict our discussion to two-particle states. Recall
here that due to the indistinguishability of the components of a composite quantum system a two-
particle state of a quantum scalar field will be described by the symmetrized superposition of tensor
products of one-particle states

1/
√

2(|p1〉⊗ |p2〉+ |p2〉⊗ |p1〉) . (4.4)

If we try to extend the same construction to the deformed case we soon run into troubles. Indeed
due to the non-symmetric nature of the co-product for any choice of coordinates it is easy to see
that the state 4.4 is not an eigenstate of the generators of linear translations Pi. It turns out [10, 11]
that one has to resort to a “momentum-dependent" symmetrization i.e., again working in flat-slicing
coordinates, the usual flip operator σ(|p1〉⊗ |p2〉) = (|p2〉⊗ |p1〉) will be replaced by

σ
κ(|p1〉⊗ |p2〉) = |(1− ε1)p2〉⊗ |(1− ε2)

−1 p1〉 , (4.5)

with εi =
|pi|
κ

. Given two one-particle modes p1 and p2 one can obtain two different two-particle
states

|p1p2〉κ = 1√
2

[
|p1〉⊗ |p2〉+ |(1− ε1)p2〉⊗ |(1− ε2)

−1p1〉
]

(4.6)

|p2p1〉κ = 1√
2

[
|p2〉⊗ |p1〉+ |(1− ε2)p1〉⊗ |(1− ε1)

−1p2〉
]

(4.7)

These states are different because according to the non-symmetric form of the coproduct they will
carry different linear momenta

P12 = p1⊕p2 = p1 +(1− ε1)p2 (4.8)

P21 = p2⊕p1 = p2 +(1− ε2)p1 . (4.9)

where, specializing 3.7 to β = 1, p⊕ q ≡ p+ e−ωp/κq. One should also notice that, due to the
undeformed coproduct for time translation generators the two states will be degenerate in energy,
E12 = E21.
In general starting from n different one-particle modes there will be n! corresponding n-particle
states each associated with a different eigenvalue of the spatial translations obtained by a permu-
tation of the addenda in the non-abelian sum. Of course this pattern will occur for any choice of
coordinates and it can be shown [11] that the symmetrization itself is independent of the particular
coordinates adopted. What does depend on the choice of coordinates, as one might expect from the
discussion above, is the way the field modes combine, e.g. for two-particle states it follows directly
from 3.7 that the modes will combine to give a different total momentum according to the value of
the parameter β .
To summarize: in order to quantize a classical field theory whose modes parametrize group valued
plane waves one needs to pick a set of coordinates on the group manifold. In ordinary field theory
where the mass-shell is embedded in Minkowski space there exists a preferred choice of coordi-
nates, the usual cartesian momenta, for which we have a trivial (Leibniz-like) co-product. In our
case there is no preferred choice of coordinates on the momentum manifold, since there is no set of
coordinates for which one has a trivial co-product. Different choices of coordinates will correspond
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to Hilbert spaces whose base states are labelled by modes which obey different dispersion relations
and composition laws in the multiparticle sector. The interesting question at this point is whether
there exist some kind of physical input which could dictate a preferred choice of coordinates on
momentum space. This important point will be addresses in future work.

5. Hidden entanglement at the Planck scale

A deeper look at the multiparticle space construction sketched above reveals that the non-trivial
algebraic structure introduced by having group valued momenta endows the Fock space with a “fine
structure". Indeed the various multiparticle states one can construct from a set of one-particle kets
(which in the absence of deformation would be degenerate) can in principle be distinguished by
measuring their momentum splitting. For example for the two particle states above the momentum
splitting is given by

|∆P12| ≡ |P12−P21|=
1
κ
|p1|p2|−p2|p1|| ≤

2
κ
|p1||p2| (5.1)

which is of order |pi|2/κ . In other words the 2-particle Hilbert (sub)space becomes H 2
κ
∼=S2H 2⊗

C2, where S2H 2 is the ordinary symmetrized two-particle Hilbert space. Indeed keeping in mind
that the two states are degenerate in energy we can write them as

|E〉⊗ | ↑〉 = |p1p2〉κ (5.2)

|E〉⊗ | ↓〉 = |p2p1〉κ (5.3)

with E ≡ E12 = E21 = ω(p1)+ω(p2). Due to this additional structure we can now have states
in which the “macroscopic" degrees of freedom of S2H 2 can be entagled with the “planckian"
degrees of freedom C2. For example, the following state, superposition of two-particle states with
total energies EA = ω(p1A)+ω(k2A) and EB = ω(p1B)+ω(k2B)

|Ψ〉= 1/
√

2(|EA〉⊗ | ↑〉+ |EB〉⊗ | ↓〉) , (5.4)

exhibits this type of entanglement. The remarkable fact is that the possibility of this micro-macro
entanglement renders possible interesting phenomena of decoherence [15]. To illustrate this con-
sider the unitary evolution of a quantum system ρ(t) =U(t)ρ(0)U†(t). We start with a pure state
ρ(0) factorized with respect to the bipartition “macro-micro". If U(t) acts as an “entangling gate"
for the macro-micro degrees of freedom, the state ρ(t) will be entangled. A macroscopic observer,
not able to resolve the planckian degrees of freedom, at the beginning will see the reduced sys-
tem in a pure state ρobs(0) = TrPlρ(0) since she will be tracing over the “planckian" degrees of
freedom. As the system evolves she will see the system in the mixed state

ρobs(t) = TrPlρ(t) = TrPl
[
U(t)ρ(0)U†(t)

]
, (5.5)

since she is now tracing over degrees of freedom which are entangled. In other words for the macro-
scopic observer, the evolution is not unitary! This shows how Fock space built out of modes living
on a group manifold provides a simple example of a quantum system which exhibits decoherence
due to the presence of hidden “planckian" degrees of freedom. Interestingly enough this type of
decoherence has been discussed in other contexts as a possible probe for experimental signatures of
quantum gravity (see e.g. [35]). Could this open a “phenomenological window" on the deformed
QFT models discussed in this talk?
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6. Summary

We discussed a model of “deformed" relativistic kinematics where the dual space of the Lie
algebra of translation generators is endowed with a non-trivial Lie-bracket or, loosely speaking, in
which the system exhibit a “non-commutative configuration space". In the corresponding field the-
ory the new structure leads to plane waves which are element of a Lie group and thus to a “curved
momentum space". At the symmetry level one finds a deformed action of the Lorentz algebra
which includes an energy scale κ related to the curvature of the momentum manifold. Motivations
to look at these type of models come from three dimensional gravity [ ], in which the phase space
of a point particle exhibit similar structures, and from non-commutative field theory of the “Lie
algebra-type" where the Fourier expansion of non-commutative fields leads to group-valued plane
waves.
We analyzed in detail the quantization of free field theories with group valued momenta and showed
how one encounters ambiguities related to the possibility of choosing different set of coordinate on
the momentum manifold. We showed how for a particular choice of coordinates the construction of
the one-particle Hilbert space requires, besides the usual restriction to positive energy subspace of
the classical field phase space, a “Lorentz invariant" truncation to solutions whose modes “magni-
tude" is bounded from above by the UV scale κ . At the multiparticle level the non-trivial behaviour
of field modes requires a “momentum-dependent" symmetrization in the construction of bosonic
states. Moreover the non-abelian composition rule of field modes is associated to a fine structure
of the Fock space accessible only to observers whose detectors have “planckian" resolution. We
concluded with some speculation on multiparticle states with planckian-macroscopic entanglement
and the possible role that decoherence phenomena associated with such states might have for phe-
nomenologically relevant predictions.
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