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Noncommutative Gerbes

1. Introduction

Gerbes are a higher version of line bundles (bundles with fiber C). In electromagnetism we
have a gauge potential A and a field strenght F . The geometry underlying electromagnetism is
that of a line bundle with connection A and curvature F . In higher electromagnetism we have
a gauge potential two form B and a field strength 3-form H. The geometry underlying higher
electromagnetism is that of a gerbe with curving B and curvature H. In this talk we generalize the
notion of gerbe to the noncommutative case. We work in the context of deformation quantization.

There are quite some motivations for this investigation. i) Noncommutative gauge theory has
proven useful in the construction of effective D-brane actions in a Neveu-Schwarz background
B-field that is constant (dB = 0). We address the more general case where we have a global 3-
form H and locally H = dB. This should lead to a noncommutative description of D-branes in
a background H that is nonvanishing and even topologically nontrivial (because H is closed but
not necessarily exact). ii) Noncommutative gerbes provide further examples of noncommutative
geometric structures. While this could be per se interesting we find relevant that our constructuion
succesfully tests noncommutative line bundles as building blocks for noncomutative gerbes. iii)
Noncommutative gerbes provide examples of quantization of antisymmetric tensors that fail to
be Poisson tensors. When the two form B is closed and nondegenerate we have a symplectic
structure. Its quantization leads to a well defined associative ?-product. When H = dB 6= 0 it
is usually believed that it is necessary to relax associativity of the corresponding (would be) ?-
product. We will see that this is not the case if H can be associated with a twisted Poisson tensor,
an antisymmetric tensor that fails to be Poisson because of the nonvanishing of H (see 6.2). Indeed
in this evenience one can still construct a true Poisson tensor and an associated ?-product. If more
in general dH = 0 but is not exact we have to deal with ?-products for each open patch where H
is exact. It is the noncommutative gerbe geometry that captures the global structure of these local
?-products. iv) noncommutative gerbes provide examples of nonabelian gerbes. We therefore have
a higher version of the statement that noncommutative U(1) gauge theory is a nonabelian gauge
theory.

In this paper we choose to give an overwiew of the many different stept that lead to the con-
struction of noncommutative gerbes in deformation quantization. We refer to the original paper
[1] for more details and the notion of noncommutative connection. The purpose here is to em-
phasize which are the main ingredients and the basic ideas that lead to our results. The notion of
noncommutative gerbe in deformation quantization is here also presented slightly more abstractly.

We start in Section 2 by recalling the properties of the Seiberg-Witten map (SW map) between
commutative and noncommutative gauge theories [2, 3] This map does not only relate commutative
(U(1)) infinitesimal gauge transformations to infinitesimal noncommutative ones. It also relates the
corresponding finite gauge transformations. Finite gauge transformations are associated with tran-
sition functions of the underlying bundle, this leads to the notion of noncommutative line bundles
[4]. This is the content of Section 3

In Section 4 we then explain, following Hitchin [5], how commutative abelian gerbes can
be realized via line bundles. In Section 5 we then use noncommutative line bundles to construct
noncommutative gerbes.
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Noncommutative Gerbes

In the last section we provide an example of noncommutative gerbes arising from quantization
of twisted Poisson structures.

While the main idea inspiring our construction is that of the Seiberg-Witten map, the definition
of noncommutative line bundle can be given abstractly and independently from the notion of SW
map. Similarly our definition of noncommutative gerbe is independent from the SW map construc-
tion. We return to the SW map in the last section because it leads to the construction of nontrivial
examples.

We also mention that related later work concerning noncommutative gerbes can be found in
[6], [7], [8], [9], [10].

2. SW map

We denote by a, λ and ψ respectively the commutative U(1) gauge potential, the Lie algebra
valued gauge parameter and a charged matter field. We have the commutative field strenght f = da
and the (infinitesimal) gauge transformations

δλ a = dλ (2.1)

δψ = iλψ (2.2)

The noncommutative variables are denoted with capital letters A, Λ Ψ, the noncommutative field
strength is given by Fµν = ∂µAν − ∂νAµ − iAµ ? Aν + iAν ? Aµ and the noncommutative gauge
transformations read

δ̂ΛA = dΛ+ iΛ?A− iA?Λ (2.3)

δ̂ΛΨ = iΛ?Ψ . (2.4)

Here the ?-product is the quantization of a given Poisson tensore θ . For example if we are in R4

and we consider the Poisson tensor θ = θ µν∂µ ⊗∂ν , with θ µν constants, we obtain the Moyal star

product f ?g = f e
i
2 h̄θ µν

←
∂ µ

→
∂ ν g.

The Seiberg-Witten map is a map between the commutative and the noncommutative potentials
and gauge transformations [2]. It is found by requiring that (infinitesimal) commutative gauge
transformations δλ correspond to noncommutative gauge transformations δ̂Λ:

a λ−−−−→ a+δλ a

SW

y SW

y
A[a]

Λ−−−−→ A[a]+ δ̂ΛA[a] = A[a+δλ a]

We are able to satisfy the equality A[a]+ δ̂ΛA[a] = A[a+δλ a] because we allow Λ to depend also on
the gauge potential a and its derivatives, i.e., Λ = Λ[λ ,a]. Of course both A and Λ depend on the
Poisson tensor θ and the deformation parameter h̄.

Commutativity of the above diagram implies that (at least locally) commutative and noncom-
mutative gauge equivalence classes are in one-to-one correspondence. Since physics depends only
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on gauge equivalence classes it is then natural to expect that, provided the commutative and non-
commutative lagrangians are suitably chosen, the same dynamics can be formulated using these two
different gauge theories. This is for example what happens for the Dirac-Born-Infeld lagrangians
describing the low energy (and slowly varying) fields on D-branes.

The noncommutative matter fields Ψ can be similarly obtained by requiring [11, 12]

ψ
λ−−−−→ ψ +δλ ψ

SW

y SW

y (1)

Ψ[ψ,a]
Λ−−−−→ Ψ[ψ,a]+ δ̂ΛΨ[ψ,a] = Ψ[ψ+δλ ψ,a+δλ a]

(2.5)

For constant and nondegenerate Poisson tensor θ µν, at first order we have (see the appendix of [13]
for arbitrary θ )

Aρ = aρ +
1
2

h̄θ
µνaν∂µaρ +

1
2

h̄θ
µν fµρ aν +O(h̄2

θ
2) (2.6)

Λ = λ +
1
2

h̄θ
µν

∂µλ aν +O(h̄2
θ

2) (2.7)

The SW map can be worked out order by order in h̄. Furthermore there is a beautiful relation
between SW map and Kontsevich [14] construction of a ?-product associated with a Poisson tensor
θ [15]. It allows to consider the SW map for arbitrary Poisson tensors and to show at all orders in
h̄ its existence.

In short in order to prove the Formality theorem Kontsevich introduced skew-symmetric mul-
tilinear maps Un (for n = 0,1,2...∞) that map tensor products of n polyvector fields to multidiffer-
ential operators. These maps can in particular can be used to construct a ?-product (that is a bidif-
ferential operator, ( f ,g)→ f ?g) deformation quantization of a Poisson tensor θ = θ µν(x)∂µ ⊗∂ν

(that is a bivector field).
These same maps can be used to construct the SW map, i.e., the noncommutative gauge po-

tential and gauge transformation (A,Λ) from the commutative ones a,λ .

Covariantizing map D

A key point is played by the covariantizing map D , see [3]. In gauge theory the notion of gauge
potential a (defined on an open U of the manifold M) is equivalent to that of covariant derivative
D = d + a; we recall that this name stems from the fact that if δλ ψ = iλψ then Dψ transforms
covariantly

δλ Dψ = iλDψ . (2.8)

Similarly rather than considering the noncommutative gauge potential A (defined on the open U
of M) we can consider the covariantizing map D , a differential operator from the space of (formal
power series in h̄ of) smooth functions on the open U of M to itself,

D : C∞(U)[[h̄]]→C∞(U)[[h̄]] .

4
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If δ̂ΛΨ = iΛ ?Ψ then in general δ̂Λ f ?Ψ = f ? δ̂ΛΨ 6= iΛ ? f ?Ψ. The differential operator D

covariantizes the function f because it satisfies

δ̂Λ D( f )?Ψ = iΛ?D( f )?Ψ . (2.9)

The Seiberg-Witten map can then be seen as a map between a,λ and D ,Λ where D depends on
a,θ and their derivatives, we write D[a], and similarly Λ = Λ[λ ,a]. The SW condition between
commutative and noncommutative gauge transformations A[a]+ δ̂ΛA[a] = A[a+δλ a] now reads, for
all smooth functions f ∈C∞(U)[[h̄]],

D[a]( f )+Λ?D( f )−D( f )?Λ = D[a+δλ a]( f ) . (2.10)

The SW map a→D[a], λ →Λ[λ ,a] is constructed in [15]. There is of course an explicit relation
between D and A = Aµdxµ , D(xµ) = xµ + h̄θ µν(x)Aν .

Finite gauge transformations
The infinitesimal gauge transformations can be integrated to finite ones, we thus obtain the usual
commutative transformations

ψ
g−→ ψg = gψ (2.11)

and a
g−→ ag = a+ igdg−1 or equivalently

D
g−→ Dg = gDg−1 (2.12)

and the corresponding noncommutative ones

Ψ[ψ,a]
g−→ Ψ[ψg,ag] = G[g,a] ?Ψ[ψ,a] (2.13)

D
g−→ Dg = Ad?G[g,a]

◦D (2.14)

where, for all smooth functions h ∈ C∞(U)[[h̄]] that are ?-invertible1, the map Ad?h is defined by
Ad?h( f ) = h? f ?h−1, for all f ∈C∞(U)[[h̄]]. Thus (2.14) equivalently reads, for all f ∈C∞(U)[[h̄]],

D( f )
g−→Dg( f ) = G[g,a] ?D( f )?G−1

[g,a] . (2.15)

3. Noncommutative line bundles

Let’s apply two consecutive finite gauge transformations, with gauge group elements g1 and
g2, they are the same as the gauge transformation with gauge group element g1g2,

Ψ
g1−→ G[g1,a] ?Ψ

g2−→ G[g1,ag2 ]
?G[g2,a] ?Ψ = G[g1g2,a] ?Ψ (3.1)

hence we obtain
G[g1,ag2 ]

?G[g2,a] = G[g1g2,a] (3.2)

1i.e, such that there exist h−1? satisfying h ? h−1? = h−1? ? h = 1. In the sequel, for ease of notation we simply
denote h−1? by h−1 understanding that the inverse is taken with respect to the ?-product.
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Now let’s consider g1 and g2 to be transition functions of a line bundle. This means that
we have a smooth manifold M, and subordinate to an open cover {U i} of M we have transition
functions gi j : U i∩U j→U(1), that on triple overlaps U i jk =U i∩U j∩Uk satisfy gi jg jk = gik. Let
also consider a connection on this line bundle, i.e., a set of 1-forms {a j} where each a j is defined
on U i, such that on double overlaps a j = ak + igikdg−1

jk .
If on M we have also a Poisson structure θ we can construct in each open U i the corresponding

covariantizing map D[ai] : C∞(U i)[[h̄]]→ C∞(U i)[[h̄]] associated (via SW map) to the connection
ai. Let g1 = gi j, g2 = g jk, a = ak, then ag2 = a j; and we have a j = ak + igikdg−1

jk in U jk =U i∩U j

and also g1g2 = gi jg jk = gik in U i jk. Equation (3.2) then reads

G[gi j,agJ ]
?G[g jk,ak] = G[gik,ak] (3.3)

that is the analogue of the line bundle cocycle condition gi jg jk = gik. This condition is comple-
mented by the relation D i = Ad?Gi j ◦D j, i.e.,

Ad?Gi j = D i ◦D j−1
(3.4)

Since the noncommutative structure emerging from (SW map) quantization of a commutative line
bundle with connection is summarized in equations (3.3) and (3.4) we are led to define noncom-
mutative line bundles as the structure given by the noncommutative transition functions Gi j and
covariantizing maps D 〉. We thus arrive at the following abstract definition (i.e. independent from
the SW map construction followed so far) [4],

Definition Let M be a smooth manifold with a ?-product (a bidifferential operator ? : C∞(M)[[h̄]]⊗
C∞(M)[[h̄]]→C∞(M)[[h̄]] that at zeroth order in h̄ equals the usual pointwise product, and that is
associative). Let ’s consider a good covering {U i} of M. A noncommutative line bundle L is
defined by a collection of C[[h̄]]-valued local transition functions Gi j ∈ C∞(U i ∩U j)[[h̄]], and a
collection of maps D i : C∞(U i)[[h̄]] → C∞(U i)[[h̄]], formal power series in h̄, starting with the
identity, and with coefficients being differential operators, such that

Gi j ?G jk = Gik (3.5)

on U i∩U j ∩Uk, Gii = 1 on U i, and

Ad?Gi j = D i ◦D j−1
(3.6)

on U i∩U j or, equivalently, D i( f )?Gi j = Gi j ?D j( f ) for all f ∈C∞(U i∩U j)[[h̄]].

Obviously, with this definition the local maps D i can be used to define globally a new star
product ?′ (because the inner automorphisms Ad?Gi j do not affect ?′)

D i( f ?′ g) = D i f ?D ig . (3.7)

We call the collection of maps D i a global equivalence between the ? and the ?′ products globally
defined on M.

6
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If on a Poisson Manifold M we consider two equivalent commutative line bundles L1 = {gi j
1 },

L2{gi j
2 } with equivalent connections {ai

1} and {ai
2}, and we apply the SW map we obtain an exam-

ple of two equivalent noncommutative line bundles. In general (independently from the SW map
construction) we say that two line bundles L1 = {Gi j

1 ,D
i
1,?} and L2 = {Gi j

2 ,D
i
2,?} are equivalent

if there exists a collection of invertible local functions H i ∈C∞ = (U i)[[h̄]] such that

Gi j
1 = H i ?Gi j

2 ? (H j)−1 (3.8)

and
D i

1 = Ad?H i ◦D i
2 .D

i
1(.) = H i ?D i

2(.)? (H
i)−1. (3.9)

The tensor product of two commutative line bundles has transition functions given by the
products of the initial transition functions.

The tensor product of noncommutative line bundles L1 = {Gi j
1 ,D

i
1,?1} and L2 = {Gi j

2 ,D
i
2,?2}

is well defined if ?2 = ?′1 (or ?1 = ?′2.) Then the corresponding tensor product is a line bundle
L2⊗L1 = L21 = {Gi j

12,D
i j
12,?1} defined as

Gi j
12 = D i

1(G
i j
2 )?1 Gi j

1 = Gi j
1 ?1 D j

1(G
i j
2 ) (3.10)

and
D i

12 = D i
1 ◦D i

2 . (3.11)

The order of indices of L21 shows the bimodule structure of the corresponding space of sections
to be defined below, whereas the first index on the G12’s and D12’s indicates the star product (here:
?1) by which the objects multiply.

Let’s recall that noncommutative manifolds are usually described by a noncommutative al-
gebra A (that of would be complex valued functions on the manifold) and similarly, since finite
projective modules are in one-to-one correspondence with vector bundles on a compact manifold
M, noncommutative bundles are described as finite projective A -modules. The noncommutative
line bundle L → M, introduced in this section has an equivalent description as finite projective
module. The module is that of sections Ψ i.e., a collection of functions {Ψi}, Ψi ∈ C∞(U i)[[h̄]]
satisfying consistency relations

Ψ
i = Gi j ?Ψ

i (3.12)

on all intersections U i∩U j. The space of sections E is indeed a right A = (C∞(M)[[h̄]],?) module.
We shall use the notation EA for it. The right action of the function f ∈A is the regular one

Ψ. f = {Ψk ? f} . (3.13)

Using the maps D i it is easy to turn E also into a left A ′ = (C∞(M)[[h̄]],?′) module A ′E . The left
action of A ′ is given by

f .Ψ = {D i( f )?Ψ
i} . (3.14)

It is easy to check, using (3.6), that the left action (3.14) is compatible with (3.12). From the
property (3.7) of the maps D i we find

f .(g.Ψ) = ( f ?′ g).Ψ . (3.15)

7
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Together we have a bimodule structure A ′EA on the space of sections. It can be shown that the two
? products ? and ?′ are Morita equivalent [4].

4. Commutative gerbes

A (complex) line bundle can be represented by a 1-cocycle in Čech cohomology, i.e., a col-
lection of smooth complex valued (or U(1)-valued) transition functions gαβ on the intersections
Uα ∩Uβ of an open cover {Uα} of a manifold M satisfying gαβ = g−1

βα
, and gαβ gβγ gγα = 1 on

Uα ∩Uβ ∩Uγ . Similarly, an abelian gerbe can be represented by a 2-cocycle in Čech cohomology,
i.e., by a collection λ = {λαβγ} of maps λαβγ : Uα ∩Uβ ∩Uγ →U(1), valued in the abelian group
U(1), satisfying

λαβγ = λ
−1
βαγ

= λ
−1
αγβ

= λ
−1
γβα

(4.1)

and the 2-cocycle condition
δλ = λβγδ λ

−1
αγδ

λαβδ λ
−1
αβγ

= 1 (4.2)

on Uα ∩Uβ ∩Uγ ∩Uδ . The collection λ = {λαβγ} of maps with the stated properties represents
a gerbe in the same sense as a collection of transition functions represents a line bundle. In the
special case where λ is a Čech 2-coboundary with λ = δh, i.e., λαβγ = hαβ hβγ hγα , we say that
the collection h = {hαβ} of functions hαβ : Uα ∩Uβ →U(1) represents a trivialization of a gerbe.

There exists a local trivialization of a 2-cocycle for any particular open set U0 of the covering:
defining hβγ ≡ λ0βγ with β ,γ 6= 0 we find from the 2-cocycle condition that λαβγ = hαβ hβγ hγα .
In particular on double overlaps (say U0∩U0′) we have two trivializations {hαβ} and {h′

αβ
}. Now

we notice that the ratio gαβ ≡ hαβ/h′
αβ

of two 2-coboundaries {hαβ}, {h′αβ
} representing two

trivializations of a gerbe is a 1-cocycle: gαβ gβγ gγα = 1. This observation leads to a definition
of an abelian gerbe (more precisely “gerbe data") á la Hitchin [5] in terms of line bundles on the
double overlaps of the cover. Thus while a line bundle is characterized by transition functions on
double oberlaps Uα ∩Uβ , a gerbe is characterized by transition line bundles on double overlaps
Uα ∩Uβ . A gerbe á la Hitchin is then a collection of line bundles Lαβ for each double overlap
Uα ∩Uβ , such that:

G1 There is an isomorphism Lαβ
∼= L−1

βα
.

G2 There is a trivialization λαβγ of Lαβ ⊗Lβγ ⊗Lγα on Uα ∩Uβ ∩Uγ .

G3 The trivialization λαβγ satisfies δλ = 1 on Uα ∩Uβ ∩Uγ ∩Uδ .

5. Noncommutative gerbes

Since gerbes can be defined via line bundles and their products, and since in Section 3 we have
noncommutative line bundles and we can also consider their product we arrive at the following

Definition Consider a manifold M, a covering {Uα} (not necessarily a good one) and on each local
patch Uα a star product ?α . Let also consider a good covering {U i

αβ
} of each double intersection

Uα ∩Uβ and a noncommutative line bundle on Uα ∩Uβ , Lβα = {Gi j
αβ

,D i
αβ

,?α}

Gi j
αβ

?α G jk
αβ

= Gik
αβ

, Gii
αβ

= 1 , (5.1)

8
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D i
αβ

( f )?α Gi j
αβ

= Gi j
αβ

?α D j
αβ

( f ) . (5.2)

We require
D i

αβ
( f ?β g) = D i

αβ
( f )?α D i

αβ
(g) , (5.3)

i.e, we require the space of sections of this line bundle to be a left module with respect to the algebra
Aβ = (C∞(Uα ∩Uβ )[[h̄]],?β ) and a right module with respect to the algebra Aα = (C∞(Uα ∩
Uβ )[[h̄]],?α)

2. The line bundles {L
βα
} define a noncommutative gerbe if

G1? Lαβ = {Gi j
βα

,D i
βα

,?β} and Lβα = {Gi j
αβ

,D i
αβ

,?α} are related as follows

{Gi j
βα

,D i
βα

,?β}= {(D
j

αβ
)−1(G ji

αβ
),(D i

αβ
)−1,?β} (5.4)

i.e. Lαβ = L −1
βα

. (Notice also that (D j
αβ

)−1(G ji
αβ

) = (D i
αβ

)−1(G ji
αβ

) .)

G2? On the triple intersection Uα ∩Uβ ∩Uγ the tensor product Lγβ ⊗Lβα is equivalent to the line
bundle Lγα . Explicitly

Gi j
αβ

?α D j
αβ

(Gi j
βγ
) = Λ

i
αβγ

?α Gi j
αγ ?α (Λ j)−1

αβγ
, (5.5)

D i
αβ
◦D i

βγ
= Ad?α

Λ
i
αβγ
◦D i

αγ . (5.6)

G3? On the quadruple intersection Uα ∩Uβ ∩Uγ ∩Uδ

Λ
i
αβγ

?α Λ
i
αγδ

= D i
αβ

(Λi
βγδ

)?α Λ
i
αβδ

, (5.7)

Λ
i
αβγ

= (Λi
αγβ

)−1 and D i
αβ

(Λi
βγα

) = Λ
i
αβγ

. (5.8)

The cocycle condition (5.7) is consistent with conditions G1? and G2?, indeed, define

D i
αβγ

= D i
αβ
◦D i

βγ
◦D i

γα . (5.9)

Then it is easy to see that

D i
αβγ
◦D i

αγδ
◦D i

αδβ
= D i

αβ
◦D i

βγδ
◦D i

βα
. (5.10)

In view of (5.6) this implies that

Λ
i
αβγδ

≡D i
αβ

(Λi
βγδ

)?α Λ
i
αβδ

?α Λ
i
αδγ

?α Λ
i
αγβ

is central. Using this and the associativity of ?α together with (5.5) applied to the triple tensor
product Lδγ ⊗Lγβ ⊗Lβα transition functions

Gi j
αβγ
≡ Gi j

αβ
?α D j

αβ
(Gi j

βγ
)?α D j

αβ
(D j

βγ
(Gi j

γδ
)) (5.11)

2The opposite order of indices labelling the line bundles and the corresponding transition functions G and maps D

simply reflects a choice of convention. As in Section 3 the order of indices of Lαβ indicates the bimodule structure of
the corresponding space of sections, whereas the order of Greek indices on G’s and D’s indicates the star product in
which the objects multiply. The product always goes with the first index of the multiplied objects
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reveals that Λi
αβγδ

is independent of i. It is therefore consistent to set Λi
αβγδ

equal to 1. A similar
consistency check works also for (5.8).

Let us consider the triple tensor product Lαγβ ≡ Lαγ ⊗Lγβ ⊗Lβα with maps D i
αβγ

and
transition functions (5.11). Using condition G1? and G2? one can show that the product bundle

Lαβγδ = Lαβγ ⊗Lαγδ ⊗Lαδβ ⊗Lαβ ⊗Lβδγ ⊗Lβα (5.12)

is canonically trivial: it is a product of canonically trivial bundles of the kind Lαβ
−1Lαβ . These

bundles have canonical unit section and hence also Lαβγδ has canoncial unit section. Moreover
using G2? one can show that Lαβγδ has also transition functions Gi j

αβγδ
= 1, maps D i

αβγδ
= id

and global section (Λi
αβγδ

). The cocycle condition (5.7) implies (Λi
αβγδ

) to be the canonical unit
section. If two of the indices α, β , γ, δ are equal, triviality of the bundle Lαβγδ implies (5.8).

The noncommutatve gerbe definition simplifies if we consider {Uα} to be a good covering
(this is always doable by refining the initial covering). Then the covering {U i

αβ
} of Uα ∩Uβ can

be composed just by the open Uα ∩Uβ so that the bundles Lβα = {Gi j
αβ

,D i
αβ

,?α} simply read
Lβα = {Dαβ ,?α}. In this case Λαβγ is a global function on the triple intersection Uα ∩Uβ ∩Uγ ,
and on the quadruple overlap Uα ∩Uβ ∩Uγ ∩Uδ it satisfies conditions analogous to (5.7) and (5.8)

Λαβγ ?α Λαγδ = Dαβ (Λβγδ )?α Λαβδ , (5.13)

Λαβγ = (Λαγβ )
−1 and Dαβ (Λβγα) = Λαβγ . (5.14)

Also
Dαβ ◦Dβγ ◦Dγα = Ad?α

Λαβγ . (5.15)

So we can take formulas (5.13)-(5.15) as a definition of a noncommutative gerbe in the case of a
good covering {Uα}. We say that the gerbe is defined by the local data {?α ,Dαβ ,Λαβγ}.

From now on we shall consider only good coverings. A noncommutative gerbe defined by
{?α ,Dαβ ,Λαβγ} is said to be trivial if there exists a global star product ? on M and a collection of
maps Dα that provide a local equivalence between the global product ? and the local products ?α ,
i.e,

Dα( f )?Dα(g) = Dα( f ?α g) (5.16)

and that satisfy the following two conditions:

Gαβ ?Gβγ = Dα(Λαβγ)?Gαγ (5.17)

and
Ad?Gαβ ◦Dβ = Dα ◦Dαβ . (5.18)

where Gαβ are a collection of “twisted” (by Dα(Λalβγ)) transition functions, defined on each over-
lap Uα ∩Uβ .

Locally, every noncommutative gerbe is trivial as is easily seen from (5.13), (5.14) and (5.15)
by fixing the index α .

10
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More in general two noncommutative gerbes respectively defined3 by their corresponding local
data {?α ,Dαβ ,Λαβγ} and {?′α ,D ′αβ

,Λ′
αβγ
} are equivalent if there exist local equivalences Dα of

star products ?α and ?′α , i.e.,

Dα( f )?′α Dα(g) = Dα( f ?α g) (5.19)

and local functions Λαβ such that

Ad?′α Λαβ ◦D ′αβ
◦Dβ = Dα ◦Dαβ (5.20)

and
Dα(Λαβγ)?

′
α Λαγ = Λαβ ?′α D ′

αβ
(Λβγ)?

′
α Λ
′
αβγ

. (5.21)

We conclude this section with the following remarks concerning the role of local functions
Λαβγ and Dαβ satisfying relations (5.13)-(5.15). These represent an honest non-abelian 2-cocycle,
as defined for example in [16]. It follows from the discussion of Section 2, that each Dαβ defines an
equivalence, in the sense of deformation quantization, of star products ?α and ?β on Uα ∩Uβ . The
non-triviality of the non-abelian 2-cocycle (5.13)-(5.15) can therefore be seen as an obstruction to
gluing the collection of local star products {?α}, i.e., the collection of local rings C∞(Uα)[[h̄]], into
a global one. We also mention that in [17] a 2-cocycle similar to that of (5.13)-(5.15) represents an
obstruction to gluing together certain local rings appearing in quantization of contact manifolds.

By the correspondence (in the sense of 2-categories, see [16] for details) between degree two
non-abelian cohomology classes and equivalence classes of (standard) gerbes understood as locally
non-empty and locally connected stack in groupoids there is such a (standard) gerbe corresponding
to this specific non-abelian 2-cocycle. Hence our definition of a noncommutative gerbe leads to a
non-abelian gerbe in the standard sense of Giraud, Deligne, Breen and Brylinski [18, 19, 16, 20].

6. Noncommutative gerbes from quantization of twisted Poisson structures

Consider a closed integral 3-form on M, H ∈H3(M,Z). Such a form is known to define a gerbe
on M. We can find a good covering {Uα} and local potentials Bα with H = dBα for H. On Uα ∩Uβ

the difference of the two local potentials Bα −Bβ is closed and hence exact: Bα −Bβ = daαβ . On
a triple intersection Uα ∩Uβ ∩Uγ we have

aαβ +aβγ +aγα =−iλαβγdλ
−1
αβγ

. (6.1)

The collection of local functions {λαβγ} represents a gerbe.
Let us also consider on M an antisymmetric bivector field θ = θ (0)+ h̄θ (1)+ . . . (each coef-

ficient of the power series in h̄ being an antisymmetric vector field). We call θ a formal bivector
field. Let θ be such that

[θ ,θ ] = h̄ θ
∗H , (6.2)

where [ , ] is the Schouten-Nijenhuis bracket and θ ∗ denotes the natural map sending n-forms
to n-vector fields by “using θ to raise indices”. Explicitly, in local coordinates, (θ ∗H)i jk =

3after passing to a common refinement of respective trivializing coverings, if necessary

11
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θ imθ jnθ koHmno. We call θ a Poisson structure twisted by H [21, 22, 23]. Indeed when H → 0
we recover a true Poisson structure. On each Uα we can introduce a local formal Poisson structure

θα = θ(1− h̄Bαθ)−1 , (6.3)

indeed [θα ,θα ] = 0. Explicitly, using local coordinates θ
i j
α = θ ik ((1− h̄Bαθ)−1) j

k with (1−
h̄Bαθ) j

k = δ
j

k − h̄Bα klθ
l j. The Poisson structures θα and θβ are related on the intersection Uα∩Uβ

by
θα = θβ (1+ h̄Fβαθβ )

−1 , (6.4)

with an exact Fβα = daβα . Now we can use Kontsevich’s formality [14] to obtain local star prod-
ucts ?α and to construct for each intersection Uα ∩Uβ the corresponding equivalence maps Dαβ

between ?α and ?β . See [15, 4] for an explicit formula for the equivalence maps. According to our
discussion in the previous section these Dαβ , supplemented by trivial transition functions, define a
collection of trivial line bundles Lβα . On each triple intersection we then have

Dαβ ◦Dβγ ◦Dγα = Ad?α
Λαβγ . (6.5)

It follows from the discussion after formula (5.8) that the collection of local functions {Λαβγ}
represents a noncommutative gerbe (a deformation quantization of the classical gerbe represented
by {λαβγ}) if each of the central functions Λαβγδ introduced there can be chosen to be equal to 1.
See [24, section 5] and [25] that this is really the case. As mentioned at the end of the previous
section, the non-triviality of the non-abelian 2-cocycle (5.13)-(5.15) can be seen as an obstruction
to gluing the collection of local star products {?α}, i.e., the collection of local rings C∞(Uα)[[h̄]],
into a global one. Hence, in the context of this section, this obstruction comes as a deformation
quantization of the classical obstruction to gluing together local formal Poisson brackets { , }α into
a global one.
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[arXiv:math.sg/0104189]

[24] P. Ševera, “Quantization of Poisson Families and of twisted Poisson structures,” Lett. Math. Phys. 63
(2003), [arXiv:math.qa/0205294]

[25] M. Kontsevich, “Deformation quantization of algebraic varietes,” Lett. Math. Phys. 56, 271 (2001),
[arXiv:math.ag/0106006]

13


