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1. Background

In past years, various approaches to quantum space-time have been pursued. One possibility
is to replace classical space-time by a non-commutative one where the coordinate functions xµ are
promoted to Hermitian operators X µ on a Hilbert space H . These “coordinate” operators satisfy
certain non-trivial commutation relations

[X µ ,Xν ] = iθ µν , (1.1)

which in the simplest case reduce to a Heisenberg algebra, i.e. with constant θ µν . For a review of
such non-commutative field theories see e.g. [1 – 4]. In order to incorporate gravity in this context,
however, a dynamical non-constant commutator θ µν is required, which semi-classically determines
a Poisson structure on space-time. Incidentally, matrix models of Yang-Mills type1 naturally realize
this idea — for a review, see [7] and [9 – 11]. Our starting point is hence the matrix model action

SY M =−Tr[Xa,Xb][Xc,Xd ]ηacηbd , (1.2)

where ηab denotes the flat metric of a D-dimensional embedding space with arbitrary signature and
Xa are Hermitian matrices on H which in the semi-classical limit are interpreted as coordinate
functions. If one considers some of the coordinates to be functions of the remaining ones [12]
such that Xa ∼ xa = (xµ ,φ i(xµ)) in the semi-classical limit, one can interpret the xa as defining
the embedding of a 2n-dimensional submanifold M 2n ↪→RD equipped with a non-trivial induced
metric

gµν(x) = ∂µxa
∂νxb

ηab = ηµν +∂iφ
i(x)∂ jφ

j(x) , (1.3)

via pull-back of ηab, and where µ,ν ∈ 1, . . . ,2n and i, j ∈ 2n+1, . . . ,D. Here we consider this
submanifold to be a four dimensional space-time M 4, and following [12] we can interpret

−i[X µ ,Xν ]∼ {xµ ,xν}pb = iθ µν(x) (1.4)

as a Poisson structure on M 4. Furthermore, we assume that θ µν is non-degenerate, so that its
inverse matrix θ−1

µν defines a symplectic form

Θ =
1
2

θ
−1
µν dxµ ∧dxν (1.5)

on M 4.
However, it is not the induced metric which is “seen” by scalar fields, gauge fields, etc., but

the effective metric [9]

Gµν = e−σ
θ

µρ
θ

νσ gρσ , e−σ ≡

√
detθ

−1
µν√

detGρσ

. (1.6)

1In fact, a supersymmetric version, the 10-dimensional IKKT model [5], is expected to be UV finite and hence
might represent a candidate for some form of quantum gravity coupled to matter [6 – 8].
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Therefore, an interesting special case where Gµν = gµν may be considered. In fact, this corre-
sponds to having a (anti-) self-dual symplectic form, i.e. ?Θ = ±iΘ . This case, however is re-
stricted to 4-dimensional submanifolds M 4, as in four dimensions one always has |G|= |g| which
makes the assumptions above possible. (For details, see [7].)

Let us consider the following example in order to make the effective geometry clearer: The
gauge invariant kinetic term of a test particle modelled by a scalar field φ has the form

S[φ ] =−Tr[Xa,Φ][Xb,Φ]ηab

∼
∫

d4x
√

detθ−1θ
µν

∂µxa
∂νφθ

ρσ
∂ρxb

∂σ φηab

=
∫

d4x
√

detθ−1Gνσ
∂νφ∂σ φ . (1.7)

2. Curvature

gµν(x) M 2n

Figure 1: Embedding and induced metric

The bare matrix model Eqn. (1.2) without matter leads to the following e.o.m. for Xc:

[Xa, [Xb,Xc]]ηab = 0 . (2.1)

Furthermore, one can derive the matrix energy-momentum tensor T ab which reads [13, 14]

T ab = Hab− 1
4

η
abH ∼ eσ

(
(Gg)

4
η

ab−Gµν
∂µxa

∂νxb
)

,

Hab =
1
2
[[Xa,Xc], [Xb,Xc]]+ ∼ −eσ Gµν

∂µxa
∂νxb ,

H = Hab
ηab , (2.2)

and whose conservation follows directly from the matrix equations of motion (2.1) above:

[Xa,T a′b]ηaa′ = 0 . (2.3)

Interestingly, there is a close connection between the matrix energy-momentum tensor and the
projectors on the tangential/normal bundle of M ∈RD

Pab
T = gµν

∂µxa
∂νxb , Pab

N = η
ab−Pab

T . (2.4)
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Namely, in the special case where both metrics coincide, i.e. the self-dual case where Gµν = gµν ,
one has T ab ∼ eσPab

N and Hab ∼−eσPab
T in the semi-classical limit.

Furthermore, one easily derives the relation ∇
g
σ ∇

g
νxa = Pab

N ∇G
σ ∇G

ν xb, where ∇g/∇G are the
covariant derivatives defined with standard Christoffel symbols with respect to g/G, respectively.
Hence the curvature tensor with respect to the induced metric g can be written as

Rρσνµ [g] = ∇
g
σ ∇

g
µxa

∇
g
ρ∇

g
νxa−∇

g
σ ∇

g
νxa

∇
g
µ∇

g
ρxa

= Pab
N ∇

G
σ ∇

G
µ xa∇

G
ρ ∇

G
ν xb−Pab

N ∇
G
σ ∇

G
ν xa∇

G
µ ∇

G
ρ xb , (2.5)

where the first line is simply the Gauss-Codazzi theorem, and Latin indices were pulled down with
the embedding metric ηab. Using the tensor Cα;µν := ∂αxa∇G

µ ∂νxa allows to relate the curvature
tensors associated with G/g:

Rρσνµ [g] = (Gg)η
µ Rρσνη [G]+∇

G
σCµ;ρν −∇

G
ρ Cµ;σν −Cα;σ µCβ ;ρνgαβ +Cα;σνCβ ;µρgαβ . (2.6)

It was previously shown in [13, 14], that the Einstein-Hilbert action emerges in the effective
matrix model action. In particular, a certain combination of order 10 matrix terms semi-classically
leads to

SO(X10) ∼
∫

d4x
√

g
(2π)2 e2σ (R[g]−3Rµν [g]hµν)+O(∂h2) ,

where Gµν = gµν +hµν is almost self-dual. In the self-dual case (i.e. h = 0), this reduces to

SO(X10) = Tr
(

2T ab�Xa�Xb−T ab�Hab

)
∼−2

∫
d4x
√

ge2σ R , (2.7)

where �Y ≡ [Xa, [Xa,Y ]], and additionally one finds the order 6 matrix terms

SO(X6) = Tr
(

1
2
[Xc, [Xa,Xb]][Xc, [Xa,Xb]]−�Xa�Xa

)
∼
∫

d4x
√

g
(

1
2

θ
µρ

θ
ηαRµρηα −2eσ R+2eσ

∂
µ

σ∂µσ

)
. (2.8)

In general, however, the degrees of freedom are given by the embedding φ i and the deviation
from the self-dual Poisson structure Aµ , i.e.:

θ
−1
µν = θ̄

−1
µν +Fµν = θ̄

−1
µν +∂µAν −∂νAµ ,

δφ gµν = δφ
i
φ

j
ηi j +φ

i
δφ

j
ηi j ,

δAFµν = ∂µδAν −∂νδAµ ,

hµν =−eσ̄ (θ̄−1gF)µν − eσ̄ (Fgθ̄
−1)µν −

1
2

gµν(θ̄F)+O(F2) , (2.9)

where θ̄−1
µν denotes a self-dual Poisson structure with respect to a given metric gµν(φ i). It was in

fact argued in [14], that the tree level action Eqn. (1.2) should single out almost self-dual geometries
and that certain potential terms set the non-commutativity scale eσ ≈const.

In the following section, we will consider two examples of geometries which are expected to
solve the e.o.m. of the effective matrix model (i.e. including higher order contributions) too a good
approximation [15], at least at some distance from the horizons.
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3. Special Geometries

3.1 Schwarzschild Geometry

We now continue with the special example of Schwarzschild geometry, and our construction
involves two steps [15, 8]:

First, the choice of a suitable embedding M 4 ⊂ RD must be made such that the induced
geometry on M 4 given by gµν is the Schwarzschild metric, and then on needs to find a suitable non-
degenerate Poisson structure on M 4 which solves the e.o.m. ∇µθ−1

µν = 0 for self-dual symplectic
form Θ . Both steps are far from unique a priori. However, the freedom is considerably reduced by
requiring that the solution should be a “local perturbation” of an asymptotically flat (or nearly flat)
“cosmological” background. This is clear on physical grounds, having in mind the geometry near
a star in some larger cosmological context: It must be possible to approximately “superimpose”
our solution, allowing e.g. for systems of stars and galaxies in a natural way. This eliminates the
well-known embeddings of the Schwarzschild geometry in the literature [16 – 18], which are highly
non-trivial for large r and cannot be superimposed in any obvious way.

Furthermore, the embedding should be asymptotically harmonic �xa→ 0 for r→ ∞, in view
of the fact that there may be terms in the matrix model which depend on the extrinsic geometry,
and which typically single out such harmonic embeddings2. Additionally, θ µν should be non-
degenerate, and θ µν → const. 6= 0 as r→ ∞.

We start by considering Eddington-Finkelstein coordinates and define:

t = tS +(r∗− r) , r∗ = r + rc ln
∣∣∣∣ r
rc
−1
∣∣∣∣ , (3.1)

where tS denotes the usual Schwarzschild time, rc is the horizon of the Schwarzschild black hole
and r∗ is the well-known tortoise coordinate. The metric in Eddington-Finkelstein coordinates
{t,r,ϑ ,ϕ} is given by

ds2 =−
(

1− rc

r

)
dt2 +

2rc

r
dtdr +

(
1+

rc

r

)
dr2 + r2dΩ

2 , (3.2)

which is asymptotically flat for large r, and manifestly regular at the horizon rc and thus allows us
to find an embedding which fulfills the requirements listed above. In particular, we need at least 3
extra dimensions:

φ1 + iφ2 = φ3eiω(t+r) , φ3 =
1
ω

√
rc

r
, (3.3)

where φ3 is time-like and ω is some parameter which does not enter the metric (3.2). Hence, our

2This can hold only asymptotically, since Ricci-flat geometries can in general not be embedded harmonically [19].

5



P
o
S
(
C
N
C
F
G
2
0
1
0
)
0
1
1

Geometries Emerging from Matrix Models Daniel N. Blaschke

Figure 2: Embedded Schwarzschild black hole.

7-dimensional embedding is given by

xa =



t
r cosϕ sinϑ

r sinϕ sinϑ

r cosϑ

1
ω

√ rc
r cos(ω(t + r))

1
ω

√ rc
r sin(ω(t + r))

1
ω

√ rc
r


(3.4)

with background metric ηab = diag(−,+,+,+,+,+,−).
On the top of Fig. 2, a schematic view of the outer region of the Schwarzschild black hole is

shown. After passing through the horizon r = rc, the extra dimensions φi “blow up” in a cone-like
manner. As indicated in the lower half of this figure, every point of the cone is in fact a sphere
whose radius r becomes smaller towards the bottom of the cone (i.e. T ∝ 1/

√
r). The twisted

vertical lines drawn in the cone are lines of equal time t.
For the symplectic form, we require ?Θ = iΘ , so that the effective and the induced metric co-

incide, i.e. Gµν = eσ θ µρθ νσ gρσ = gµν , and lim
r→∞

e−σ = const. 6= 0. One then finds the solution [15]

Θ = iE ∧dtS +B∧dϕ ,

E = c1 (cosϑdr− rγ sinϑdϑ) = d( f (r)cosϑ) ,

B = c1
(
r2 sinϑ cosϑdϑ + r sin2

ϑdr
)

=
c1

2
d(r2 sin2

ϑ) ,

γ =
(

1− rc

r

)
, f (r) = c1rγ , f ′ = c1 = const. , (3.5)

6
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from which follows

e−σ = c2
1

(
1− rc

r
sin2

ϑ

)
≡ c2

1e−σ̄ , (3.6)

where c1 is an arbitrary constant. Clearly, near the horizon e−σ ≈const. is not fulfilled, meaning
our approximations break down in that region. Asymptotically, however, this seems to be a valid
solution which approximately fulfills all requirements listed at the beginning of this section.

Furthermore, Eqn. (3.5) suggests to work in Darboux coordinates xµ

D = {Hts, tS,Hϕ ,ϕ} corre-
sponding to Killing vector fields Vts = ∂ts , Vϕ = ∂ϕ where the symplectic form Θ is constant:

Θ = ic1dHts∧dtS + c1dHϕ ∧dϕ ,

= c1d
(
iHtsdtS +Hϕdϕ

)
,

Hts = rγ cosϑ , Hϕ =
1
2

r2 sin2
ϑ . (3.7)

The relations to the Killing vector fields are given by

E = c1dHts = c1Eµdxµ = iVtsΘ , Eµ = V ν
ts θ
−1
νµ ,

B = c1dHϕ = c1Bµdxµ = iVϕ
Θ , Bµ = V ν

ϕ θ
−1
νµ , (3.8)

and the metric in Darboux coordinates reads

ds2
D =−γdt2

S +
eσ̄

γ
dH2

ts + r2 sin2
ϑdϕ

2 +
eσ̄

r2 sin2
ϑ

dH2
ϕ . (3.9)

Hence, a Moyal type star product can easily be defined as

(g?h)(xD) = g(xD)e−
i
2

(←−
∂ µ θ

µν

D
−→
∂ ν

)
h(xD) , with θ

µν

D = ε


0 i 0 0
−i 0 0 0
0 0 0 1
0 0 −1 0

 , (3.10)

where ε = 1/c1 � 1 denotes the expansion parameter. Transforming back to embedding coordi-
nates, the star product reads

(g?h)(x) = g(x)exp

[
iε
2

((←−
∂ t

irczeσ̄

r2γ
+
←−
∂ zieσ̄

)
∧
−→
∂ t

+
((←−

∂ t−
←−
∂ z

z
r

)rceσ̄

r2 +
(←−

∂ xx+
←−
∂ yy

) 1
x2 + y2

)
∧
(

x
−→
∂ y− y

−→
∂ x

))]
h(x) (3.11)

where the wedge stands for “antisymmetrized”, and when considering the expansion care must be
taken with the sequence of operators and the side they act on. To leading order one hence finds the
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star commutators

−i
[
xa ?, xb

]
= εeσ̄



0 − rcy
r2

rcx
r2 −i iz f +

12(1)
r

iz f−21(1)
r

izφ3
2r2

rcy
r2 0 e−σ̄ − rcyz

r3
−y f +

12(γ)
r

−y f−21(γ)
r − yγφ3

2r2

− rcx
r2 −e−σ̄ 0 rcxz

r3
x f +

12(γ)
r

x f−21(γ)
r

xγφ3
2r2

i rcyz
r3 − rcxz

r3 0 −iωφ2 iωφ1 0
−iz f +

12(1)
r

y f +
12(γ)
r

−x f +
12(γ)
r iωφ2 0 − iωzφ 2

3
2r2

−iωzφ3φ2
2r2

−iz f−21(1)
r

y f−21(γ)
r

−x f−21(γ)
r −iωφ1

iωzφ 2
3

2r2 0 iωzφ3φ1
2r2

− izφ3
2r2

yγφ3
2r2 − xγφ3

2r2 0 iωzφ3φ2
2r2

−iωzφ3φ1
2r2 0


+O(ε3) , (3.12)

where

f±i j (Y ) =
(

Y
2r

φi±ωφ j

)
. (3.13)

This defines a Poisson structure on M 4, but it could also be viewed as a Poisson structure on the
6-dimensional space defined by φ 2

1 +φ 2
2 = φ 2

3 which admits M 4 as symplectic leaf.
Higher orders in this star product, however, lead to non-commutative corrections to the em-

bedding geometry, such as φ1 ?φ1 +φ2 ?φ2 6= φ3 ?φ3.

3.2 Reissner-Nordström Geometry

Similar to the Schwarzschild case, one can find an embedding with self-dual symplectic form
also for the Reissner-Nordström metric. In spherical coordinates xµ = {t,r,ϑ ,ϕ} the according
line element reads

ds2 =−
(

1− 2m
r

+
q2

r2

)
dt̃2 +

(
1− 2m

r
+

q2

r2

)−1

dr2 + r2dΩ . (3.14)

The geometry has two concentric horizons at

rh =
(

m±
√

m2−q2
)

. (3.15)

Shifting the time-coordinate according to

t = t̃ +(r∗− r) , with dr∗ ≡
(

1− 2m
r + q2

r2

)−1
dr , (3.16)

one arrives at

ds2 =−
(

1− 2m
r

+
q2

r2

)
dt2 +2

(
2m
r
− q2

r2

)
dtdr +

(
1+

2m
r
− q2

r2

)
dr2 + r2dΩ . (3.17)

We choose a 10-dimensional embedding M 1,3 ↪→R4,6 which has the advantage of having similar
properties compared to the Schwarzschild case3. The additional coordinates φi are given by

φ1 + iφ2 = φ3eiω(t+r) , φ3 =
1
ω

√
2m
r

,

φ4 + iφ5 = φ6eiω(t+r) , φ6 =
q

ωr
, (3.18)

3This choice, of course, is far from unique. Alternatively, we could have used a 7-dimensional embedding, but which
would have been valid only up to the inner horizon. In fact, all physically relevant geometries should be embeddable in
10-dimensions, at least locally [20].
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where φ3, φ4 and φ5 are time-like coordinates. Like in the previous case, ω does not enter the
induced metric (3.17), but is hidden in the extra dimensions φi. For r→∞, the φi become infinites-
imally small and hence asymptotically, the four dimensional subspace becomes flat Minkowski
space-time.

An according self-dual symplectic form can be derived which in metric compatible Darboux
coordinates reads

Θ =
1
ε

(
idHt̃ ∧dt̃ +dHϕ ∧dϕ

)
,

Ht̃ = γ r cosϑ , Hϕ =
r2

2

(
1− q2

r2

)
sin2

ϑ ,

γ =
(

1− 2m
r

+
q2

r2

)
. (3.19)

The non-commutativity scale in the outer region (i.e. at some distance to the horizon) is given by

e−σ̄ = γ sin2
ϑ +

(
1− q2

r2

)2

cos2
ϑ , (3.20)

and the Reissner-Nordström line element in Darboux coordinates reads

ds2
D =−γdt̃2 +

eσ̄

γ
dH2

t̃ + r2 sin2
ϑdϕ

2 +
eσ̄

r2 sin2
ϑ

dH2
ϕ , (3.21)

a form similar to the according Schwarzschild metric (3.9). In the limit q→ 0 these expressions
reduce to those in the Schwarzschild case4. Once more, a Moyal type star product can be defined
as

(g?h)(xD) = g(xD)e−
i
2

(←−
∂ µ θ

µν

D
−→
∂ ν

)
h(xD) , (3.22)

with the same block-diagonal θ µν as before. Higher orders in this star product lead to non-com-
mutative corrections to the embedding geometry, such as φ1 ? φ1 + φ2 ? φ2 6= φ3 ? φ3 and φ4 ? φ4 +
φ5 ?φ5 6= φ6 ?φ6 (see [15] for details).

4. Outlook

In this short proceeding note, explicit embeddings of Schwarzschild and Reissner-Nordström
geometries including self-dual symplectic forms have been discussed in the context of approxima-
tive solutions to the e.o.m. of an effective matrix model of Yang-Mills type. It was pointed out, that
in a future effort the embeddings should be modified near the horizons to account for nearly con-
stant eσ . Open questions, among others, concern deviations from G = g and higher order quantum
effects.
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4Note, that 3 of the extra dimensions, namely φ4−6 reduce to a point in this limit since lim
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φ6(q) = 0.
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