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1. The bmsn algebra in higher dimensions

When studying asymptotic symmetries, a fast way to get an idea of what the eventual algebra
might be is to solve the Killing equation for the background metric to leading order. When this is
done for asymptotically flat space-times at null infinity in n spacetime dimensions [1], one finds
that the symmetry algebra consists of the semi-direct sum of conformal Killing vectors of the n−2
sphere acting on the ideal of infinitesimal supertranslations, which are parametrised by arbitrary
functions on the n−2 sphere.

If xA, A = 2, . . . ,n are coordinates on the n− 2 sphere, D̄A the associated covariant deriva-
tive, Y A(xB)∂A the conformal Killing vectors and T (xA) the functions parametrising the infinites-
imal supertranslations, the bmsn algebra is explicitly defined through the commutation relations
[(Y1,T1),(Y2,T2)] = (Ŷ , T̂ ) where{

Ŷ A = Y B
1 ∂BY A

2 −Y B
2 ∂BY A

1 ,

T̂ = Y A
1 ∂AT2−Y A

2 ∂AT1 +
1

n−2(T1D̄AY A
2 −T2D̄AY A

1 ) .
(1.1)

For n > 4, the first factor is isomorphic to the n(n− 1)/2 dimensional algebra so(n− 1,1)
of infinitesimal conformal transformations of Euclidean space in n−2 dimensions and also to the
Lorentz algebra in n dimensions.

When making a more detailed analysis taking the precise definitions of asymptotically flat
spacetimes in higher dimensions into account, it turns out that the supertranslations collapse to
ordinary translations so that the resulting symmetry algebra is just the Poincaré algebra [2, 3].

In the realizations of asymptotic symmetries in general relativity in higher dimensions, there
thus remain only standard rotations, including the hyperbolic ones, and translations. In three and
four dimensions however, the asymptotic symmetry algebras are infinite-dimensional and thus
yield much more information on the system.

Before turning to the algebra in three and four dimensions, we make a couple of remarks on
how to actually compute the asymptotic symmetry algebra and on its realizations.

2. Asymptotic versus complete gauge fixations. Realizations

There are basically two attitudes to the problem. On the one hand, one can fix the coordi-
nate freedom only asymptotically in which case the asymptotic symmetry algebra appears as the
quotient algebra of allowed, modulo an ideal of trivial, infinitesimal transformations. The advan-
tage of this approach is that it is easier to show that specific solutions to the equations of motion
are admissible, i.e., asymptotically flat in the case of interest here. When one chooses to fix the
coordinate freedom completely on the other hand, the asymptotic symmetry algebra appears as
the residual “global” symmetry algebra after gauge fixing and no longer depends on arbitrary
functions of the bulk spacetime. The advantage of this “reduced phase space” approach is that
only physical degrees of freedom remain. A standard example illustrating this difference is the
Brown-Henneaux [4] versus the Feffermann-Graham [5, 6] definition of asymptotically anti-de
Sitter spacetimes in three dimensions.
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Recently in [7, 8], we have followed the latter approach in the asymptotically flat case by us-
ing a Bondi-Metzner-Sachs type of gauge in four dimensions [9, 10, 11] and a reasonable analog
thereof in three. In particular, the asymptotic symmetry algebras to be discussed below have ex-
plicitly been shown to be the same whether one fixes the gauge completely or only asymptotically.
Furthermore, as suggested by Penrose’s conformal approach to asymptotically flat spacetimes
[12, 13, 14], we have considered classes of gauge fixations differing by a choice of the conformal
factor for the degenerate metric on Scri and have investigated the behavior of the theory under
changes of such gauges.

From this point of view, the Newman-Unti (NU) approach to asymptotically flat spacetimes
[15] corresponds to a different gauge choice for the radial coordinate. In view of its embedding
in the widely used Newman-Penrose formalism [16] and its direct relevance in many applications,
see e.g. the review article [17], it is worthwhile to show that the asymptotic symmetry algebra is
unchanged and to provide explicit formulae for the realization of the algebra in this gauge. This
has been done in [18].

A novel result in our study concerns the realization of the asymptotic algebra not only on the
boundary Scri but in the bulk gauge fixed spacetime by using a natural modification of the Lie
bracket for vector fields that depend on the metric and is related to the theory of Lie algebroids
[19]. Furthermore, this modified bracket is also needed for the realization on Scri in order to
disentangle the gauge transformations from the residual global symmetries when allowing for
changes of the conformal factor. We have also studied in detail how the symmetry algebra is
realized on the arbitrary functions parametrizing solution space.

3. The bms3 algebra

The bms3 algebra consists of the algebra of vector fields on the circle acting on the func-
tions of the circle and has been originally derived in the context of a symmetry reduction of four
dimensional gravitational waves [20, 21].

More precisely, let y = Y
∂

∂φ
∈ Vect(S1) be the vector fields on the circle and T (dφ)−λ ∈

Fλ (S1) tensor densities of degree λ , which form a module of the Lie algebra Vect(S1) for the
action

ρ(y)t = (Y T ′−λY ′T )dφ
−λ . (3.1)

The algebra bms3 is the semi-direct sum of Vect(S1) with the abelian ideal F1(S1), the bracket
between elements of Vect(S1) and elements t = T dφ−1 ∈F1(S1) being induced by the module
action, [y, t] = ρ(y)t.

Consider the associated complexified Lie algebra and let z = eiφ , m,n,k... ∈ Z. Expanding
into modes, y = anln, t = bntn, where

ln = einφ ∂

∂φ
= izn+1 ∂

∂ z
, tn = einφ (dφ)−1 = izn+1(dz)−1 ,

the commutation relations read explicitly

i[lm, ln] = (m−n)lm+n, i[lm, tn] = (m−n)tm+n, i[tm, tn] = 0 . (3.2)
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The non-vanishing structure constants of bms3 are thus entirely determined by the structure con-
stants [lm, ln] =−i f k

mnlk, f k
mn = δ k

m+n(m−n) of the Witt subalgebra w defined by the linear span of
the ln.

Up to equivalence, the most general central extension of bms3 is given by
i[lm, ln] = (m−n)lm+n +

c1
12 m(m+1)(m−1)δ 0

m+n,

i[lm, tn] = (m−n)tm+n +
c2
12 m(m+1)(m−1)δ 0

m+n,

i[tm, tn] = 0 .
(3.3)

The proof follows by generalizing the one for the Witt algebra w, which is textbook material, see
e.g [22, 23, 24]. Nevertheless, in order to be self-contained, we give a complete derivation in the
appendix.

The associated classical charge algebra of asymptotically flat three dimensional space-times
has been constructed in [1] with central charges1

c1 = 0, c2 =
3
G
. (3.4)

When one considers the extension of the bms3 algebra obtained by replacing the vanishing
commutators of the tm’s in (3.3) through

i[tm, tn] =
1
l2 (m−n)lm+n , (3.5)

and defines l±m = 1
2(lt±m± l±m), the resulting algebra turns into two copies of the Virasoro algebra

with central charges c± = 3l
2G ,

i[l±m , l
±
n ] = (m−n)l±m+n +

c±

12
m(m+1)(m−1)δ 0

m+n, i[l±m , l
∓
n ] = 0 , (3.6)

which is precisely the value of the classical central extensions in the charge algebra of asymp-
totically anti-de Sitter spacetimes [4]. In other words, starting from the charge algebra (3.6) in
asymptotically anti-de Sitter space-times, the flat result is obtained by first writing the algebra in
terms of the new generators lm = l+m − l−−m, tm = 1

l (l
+
m + l−−m) and then taking l→ ∞.

An important question is a complete understanding of the physically relevant representations
of bms3. Note that in the present gravitational context, the Hamiltonian is associated with t0, so
that one is especially interested in representations with a lowest eigenvalue of t0. This question
should be tractable, given all that is known on both the Poincaré and Virasoro subalgebras of bms3.

It turns out that bms3 is isomorphic to the Galilean conformal algebra in 2 dimensions gca2

[25]. In a different context, a class of non-unitary representations of gca2 have been studied in
some details [26].

4. The bms4 algebra

In four dimensions, the infinitesimal Lorentz transformations appear as the conformal Killing
vectors of the 2 sphere. By the standard argument, when focusing on infinitesimal local transfor-
mations that are not required to be everywhere regular, the conformal Killing vectors are given by
two copies of the Witt algebra, so that besides supertranslations, there now also are superrotations.

1Note that in the equivalent gauge fixed derivation given in [8], there is a misprint in the last line of (3.18), where
Θ has to be replaced by Θ+1.
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More precisely, in stereographic coordinates ζ = eiφ cot θ

2 and ζ̄ for the 2 sphere with ϕ0 =

ln 1
2(1+ζ ζ̄ ), the algebra may be realized through the vector fields y = Y (ζ )∂ , ȳ = Ȳ (ζ̄ )∂̄ where

∂ =
∂

∂ζ
, ∂̄ =

∂

∂ ζ̄
. If T (ζ , ζ̄ ) = T̃ (ζ , ζ̄ )e−ϕ0 , they act on tensor densities F 1

2 ,
1
2

of degree (1
2 ,

1
2),

t = T̃ (ζ , ζ̄ )e−ϕ0(dζ )−
1
2 (dζ̄ )−

1
2 , (4.1)

through

ρ(y)t = (Y ∂ T̃ − 1
2

∂Y T̃ )e−ϕ0(dζ )−
1
2 (dζ̄ )−

1
2 , (4.2)

ρ(ȳ)t = (Ȳ ∂̄ T̃ − 1
2

∂̄Ȳ T̃ )e−ϕ0(dζ )−
1
2 (dζ̄ )−

1
2 . (4.3)

The algebra bms4 is then the semi-direct sum of the algebra of vector fields y, ȳ with the abelian
ideal F 1

2 ,
1
2
, the bracket being induced by the module action, [y, t] = ρ(y)t, [ȳ, t] = ρ(ȳ)t. When

expanding y = anln, ȳ = ān l̄n, t = bm,nTm,n, with

ln =−ζ
n+1

∂ , l̄n =−ζ̄
n+1

∂̄ , Tm,n = ζ
m

ζ̄
ne−ϕ0(dζ )−

1
2 (dζ̄ )−

1
2 , (4.4)

the enhanced symmetry algebra reads

[lm, ln] = (m−n)lm+n, [l̄m, l̄n] = (m−n)l̄m+n, [lm, l̄n] = 0,
[ll,Tm,n] = ( l+1

2 −m)Tm+l,n, [l̄l,Tm,n] = ( l+1
2 −n)Tm,n+l, [Tm,n,To,p] = 0 , (4.5)

where m,n . . . ∈ Z. The Poincaré algebra is the subalgebra spanned by the generators T0,0, T0,1,
T1,0, T1,1 for ordinary translations and l−1, l0, l1, l̄−1, l̄0, l̄1 for ordinary (Lorentz) rotations.

The quotient algebra of bms4 by the abelian ideal of infinitesimal supertranslations is no
longer given by the Lorentz algebra but by two copies of the Witt algebra. It follows that the
problem with angular momentum in general relativity [27], at least in its group theoretical formu-
lation, disappears as now the choice of an infinite number of conditions is needed to fix an infinite
number of rotations. For a complete analysis, the associated charges and their algebra is needed.
This will be discussed in detail elsewhere.

In the appendix, we will show that the only non trivial central extensions of bms4 are the
usual central extensions of the 2 copies of the Witt algebra, i.e., they appear in the commutators
[lm, l−m] and [l̄m, l̄−m]. Contrary to three dimensions, there are no central extensions involving the
generators for supertranslations.

5. Outlook

The most obvious questions to be addressed next are a complete study of the physically
relevant representations of bms3 and of bms4 and the construction of the surface charge algebra
associated with supertranslations and superrotations in 4 dimensions. We have recently made
progress on the latter problem and will report on these results elsewhere. It turns out that the
extension in the charge algebra depends explicitly on the fields characterizing solution space, it is
a Lie algebroid 2-cocycle rather than a Lie algebra 2 cocycle.

The ultimate hope of this program is to use the powerful apparatus of 2 dimensional con-
formal field theory in the context of quantum 4 dimensional general relativity, for instance in an
S-matrix approach between I + and I −.
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Appendix 1: Central extensions of bms3

In order to get rid of the overall i in (3.2), we redefine the generators as l′m = ilm. Inequivalent
central extensions of bms3 are classified by the cohomology space H2(bms3). More explicitly, the
Chevally-Eilenberg differential is given by

γ =−1
2

CmCk−m(2m− k)
∂

∂Ck −Cm
ξ

k−m(2m− k)
∂

∂ξ k , (5.1)

in the space Λ(C,ξ ) of polynomials in the anticommuting “ghost” variables Cm,ξ m. The grading

is given by the eigenvalues of the ghost number operator, NC,ξ = Cm ∂

∂Cm + ξ m ∂

∂ξ m , the differ-

ential γ being homogeneous of degree 1 and H2(bms3) ∼= H2(γ,Λ(C,ξ )). Furthermore, when

counting only the ghosts ξ m associated with supertranslations, Nξ = ξ m ∂

∂ξ m , the differential γ is
homogeneous of degree 0, so that the cohomology decomposes into components of definite Nξ

degree. The cocycle condition then becomes

γ(ω0
m,nCmCn) = 0, γ(ω1

m,nCm
ξ

n) = 0, γ(ω2
m,nξ

m
ξ

n) = 0, (5.2)

with ω0
m,n =−ω0

n,m and ω2
m,n =−ω2

n,m. The coboundary condition reads

ω
0
m,nCmCn = γ(η0

mCm), ω
1
m,nCm

ξ
n = γ(η1

mξ
m). (5.3)

We have { ∂

∂C0 ,γ} = NC,ξ with NC,ξ = m(Cm ∂

∂Cm + ξ m ∂

∂ξ m ). It follows that all cocycles
of NC,ξ degree different from 0 are coboundaries, γωN = 0, NC,ξ ωN = NωN , N 6= 0 implies that

ωN = γ( 1
N

∂

∂C0 ωN). Without loss of generality we can thus assume that ω0
m,nCmCn = ω0

mCmC−m

with ω0
m =−ω0

−m and in particular ω0
0 = 0; ω1

m,nCmξ n = ω1
mCmξ−m; ω2

m,nξ mξ n = ω2
mξ mξ−m with

ω2
m =−ω2

−m and in particular ω2
0 = 0. By applying ∂

∂C0 to the coboundary condition ω0
mCmC−m =

γ(η0
mCm) we find that 0 = mη0

mCm. The coboundary condition then gives ω0
mCmC−m = γ(η0

0C0) =

−mη0
0CmC−m. By adjusting η0

0 , we can thus assume without loss of generality that ω0
1 = 0 and

that the coboundary condition has been entirely used. In the same way ω1
mCmξ−m = γ(η1

mξ m)

implies first that η1
m = 0 for m 6= 0 and then that one can assume that ω1

1 = 0, with no coboundary
condition left.

Taking into account the anticommuting nature of the ghosts, the cocycle conditions become
explicitly, ω0

m(2n+m)−ω0
n (2m+n)+ω0

m+n(n−m) = 0, ω1
m(2n−m)+ω1

n (n−2m)+ω1
m−n(n+

m) = 0, ω2
m(2n+m)+ω2

m+n(n−m) = 0. Putting m = 0 in the last relation gives ω2
m = 0, for

m 6= 0 and thus for all m, putting m = 1 = n in the second relation gives ω1
0 = 0, while m = 0 gives

ω1
n n = −ω1

−nn and thus that ω1
n = −ω1

−n for all n. Changing m to −m and using this symmetry
property, the cocycle conditions for ω0

m and ω1
m give the same constraints. Putting m = 1, one finds

the recurrence relation ω
0,1
n+1 =

n+2
n−1 ω

0,1
n , which gives a unique solution in terms of ω

0,1
2 . The result

follows by setting c1,2 =
1
2 ω

0,1
2 and checking that the constructed solution does indeed satisfy the

cocycle condition.

Appendix 2: Central extensions of bms4

For bms4, the Chevally-Eilenberg differential is given by

γ = −1
2

CmCk−m(2m− k)
∂

∂Ck −
1
2

C̄mC̄k−m(2m− k)
∂

∂C̄k
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−Cm
ξ

k−m,n(
3m+1

2
− k)

∂

∂ξ k,n −C̄n
ξ

m,k−n(
3n+1

2
− k)

∂

∂ξ m,k , (5.4)

in the space Λ(C,C̄,ξ ) of polynomials in the anticommuting “ghost” variables Cm,C̄n,ξ m,n. The

grading is given by the eigenvalues of the ghost number operator, NC,ξ = Cm ∂

∂Cm + C̄m ∂

∂C̄m +

ξ m,n ∂

∂ξ m,n , the differential γ being homogeneous of degree 1 and H2(bms4)∼= H2(γ,Λ(C,C̄,ξ )).

Furthermore, when counting only the ghosts ξ m associated with supertranslations, Nξ = ξ m,n ∂

∂ξ m,n ,
the differential γ is homogeneous of degree 0, so that the cohomology decomposes into compo-
nents of definite Nξ degree. The cocycle condition then becomes

γ(ω0
m,nCmCn + ω̄

0
m,nC̄mC̄n +ω

−1
m,nCmC̄n) = 0, γ(ω1

k,mnCk
ξ

m,n + ω̄
1
k,mnC̄k

ξ
m,n) = 0,

γ(ω2
mn,klξ

m,n
ξ

k,l) = 0, (5.5)

with ω0
m,n =−ω0

n,m, ω̄
0
m,n =−ω̄0

n,m and ω2
mn,kl =−ω2

kl,mn. The coboundary condition reads

ω
0
m,nCmCn + ω̄

0
m,nC̄mC̄n +ω

−1
m,nCmC̄n = γ(η0

mCm + η̄
0
mC̄m),

ω
1
k,mnCk

ξ
m,n + ω̄

1
k,mnC̄k

ξ
m,n = γ(η1

mnξ
m,n). (5.6)

We have { ∂

∂C0 ,γ} = NC,ξ with NC,ξ = mCm ∂

∂Cm +(m− 1
2)ξ

m,n ∂

∂ξ m,n and also { ∂

∂C̄0 ,γ} =

¯NC̄,ξ with ¯NC̄,ξ = nC̄n ∂

∂C̄n +(n− 1
2)ξ

m,n ∂

∂ξ m,n . It follows again that all cocycles of either NC,ξ

or ¯NC̄,ξ degree different from 0 are coboundaries. Without loss of generality we can thus as-
sume that ω0

m,nCmCn + ω̄0
m,nC̄mC̄n +ω−1

m,nCmC̄n = ω0
mCmC−m + ω̄0

mC̄mC̄−m +ω
−1
0,0C0C̄0 with ω0

m =

−ω0
−m, ω̄

0
m =−ω̄0

−m and in particular ω0
0 = 0 = ω̄0

0 ; none of monomials with one ξ m,n and either
on Ck or one C̄k can be of degree 0, so ω1

k,mn = 0 = ω̄1
k,mn; ω2

mn,klξ
m,nξ k,l = ω2

m,nξ m,nξ−m+1,−n+1

with ω2
m,n = −ω2

−m+1,−n+1. Both the cocycle and the coboundary condition for ω0
mCmC−m +

ω̄0
mC̄mC̄−m +ω

−1
0,0C0C̄0 split. For ω

−1
0,0C0C̄0 there is no coboundary condition, while the cocycle

condition implies ω
−1
0,0 = 0. The rest of the analysis proceeds as in the previous subsection, sepa-

rately for ω0
mCmC−m and ω̄0

mC̄mC̄−m, with the standard central extension for [lm, l−m] and [l̄m, l̄−m].

We still have to analyze γ(ω2
m,nξ m,nξ−m+1,−n+1) = 0. This condition gives ω2

m,n(
3l−1

2 +m)+

ω2
l+m,n(

l+1
2 −m) = 0 and also ω2

m,n(
3l−1

2 + n)+ω2
m,l+n(

l+1
2 − n) = 0. Putting m = 0 in the first

relation gives ω2
0,n(

3l−1
2 ) +ω2

l,n(
l+1

2 ) = 0. Putting l = −1 then implies ω2
0,n = 0 and then also

ω2
l,n = 0 for l 6= −1. But ω2

−1,n = −ω2
2,−n+1 = 0 which shows that ω2

m,n = 0 for all m,n and
concludes the proof.
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