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1. Introduction

In the quest of a consistent quantum theory of gravity, noncommutativity of spacetime has
been actively considered in the last two decades. The main historical motivation resided in un-
certainty relations between coordinates, that could model "granularity" of spacetime at the Planck
scale, and ensure a built-in regularization mechanism for the quantum theory. In string/brane theo-
ries, a framework that unifies particles and geometry as excitations of extended relativistic objects,
quantum finiteness is believed to hold because of the "smearing" of interactions due to the spa-
tial extension of the basic objects. A noncommuting (NC) scenario was seen to emerge from the
string/brane framework when considering the low-energy limit of open strings in a background
B-field [1]. Also the field theory effective description of the infinite tower of massive higher spins
contained in the string spectrum seems to point towards noncommutative geometric structures [2].
It seems fair to say that noncommutative geometry plays a central role in theories that aim to quan-
tize gravity.

Even lattice theories (for gauge fields and gravity) can be related to a NC geometric structure.
Indeed discrete group lattices, for example, can be endowed with a natural NC differential geometry
that enables to generalize (continuous) geometric quantities to the discrete case, thus allowing the
formulation of gauge and gravity actions on these discrete lattices (see for example [3, 4, 5] and
references therein).

Quantum groups have also been investigated as an interesting arena for NC gauge and gravity
theories. Inhomogeneous quantum groups (including the quantum Poincaré group) and their NC
differential geometries have been used to construct NC generalizations of gravity lagrangians (see
for ex. the ref.s in [6]).

NC gravity theories have been constructed more recently in the twisted noncommutative ge-
ometry setting [7, 8, 9], that generalizes the Moyal deformation, where ordinary products between
fileds are replaced by the noncommutative Moyal product. In this setting the deformed theory is
invariant under?-diffeomorphisms, but in [8] no gauge invariance on the tangent space (general-
izing local Lorentz symmetry) is incorporated, and therefore coupling to fermions could not be
implemented. A local symmetry, enlarging the localSO(3,1) symmetry ofD = 4 Einstein gravity
to GL(2,C), has been considered in the approach of Chamseddine [7]. The resulting theory has a
complicated classical limit, with two vielbeins (or, equivalently, a complex vielbein). Noncommu-
tative gravities in lower dimensions have been studied in [10] (D=2) and in [11, 12] (D=3).

In these Proceedings we review the twisted NC deformations of gravity and supergravity the-
ories constructed in ref.s [13, 14], where the noncommutativity is given by a?-product associated
to a very general class of twists. This?-product can also bex-dependent. As a particular case we
obtain noncommutative theories where noncommutativity is realized with the Moyal-Groenewald
?-product.

The topics reviewed here are:

1) a noncommutative gravity action, with a coupling to fermions, that reduces in the commu-
tative limit to the action of ordinary gravity + fermions, without extra fields (in particular without
an extra graviton). This is achieved by imposing a noncommutative charge conjugation condition
on the bosonic fields, consistent with the?-gauge transformations. We can also impose a noncom-
mutative generalization of the Majorana condition on the fermions, compatible with the?-gauge
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transformations. The action is invariant under diffeomorphisms,?-diffeomorphisms and aGL(2,C)
?-gauge symmetry that becomes ordinary local Lorentz symmetry in the commutative limit.

2) an action for a noncommutative deformation ofN = 1 supergravity inD = 4, invariant
under diffeomorphisms and localGL(2,C) ?-gauge transformations, but without?-supersymmetry.
In this case noncommutativity breaks the local supersymmetry of the commutative theory. The
commutative limit is the usualD = 4, N = 1 simple supergravity, with a Majorana gravitino. We
can obtain local?-supersymmetry invariance of the noncommutative action if we impose a Weyl
condition on the fermions, rather than a Majorana condition. This leads to a noncommutative
supergravity whose commutative limit is a chiralD = 4, N = 1 supergravity with two vierbein
fields (or a complex vierbein) and a left-handed gravitino.

In the Appendix we collectD = 4 gamma matrices conventions and properties.

2. First order gravity coupled to fermions

2.1 Action

The usual action of first-order gravity coupled to fermions can be recast in an index-free form,
convenient for generalization to the non-commutative case:

S=
∫

Tr (iR∧V ∧Vγ5− [(Dψ)ψ̄−ψDψ̄]∧V ∧V ∧Vγ5) (2.1)

The fundamental fields are the 1-formsΩ (spin connection),V (vielbein) and the fermionic 0-form
ψ (spin 1/2 field). The curvature 2-formR and the exterior covariant derivative onψ are defined
by

R= dΩ−Ω∧Ω, Dψ = dψ−Ωψ (2.2)

with

Ω =
1
4

ω
ab

γab, V = Va
γa (2.3)

and thus are 4×4 matrices in the spinor representation. See Appendix A forD = 4 gamma matrix
conventions and useful relations. The Dirac conjugate is defined as usual:ψ̄ = ψ†γ0. Then also
(Dψ)ψ̄, ψDψ̄ are matrices in the spinor representation, and the traceTr is taken on this represen-
tation. Using theD = 4 gamma matrix identities:

γabc = iεabcdγ
d
γ5, Tr(γabγcγdγ5) =−4iεabcd (2.4)

leads to the usual action:

S=
∫

Rab∧Vc∧Vd
εabcd+ i[ψ̄γ

aDψ− (Dψ̄)γa
ψ]∧Vb∧Vc∧Vd

εabcd (2.5)

with

R≡ 1
4

Rab
γab, Rab = dω

ab−ω
a
c∧ω

cb (2.6)
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2.2 Invariances

The action is invariant under local diffeomorphisms (it is the integral of a 4-form on a 4-
manifold) and under the local Lorentz rotations:

δεV =−[V,ε], δεΩ = dε− [Ω,ε], δεψ = εψ, δε ψ̄ =−ψ̄ε (2.7)

with
ε =

1
4

ε
ab

γab (2.8)

The invariance can be directly checked on the action (2.1) noting that

δεR=−[R,ε] δεDψ = εDψ, δε((Dψ)ψ̄) =−[(Dψ)ψ̄,ε], δε(ψDψ̄) =−[ψDψ̄,ε], (2.9)

using the cyclicity of the traceTr (on spinor indices) and the fact thatε commutes withγ5. The
Lorentz rotations close on the Lie algebra:

[δε1,δε2] =−δ[ε1,ε2] (2.10)

2.3 Hermiticity and charge conjugation

Since the vielbeinVa and the spin connectionωab are real fields, the following conditions
hold:

γ0Vγ0 = V†, − γ0Ωγ0 = Ω†, (2.11)

γ0[(Dψ)ψ̄]γ0 = [ψDψ̄]†, γ0[ψDψ̄]γ0 = [(Dψ)ψ̄]† (2.12)

and can be used to check that the action (2.1) is real.
Moreover, ifC is theD = 4 charge conjugation matrix (antisymmetric and squaring to−1),

we have

CVC= VT , CΩC = ΩT (2.13)

since the matricesCγa andCγab are symmetric.
Similar relations hold for the gauge parameterε = (1/4)εabγab:

−γ0εγ0 = ε
†, CεC = ε

T (2.14)

εab being real.
The charge conjugation of fermions:

ψ
C ≡C(ψ̄)T (2.15)

can be extended to the bosonic fieldsV, Ω:

VC ≡−CVTC, ΩC ≡CΩTC (2.16)

Then the relations (2.13) can be written as:

VC =−V, ΩC = Ω (2.17)
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and are the analogues of the Majorana condition for the fermions:

ψ
C = ψ → ψ̄ = ψ

TC (2.18)

Note also that

(Vψ)C = VC
ψ

C (2.19)

In particular, ifψ is a Majorana fermion,Vψ is anti-Majorana.

So far we have been treatingψ as a Dirac fermion, and therefore reality of the action requires
both terms in square brackets in the action (2.1) or (2.5). If ψ is Majorana, the two terms give the
same contribution, and only one of them is necessary.

2.4 Field equations

Using the cyclicity ofTr in (2.1), the variation ofV , Ω andψ̄ yield respectively the Einstein
equation, the torsion equation and the (massless) Dirac equation in index-free form:

Tr
(

γaγ5[iV ∧R+ iR∧V−X∧V ∧V−V ∧X∧V−V ∧V ∧X]
)

= 0,

Tr
(

γab[iT ∧V− iV ∧T +ψψ̄V ∧V ∧V−V ∧V ∧Vψψ̄]
)

= 0 (2.20)

V ∧V ∧V ∧Dψ− (T ∧V ∧V−V ∧T ∧V +V ∧V ∧T)ψ = 0 (2.21)

with

X ≡ (Dψ)ψ̄−ψDψ̄ (2.22)

and where the torsionT = Taγa is given by:

T ≡ dV−Ω∧V−V ∧Ω (2.23)

The torsion equation can be solved, and yields the known result:

Ta = 6i ψ̄γbψ Vb∧Va (2.24)

The Dirac equation (2.21) contains an extra term proportional to the torsion: this is due to requiring
a real action for gravity coupled to Dirac fermions. If one uses the (complex) Dirac action

SDirac =−
∫

Tr[(Dψ)ψ̄ ∧V ∧V ∧Vγ5] (2.25)

the torsion terms in the Dirac equation (2.21) are not present.

3. Twist differential geometry

The noncommutative deformation of the gravity theories we construct in the next Sections
relies on the existence (in the deformation quantization context, see for ex [19] ) of an associative
?-product between functions and more generally an associative∧? exterior product between forms,
satisfying the following properties:
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• Compatibility with the undeformed exterior differential:

d(τ ∧? τ
′) = d(τ)∧? τ

′ = τ ∧? dτ
′ (3.1)

• Compatibility with the undeformed integral (graded cyclicity property):∫
τ ∧? τ

′ = (−1)deg(τ)deg(τ ′)
∫

τ
′∧? τ (3.2)

with deg(τ) + deg(τ ′) =D=dimension of the spacetime manifold, and where hereτ andτ ′ have
compact support (otherwise stated we require (3.2) to hold up to boundary terms).

• Compatibility with the undeformed complex conjugation:

(τ ∧? τ
′)∗ = (−1)deg(τ)deg(τ ′)

τ
′∗∧? τ

∗ (3.3)

We describe here a (quite wide) class of twists whose?-products have all these properties. In this
way we have constructed a wide class of noncommutative deformations of gravity theories. Of
course as a particular case we have the Groenewold-Moyal?-product

f ?g = µ
{

e
i
2θ ρσ ∂ρ⊗∂σ f ⊗g

}
, (3.4)

where the mapµ is the usual pointwise multiplication:µ( f ⊗ g) = f g, andθ ρσ is a constant
antisymmetric matrix.

3.1 Twist

Let Ξ be the linear space of smooth vector fields on a smooth manifoldM, andUΞ its universal
enveloping algebra. A twistF ∈UΞ⊗UΞ defines the associative twisted product

f ?g = µ
{
F−1 f ⊗g

}
(3.5)

where the mapµ is the usual pointwise multiplication:µ( f ⊗g) = f g. The product associativity
relies on the defining properties of the twist [8, 19, 20]. Using the standard notation

F ≡ fα ⊗ fα , F−1 ≡ f
α ⊗ fα (3.6)

(sum overα understood) where fα , fα , f
α
, fα are elements ofUΞ, the ?-product is expressed in

terms of ordinary products as:
f ?g = f

α( f )fα(g) (3.7)

Many explicit examples of twist are provided by the so-called abelian twists:

F = e−
i
2θ abXa⊗Xb (3.8)

where{Xa} is a set of mutually commuting vector fields, andθ ab is a constant antisymmetric
matrix. The corresponding?-product is in general position dependent because the vector fieldsXa

are in generalx-dependent. In the special case that there exists a global coordinate system on the
manifold we can consider the vector fieldsXa = ∂

∂xa . In this instance we have the Moyal twist, cf.
(3.4):

F−1 = e
i
2θ ρσ ∂ρ⊗∂σ (3.9)

6
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3.2 Deformed exterior product

The deformed exterior product between forms is defined as

τ ∧? τ
′ ≡ f

α(τ)∧ fα(τ ′) (3.10)

wheref
α

andfα act on forms via the Lie derivativesLf
α , Lfα

(Lie derivatives along productsuv· · ·
of elements ofΞ are defined simply byLuv··· ≡ LuLv · · ·). This product is associative, and in
particular satisfies:

τ ∧? h? τ
′ = τ ?h∧? τ

′, h? (τ ∧? τ
′) = (h? τ)∧? τ

′, (τ ∧? τ
′)?h = τ ∧? (τ ′ ?h) (3.11)

whereh is a 0-form, i.e. a function belonging toFun(M), the?-product between functions and
one-forms being just a particular case of (3.10):

h? τ = f
α(h)fα(τ), τ ?h = f

α(τ)fα(h) (3.12)

3.3 Exterior derivative

The exterior derivative satisfies the usual (graded) Leibniz rule, since it commutes with the Lie
derivative:

d( f ?g) = d f ?g+ f ?dg (3.13)

d(τ ∧? τ
′) = dτ ∧? τ

′+(−1)deg(τ)
τ ∧? dτ

′ (3.14)

3.4 Integration: graded cyclicity

If we consider an abelian twist (3.8) given by globally defined commuting vector fieldsXa, then the
usual integral is cyclic under the?-exterior products of forms, i.e., up to boundary terms,∫

τ ∧? τ
′ = (−1)deg(τ)deg(τ ′)

∫
τ
′∧? τ (3.15)

with deg(τ)+deg(τ ′) =D=dimension of the spacetime manifold. In fact we have∫
τ ∧? τ

′ =
∫

τ ∧ τ
′ = (−1)deg(τ)deg(τ ′)

∫
τ
′∧ τ = (−1)deg(τ)deg(τ ′)

∫
τ
′∧? τ (3.16)

For example at first order inθ ,∫
τ ∧? τ

′ =
∫

τ ∧ τ
′− i

2
θ

ab
∫

LXa(τ ∧LXbτ
′) =

∫
τ ∧ τ

′− i
2

θ
ab

∫
diXa(τ ∧LXbτ

′) (3.17)

where we used the Cartan formulaLXa = diXa + iXad.

3.5 Complex conjugation

If we choose real fieldsXa in the definition of the twist (3.8), it is immediate to verify that:

( f ?g)∗ = g∗ ? f ∗ (3.18)

(τ ∧? τ
′)∗ = (−1)deg(τ)deg(τ ′)

τ
′∗∧? τ

∗ (3.19)
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since sendingi into−i in the twist (3.9) amounts to sendθ ab into−θ ab = θ ba, i.e. to exchange the
order of the factors in the?-product.

More in general we can consider twistsF that satisfy the reality condition (cf. Section 8 in
[8]) f

α∗⊗ fα

∗ = S(fα)⊗S(fα). The?-products associated to these twists satisfy properties (3.18),
(3.19).

4. Noncommutative gravity coupled to fermions

4.1 Action and symmetries

Here we generalize Section 2 to the noncommutative case, mostly by replacing exterior prod-
ucts by deformed exterior products. Thus the action becomes:

S=
∫

Tr (iR∧? V ∧? Vγ5− [(Dψ)? ψ̄−ψ ?Dψ̄]∧? V ∧? V ∧? Vγ5) (4.1)

with
R= dΩ−Ω∧? Ω, Dψ = dψ−Ω?ψ (4.2)

Almost all formulae in Section 2 continue to hold, with?-products and?-exterior products.
However, the expansion of the fundamental fields on the Dirac basis of gamma matrices must now
include new contributions:

Ω =
1
4

ω
ab

γab+ iω1+ ω̃γ5, V = Va
γa +Ṽa

γaγ5 (4.3)

Similarly for the curvature :

R=
1
4

Rab
γab+ ir1+ r̃γ5 (4.4)

and for the gauge parameter:

ε =
1
4

ε
ab

γab+ iε1+ ε̃γ5 (4.5)

Indeed now the?-gauge variations read:

δεV =−V ? ε + ε ?V, δεΩ = dε−Ω? ε + ε ?Ω, δεψ = ε ?ψ, δε ψ̄ =−ψ̄ ? ε (4.6)

and in the variations forV and Ω also anticommutators of gamma matrices appear, due to the
noncommutativity of the?-product. Since for example the anticommutator{γab,γcd} contains 1
andγ5, we see that the corresponding fields must be included in the expansion ofΩ. Similarly,
V must contain aγaγ5 term due to{γab,γc}. Finally, the composition law for gauge parameters
becomes:

[δε1,δε2] = δε2?ε1−ε1?ε2 (4.7)

so thatε must contain the 1 andγ5 terms, since they appear in the composite parameterε2 ? ε1−
ε1 ? ε2.

The invariance of the noncommutative action (4.1) under the?-variations is demonstrated in
exactly the same way as for the commutative case, noting that

δεR=−R? ε + ε ?R, δεDψ = ε ?Dψ, δε((Dψ)? ψ̄) =−(Dψ)? ψ̄ ? ε + ε ? (Dψ)? ψ̄ (4.8)
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etc., and using now, besides the cyclicity of the traceTr and the fact thatε still commutes withγ5,
also the graded cyclicity of the integral.

The local?-symmetry satisfies the Lie algebra ofGL(2,C), and centrally extends theSO(1,3)
Lie algebra of the commutative theory.

Finally, the?-action (4.1) is invariant under diffeomorphisms generated by the Lie derivative,
in the sense that∫

Lv(4−form) =
∫

(ivd+div)(4−form) =
∫

d(iv(4−form)) = boundary term (4.9)

sinced(4−form) = 0 on a 4-dimensional manifold.
We have constructed a geometric lagrangian where the fields are exterior forms and the?-

product is given by the Lie derivative action of the twist on forms. The twistF in general is not
invariant under the diffeomorphismLv. However we can consider the?-diffeomorphisms of ref.
[8] (see also [19], section 8.2.4), generated by the?-Lie derivative. This latter acts trivially on the
twist F but satisfies a deformed Leibniz rule.?-Lie derivatives generate infinitesimal noncom-
mutative diffeomorphisms and leave invariant the action and the twist. They are noncommutative
symmetries of our action.

Finally in our geometric action no coordinate indicesµ,ν appear, and this implies invariance
of the action under (undeformed) general coordinate transformations. Otherwise stated every con-
travariant tensor indexµ is contracted with the corresponding covariant tensor indexµ , for example
Xa = Xµ

a ∂µ andVa = Va
µ dxµ .

4.2 Field equations

Using the cyclicity ofTr and the graded cyclicity of the integral in (4.1), the variation ofV , Ω and
ψ̄ yield respectively the noncommutative Einstein equation, torsion equation and Dirac equation in
index-free form:

Tr[Γa,a5(iV ∧? R+ iR∧? V−X∧? V ∧? V−V ∧? X∧? V−V ∧? V ∧? X)] = 0

Tr[Γab,1,5(iT ∧? V− iV ∧? T +ψ ? ψ̄ ?V ∧? V ∧? V−V ∧? V ∧? V ?ψ ? ψ̄)] = 0

(4.10)

V ∧? V ∧? V ∧? Dψ− (T ∧? V ∧? V−V ∧? T ∧? V +V ∧? V ∧? T)?ψ = 0

whereΓa,a5 indicatesγa andγaγ5 (thus there are two distinct equations) and likewise forΓab,1,5

(three equations corresponding toγab, 1 andγ5). The noncommutative torsion two-form is defined
by:

T ≡ Ta
γa + T̃a

γaγ5 ≡ dV−Ω∧? V−V ∧? Ω (4.11)

The torsion equation (4.10) can be written as:

[iT ∧? V− iV ∧? T +ψ ? ψ̄ ?V ∧? V ∧? V−V ∧? V ∧? V ?ψ ? ψ̄,γ5]+ = 0 (4.12)

Indeed the anticommutator withγ5 selects theγab, 1 andγ5 components. This equation can be
solved for the torsion:

T =
i
2
[ψ ? ψ̄ ?V ∧? V +V ∧? ψ ? ψ̄ ?V +V ∧? V ?ψ ? ψ̄,γ5]γ5 (4.13)

as can be verified by substitution into (4.12).

9
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4.3 θ - dependent fields

We can rewrite the Moyal twist as:

F−1 = e
i
2θΘρσ ∂ρ⊗∂σ (4.14)

whereθ is a dimensionful parameter (so thatΘρσ is a numerical matrix). In the spirit of the
Seiberg-Witten map [1], the fields and the gauge parameter can be considered functions ofx andθ .
Expanding fieldsφ and gauge parameterε in powers ofθ :

φθ (x) = φ0(x)+θφ1(x)+θ
2
φ2(x)+ ..., εθ (x) = ε0(x)+θε1(x)+θ

2
ε2(x)+ ... (4.15)

introduces an infinite tower ofx - dependent fields and gauge parameters: a finite number of them
enters in the action (4.1) at each given order inθ . At 0-th order only the classical fieldsφ0(x)
contribute. The gauge variations of allφi are deduced by expanding the?-gauge transformations
in (4.6) in powers ofθ . Clearly the classical fieldsφ0 transform with the classical gauge variations
δ 0

ε .
If one feels uncomfortable with these new fieldsφi , the Seiberg-Witten map can be used to

relate the higher-order fields to the classical ones in a way consistent with the? - gauge transfor-
mationsδε :

δεφ(φ0) = φ(δ 0
ε φ0) (4.16)

so that the?-deformed theory will contain only theφ0 fields [1, 16].
All the fieldsVa, Ṽa, ωab, ω, andω̃ contained in the action (4.1) are thenθ -expanded, and the

0-th order action contains theirθ → 0 limit.

4.4 Hermiticity and charge conjugation

Hermiticity conditions can be imposed onV, Ω and the gauge parameterε:

γ0Vγ0 = V†, − γ0Ωγ0 = Ω†, − γ0εγ0 = ε
† (4.17)

Moreover it is easy to verify the analogues of conditions (2.12):

γ0[(Dψ)? ψ̄]γ0 = [ψ ?Dψ̄]†, γ0[ψ ?Dψ̄]γ0 = [Dψ ? ψ̄]† (4.18)

These hermiticity conditions are consistent with the gauge variations, as in the commutative case,
and can be used to check that the action (4.1) is real. On the component fieldsVa, Ṽa, ωab, ω, and
ω̃, and on the component gauge parametersεab, ε, andε̃ the hermiticity conditions (4.17) imply
that they are real fields.

The charge conjugation relations (2.13), however, cannot be exported to the noncommutative
case as they are. Indeed they would imply the vanishing of the component fieldsṼa, ω, andω̃

(whose presence is necessary in the noncommutative case) and moreover would not be consistent
with the?-gauge variations.

An essential modification is needed, and makes use of theθ dependence of the noncommuta-
tive fields:

CVθ (x)C = V−θ (x)T , CΩθ (x)C = Ω−θ (x)T , Cεθ (x)C = ε−θ (x)T (4.19)
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These conditions can be checked to be consistent with the?-gauge transformations. For example
CVθ (x)TC can be shown to transform in the same way asV−θ (x):

δε(CVT
θ C) = C(δεVθ )TC = C(−ε

T
θ ?−θ VT

θ +VT
θ ?−θ ε

T
θ )C =

= ε−θ ?−θ V−θ −V−θ ?−θ ε−θ = δεV−θ (4.20)

where we have usedC2 = −1 and the fact that the transposition of a?-product of matrix-valued
fields interchanges the order of the matrices but not of the?-multiplied fields. To interchange both
it is necessary to use the "reflected"?−θ product obtained by changing the sign ofθ , since

f ?θ g = g?−θ f (4.21)

for any two functionsf ,g.

For the component fields and gauge parameters the charge conjugation conditions imply:

Va
θ = Va

−θ , ω
ab
θ = ω

ab
−θ (4.22)

Ṽa
θ =−Ṽa

−θ , ωθ =−ω−θ , ω̃θ =−ω̃−θ , (4.23)

Similarly for the gauge parameters:

ε
ab
θ = ε

ab
−θ (4.24)

εθ =−ε−θ , ε̃θ =−ε̃−θ (4.25)

Finally, let us consider the charge conjugate spinor:

ψ
C ≡C(ψ̄)T (4.26)

It transforms under?-gauge variations as:

δεψ
C = C(δε ψ̄)T = C(−ψ̄ ? ε)T = C(−ε

T ?−θ ψ
∗) = Cε

TC?−θ Cψ
∗ = ε−θ ?−θ ψ

C (4.27)

i.e. it transforms in the same way asψ−θ . Then we can impose the noncommutative Majorana
condition:

ψ
C
θ = ψ−θ ⇒ ψ

†
θ

γ0 = ψ
T
−θC (4.28)

4.5 Commutative limit θ → 0

In the commutative limit the action reduces to the usual action of gravity coupled to fermions
of eq. (2.1). Indeed in virtue of the charge conjugation conditions onV andΩ, the component fields
Ṽa, ω, andω̃ all vanish in the limitθ → 0 (see the second line of (4.23)), and only the classical
spin connectionωab, vierbeinVa and Dirac fermionψ survive. Similarly the gauge parametersε,
andε̃ vanish in the commutative limit.
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5. ClassicalD = 4, N = 1 supergravity

TheD = 4, N = 1 simple supergravity action can be written in index-free notation as follows:

S=
∫

Tr [iR(Ω)∧V ∧Vγ5−2(ρ ∧ ψ̄ +ψ ∧ ρ̄)∧Vγ5] (5.1)

The fundamental fields are the 1-formsΩ (spin connection),V (vielbein) and gravitinoψ. The
curvature 2-formRand the gravitino curvatureρ are defined by

R= dΩ−Ω∧Ω, ρ ≡ Dψ = dψ−Ωψ, ρ̄ = Dψ̄ = dψ̄− ψ̄ ∧Ω (5.2)

with
Ω =

1
4

ω
ab

γab, V = Va
γa (5.3)

and thus are 4×4 matrices with spinor indices. See Appendix C forD = 4 gamma matrix conven-
tions and useful relations. The Dirac conjugate is defined as usual:ψ̄ = ψ†γ0. Then alsoρ ∧ ψ̄

andψ ∧ ρ̄ are matrices in the spinor representation, and the traceTr is taken on this representation.
The gravitino field satisfies the Majorana condition:

ψ
†
γ0 = ψ

TC (5.4)

whereC is theD = 4 charge conjugation matrix, antisymmetric and squaring to−1.
Using theD = 4 gamma matrix trace identity:

Tr(γabγcγdγ5) =−4iεabcd (5.5)

leads to the usual supergravity action in terms of the component fieldsVa, ωab :

S=
∫

Rab∧Vc∧Vd
εabcd−4ψ̄ ∧ γ5γaρ ∧Va (5.6)

with
R≡ 1

4
Rab

γab, Rab = dω
ab−ω

a
c∧ω

cb (5.7)

We have also used
ρ̄γ5γaψ = ψ̄γ5γaρ (5.8)

due toψ andρ being Majorana spinors1.

5.1 Field equations and Bianchi identities

Using the cyclicity of theTr in the action (5.1), the variation onV, Ω andψ yield respectively
the Einstein equation, the torsion equation and the gravitino equation in index-free form:

Tr[γaγ5(−iV ∧R− iR∧V +2(ρ ∧ ψ̄ +ψ ∧ ρ̄)] = 0 (5.9)

Tr[γabγ5(iT ∧V− iV ∧T +2ψ ∧ ψ̄ ∧V−2V ∧ψ ∧ ψ̄)] = 0 (5.10)

1Then the two addends in the fermionic part of the action (5.1) are equal, so that we could have used only one of
them, with factor−4. However in the noncommutative extension both will be necessary.
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V ∧Dψ = 0 (5.11)

where the torsionT = Taγa is defined as:

T ≡ dV−Ω∧V−V ∧Ω (5.12)

The solution of the torsion equation (5.10) is given by:

T = i[ψ ∧ ψ̄,γ5]γ5 = iψ ∧ ψ̄− iγ5ψ ∧ ψ̄γ5 (5.13)

Upon use of the Fierz identity for Majorana spinor one-forms:

ψ ∧ ψ̄ =
1
4

γaψ̄γ
a∧ψ− 1

8
γabψ̄γ

ab∧ψ (5.14)

the torsion is seen to satisfy the familiar condition

T ≡ Ta
γa =

i
2

ψ̄γ
a∧ψγa (5.15)

Finally, the Bianchi identities for the curvatures and the torsion are:

dR=−R∧Ω+Ω∧R (5.16)

dρ =−R∧ψ +Ω∧ρ, dρ̄ = ψ̄ ∧R− ρ̄ ∧Ω (5.17)

dT =−R∧V +Ω∧T−T ∧Ω+V ∧R (5.18)

The terms with the spin connectionΩ reconstruct covariant derivatives of the curvatures and the
torsion.

5.2 Invariances

We know that the classical supergravity action (5.6) is invariant under general coordinate trans-
formations, under local Lorentz rotations and under local supersymmetry transformations. It is of
interest to write the transformation rules of the fields in the index-free notation, so as to verify the
invariances directly on the index-free action (5.1).

Local Lorentz rotations

δεV =−[V,ε], δεΩ = dε− [Ω,ε], δεψ = εψ, δε ψ̄ =−ψ̄ε (5.19)

with
ε =

1
4

ε
ab

γab (5.20)

The invariance can be directly checked on the action (5.1) noting that

δεR=−[R,ε], δεDψ = εDψ, δεDψ̄ =−(Dψ̄)ε (5.21)

using the cyclicity of the traceTr (on spinor indices) and the fact thatε commutes withγ5. The
Lorentz rotations close on the Lie algebra:

[δε1,δε2] = δ[ε2,ε1] (5.22)
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Local supersymmetry

The supersymmetry variations are:

δεV = i[εψ̄−ψε̄,γ5]γ5, δεψ = Dε ≡ dε−Ωε (5.23)

where nowε is a spinorial parameter (satisfying the Majorana condition). Notice that againΩ is
not varied since we work in 1.5 - order formalism, i.e.Ω satisfies its own equation of motion (5.10).

The commutator ofεψ̄−ψε̄ with γ5 in the supersymmetry variation ofV eliminates the terms
even inγa in the Fierz expansion of two generic anticommuting spinors (see Appendix C). More-
over, sinceε and ψ are Majorana spinors, the combinationεψ̄ −ψε̄ ensures that only theγa

component survives. Then (5.23) reproduce the usual supersymmetry variations (see below).
The variations (5.23) imply:

δε ψ̄ = Dε̄ ≡ dε̄ + ε̄Ω, δερ =−Rε, δε ρ̄ = ε̄R (5.24)

Then the action varies as:

δεS=
∫

2 Tr[R∧ (ψε̄− εψ̄)∧Vγ5 +R∧V ∧ (ψε̄− εψ̄)γ5]−

−2 Tr[
(
−Rε ∧ ψ̄ ∧V +ρ ∧ (dε̄ + ε̄Ω)∧V +(dε−Ωε)∧ ρ̄ ∧V +ψ ∧ ε̄R∧V

)
γ5]

+2i Tr[(ρ ∧ ψ̄ +ψ ∧ ρ̄)(ψε̄− εψ̄)γ5− (ρ ∧ ψ̄ +ψ ∧ ρ̄)γ5(ψε̄− εψ̄)] (5.25)

After integrating by parts the terms withdε anddε̄, and using the Bianchi identity (5.17) for dρ

the variation becomes:

δεS=
∫

2 Tr[R∧ (ψε̄− εψ̄)∧Vγ5 +R∧V ∧ (ψε̄− εψ̄)γ5]−

−2 Tr[
(
−Rε ∧ ψ̄ ∧V +ρ ∧ ε̄Ω∧V−Ωε ∧ ρ̄ ∧V +ψ ∧ ε̄R∧V +

+(R∧ψ−Ω∧ρ)ε̄ ∧V−ρε̄ ∧ (T +Ω∧V +V ∧Ω)−

−ε(−ρ̄ ∧Ω+ ψ̄ ∧ρ)∧V− ερ̄ ∧ (T +Ω∧V +V ∧Ω)
)

γ5]+

+2i Tr[(ρ ∧ ψ̄ +ψ ∧ ρ̄)(ψε̄− εψ̄)γ5− (ρ ∧ ψ̄ +ψ ∧ ρ̄)γ5(ψε̄− εψ̄)] (5.26)

where we have substituteddV by T +Ω∧V +V ∧Ω (torsion definition). Using now the cyclicity
of Tr , and the fact thatγ5 anticommutes withV and commutes withΩ, all terms can be easily
checked to cancel, except those containing the torsionT and the last line (four-fermion terms).

Once we make use of the torsion equation ((5.13) to expressT in terms of gravitino fields, the
variation reduces to:

δεS= 2i
∫

Tr[ρε̄ ∧ (ψ ∧ ψ̄γ5− γ5ψ ∧ ψ̄)+ ερ̄ ∧ (ψ ∧ ψ̄γ5− γ5ψ ∧ ψ̄)

+(ρ ∧ ψ̄ +ψ ∧ ρ̄)∧ (ψε̄− εψ̄)γ5− (ρ ∧ ψ̄ +ψ ∧ ρ̄)∧ γ5(ψε̄− εψ̄)] (5.27)

Finally, carrying out the trace on spinor indices results in

δεS= 2i
∫

(ψ̄ε− ε̄ψ)∧ (ψ̄γ5∧ρ− ρ̄γ5∧ψ)+(ψ̄ ∧ρ− ρ̄ ∧ψ)∧ (ψ̄γ5ε− ε̄γ5ψ)

+(ε̄ρ− ρ̄ε)∧ (ψ̄γ5∧ψ)+(ρ̄γ5ε− ε̄γ5ρ)∧ (ψ̄ ∧ψ) (5.28)
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Each factor between parentheses vanishes, due to all spinors being Majorana spinors. This proves
the invariance of the classical supergravity action under the local supersymmetry variations (5.23).

On the component fields, the Lorentz transformations (5.19) read:

δεV
a = ε

a
bV

b

δεω
ab = dε

ab+ ε
ac

ω
b

c − ε
bc

ω
a

c

δεψ =
1
4

ε
ab

γabψ (5.29)

and the supersymmetry variations (5.23) become:

δεV
a = iε̄γ

a
ψ

δεψ = dε− 1
4

ω
ab

γabε (5.30)

6. NoncommutativeD = 4, N = 1 supergravity

6.1 Action andGL(2,C) ?-gauge symmetry

A noncommutative generalization of theD = 4, N = 1 simple supergravity action is obtained
by replacing exterior products by?-exterior products in (5.1):

S=
∫

Tr [iR(Ω)∧? V ∧? Vγ5 +2(ρ ∧? ψ̄ +ψ ∧? ρ̄)∧? Vγ5] (6.1)

where the curvature 2-formRand the gravitino curvatureρ are defined as:

R= dΩ−Ω∧? Ω, ρ ≡ Dψ = dψ−Ω?ψ (6.2)

Almost all formulae of the commutative case continue to hold, with ordinary products re-
placed by?-products and?-exterior products. However, the expansion of the fundamental fields on
the Dirac basis of gamma matrices must now include new contributions; more precisely the spin
connection contains all even gamma matrices and the vielbein contains all odd gamma matrices:

Ω =
1
4

ω
ab

γab+ iω1+ ω̃γ5, V = Va
γa +Ṽa

γaγ5 (6.3)

The one-formsΩ andV are thus also 4×4 matrices with spinor indices. Similarly for the curvature
:

R=
1
4

Rab
γab+ ir1+ r̃γ5 (6.4)

and for the gauge parameter:

ε =
1
4

ε
ab

γab+ iε1+ ε̃γ5 (6.5)

Indeed now the?-gauge variations read:

δεV =−V ? ε + ε ?V, δεΩ = dε−Ω? ε + ε ?Ω, δεψ = ε ?ψ, δε ψ̄ =−ψ̄ ? ε (6.6)

and in the variations forV and Ω also anticommutators of gamma matrices appear, due to the
noncommutativity of the?-product. Since for example the anticommutator{γab,γcd} contains 1
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andγ5, we see that the corresponding fields must be included in the expansion ofΩ. Similarly,
V must contain aγaγ5 term due to{γab,γc}. Finally, the composition law for gauge parameters
becomes:

[δε1,δε2] = δε2?ε1−ε1?ε2 (6.7)

so thatε must contain the 1 andγ5 terms, since they appear in the composite parameterε2 ? ε1−
ε1 ? ε2.

The invariance of the noncommutative action (6.1) under the?-gauge variations is demon-
strated in exactly the same way as for the commutative case, noting that

δεR=−R?ε +ε ?R, δεDψ = ε ?Dψ, δε((Dψ)∧? ψ̄) =−(Dψ)∧? ψ̄ ?ε +ε ?(Dψ)∧? ψ̄ (6.8)

and using now, besides the cyclicity of the traceTr and the fact thatε still commutes withγ5, also
the graded cyclicity of the integral.

6.2 Local?-supersymmetry

The?-supersymmetry variations are obtained from the classical ones using?-products:

δεV = i[ε ? ψ̄−ψ ? ε̄,γ5]γ5 δεψ = dε−Ω? ε (6.9)

whereε is a spinorial parameter. Under these variations the noncommutative action varies as given
in (5.28), with ordinary products substituted with?-products. Indeed the algebra is identical, since
γ5 still anticommutes withV and commutes withΩ, and we can use the cyclicity ofTr and graded
cyclicity of the integral.

The question is now: does this variation vanish? Classically it vanishes because of the Ma-
jorana condition on the spinors (gravitino and supersymmetry gauge parameter). We recall the
noncommutative generalization of the Majorana condition, consistent with the∗-gauge transfor-
mations [13]:

ψ
c
θ = ψ−θ , ψ

c ≡C(ψ̄)T (6.10)

This condition involves theθ dependence of the fields2, and is consistent with the?-gauge trans-
formations only if the gauge parameter satisfies the charge conjugation condition [13]:

CεθC = ε
T
−θ (6.11)

The NC Majorana condition (6.10) is consistent also with?-supersymmetry transformations if
the supersymmetry parameter is Majorana, and the bosonic fields satisfy the charge conjugation
conditions

CΩθC = ΩT
−θ , CVθC = VT

−θ (6.12)

Now consider the first term in the supersymmetry variation of the action (for the other three
terms the reasoning is identical):

2i
∫

(ψ̄ ? ε− ε̄ ?ψ)∧? (ψ̄γ5∧? ρ− ρ̄γ5∧? ψ) (6.13)

2The fields can be formally expanded in powers ofθ : in principle this picture would introduce infinitely many
fields, one for each power ofθ . However the Seiberg-Witten map [1, 16] can be used to express all fields in terms of the
classical one, ending up with a finite number of fields.

16



P
o
S
(
C
N
C
F
G
2
0
1
0
)
0
1
3

Noncommutative Supergravity

If ψ andε are noncommutative Majorana fermions, they satisfy the relations:

ψ̄ ? ε = ε̄−θ ?−θ ψ−θ , ψ̄γ5∧? ρ = ρ̄−θ γ5∧−θ ψ−θ (6.14)

and one sees that (6.13) does not vanish anymore (although it vanishes in the commutative limit).
Thus the NC Majorana condition does not ensure the local?-supersymmetry invariance of the
action in (6.1). In fact, the local supersymmetry of the commutative action is broken by noncom-
mutativity.

There is another condition that we can impose on fermi fields, the Weyl condition, still consis-
tent with the?-symmetry structure of the action:

γ5ψ = ψ, γ5ε = ε (6.15)

i.e. all fermions are left-handed (so that their Dirac conjugatesψ̄ andε̄ are right-handed). In this
case the local?-supersymmetry variation vanishes because in all the fermion bilinears theγ5 ma-
trices can be omitted, and the product of a right-handed spinor with a left-handed spinor vanishes.
Thus the noncommutative supergravity action (6.1) with Weyl fermions is locally supersymmetric.

Note that now we cannot impose the charge conjugation relations (6.12) on the bosonic fields:
indeed?-supersymmetry links together these relations with the NC Majorana condition, which is
not compatible inD = 4 with the Weyl condition (as in the classical case).

The θ → 0 limit of this chiral noncommutative theory is a complex version of the so-called
D = 4, N = 1 Weyl supergravity and is discussed in Section 4.6 below.

6.3 Hermiticity conditions and reality of the action

Hermiticity conditions can be imposed onV, Ω and the gauge parameterε:

γ0Vγ0 = V†, − γ0Ωγ0 = Ω†, − γ0εγ0 = ε
† (6.16)

Moreover it is easy to verify that :

γ0[ρ ∧? ψ̄]γ0 = [ψ ∧? ρ̄]† (6.17)

These conditions are consistent with the?-gauge and?-supersymmetry variations (both for Ma-
jorana and chiral fermions), as in the commutative case, and can be used to check that the action
(6.1) is real. The hermiticity conditions imply that the component fieldsVa, Ṽa, ωab, ω, andω̃,
and gauge parametersεab, ε, andε̃ are real fields.

6.4 Component analysis

Here we list the?-gauge and supersymmetry variations of the component fields. In the super-
symmetry variations we consider both Majorana and Weyl fermions.
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6.4.1 ?-Gauge variations

δεV
a =

1
2
(εa

b ?Vb +Vb ? ε
a
b)+

i
4

ε
a
bcd(Ṽ

b ? ε
cd− ε

cd ?Ṽb)

+ ε ?Va−Va ? ε− ε̃ ?Ṽa−Ṽa ? ε̃ (6.18)

δεṼ
a =

1
2
(εa

b ?Ṽb +Ṽb ? ε
a
b)+

i
4

ε
a
bcd(V

b ? ε
cd− ε

cd ?Vb)

+ ε ?Ṽa−Ṽa ? ε− ε̃ ?Va−Va ? ε̃ (6.19)

δεω
ab =

1
2
(εa

c ?ω
cb− ε

b
c ?ω

ca+ω
cb? ε

a
c−ω

ca? ε
b
c)

+
1
4
(εab?ω−ω ? ε

ab)+
i
8

ε
ab

cd(ε
cd ? ω̃− ω̃ ? ε

cd)

+
1
4
(ε ?ω

ab−ω
ab? ε)+

i
8

ε
ab

cd(ε̃ ?ω
cd−ω

cd ? ε̃) (6.20)

δεω =
1
8
(ωab? εab− εab?ω

ab)+ ε ?ω−ω ? ε + ε̃ ? ω̃− ω̃ ? ε̃ (6.21)

δε ω̃ =
i

16
εabcd(ωab? ε

cd− ε
cd ?ω

ab)+ ε ? ω̃− ω̃ ? ε + ε̃ ?ω−ω ? ε̃ (6.22)

6.4.2 Supersymmetry variations: Majorana fermions

δεV
a =

i
2

Tr[(ε ? ψ̄−ψ ? ε̄)γa] (6.23)

δεṼ
a =

i
2

Tr[(ε ? ψ̄−ψ ? ε̄)γa
γ5] (6.24)

δεψ = dε− 1
4

ω
ab

γabε− (iω + ω̃γ5)ε (6.25)

6.4.3 Supersymmetry variations: Weyl fermions

δεV
a = δεṼ

a =
i
2

Tr[(ε ? ψ̄−ψ ? ε̄)γa] (6.26)

δεψ = dε− 1
4

ω
ab

γabε− (iω + ω̃)ε (6.27)

6.4.4 Charge conjugation conditions

The charge conjugation relations (6.12) imply for the component fields:

Va
θ = Va

−θ , ω
ab
θ = ω

ab
−θ (6.28)

Ṽa
θ =−Ṽa

−θ , ωθ =−ω−θ , ω̃θ =−ω̃−θ , (6.29)

and for the gauge parameters:

ε
ab
θ = ε

ab
−θ (6.30)

εθ =−ε−θ , ε̃θ =−ε̃−θ (6.31)
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6.5 Field equations and Bianchi identities

Using the cyclicity of the integral and of theTr in the action (6.1), the variation onV, Ω
andψ yield respectively the Einstein equation, the torsion equation and the gravitino equation in
index-free form:

Tr[Γa,a5(−iV ∧? R− iR∧? V +2(ρ ∧? ψ̄ +ψ ∧? ρ̄)] = 0 (6.32)

Tr[Γab,1,5(iT ∧? V− iV ∧? T +2ψ ∧? ψ̄ ∧V−2V ∧? ψ ∧? ψ̄)] = 0 (6.33)

V ∧? Dψ− 1
2

T ∧? ψ = 0 (6.34)

whereΓab,1,5 indicatesγab, 1 andγ5 (thus there are three distinct equations) and likewise forΓa,a5

(two equations corresponding toγa andγaγ5). The torsionT = Taγa + T̃aγaγ5 is defined as:

T ≡ dV−Ω∧? V−V ∧? Ω (6.35)

The torsion equation can be written as:

[iT ∧? V− iV ∧? T +2ψ ∧? ψ̄ ∧? V−2V ∧? ψ ∧? ψ̄,γ5] = 0 (6.36)

since the anticommutator withγ5 selects theγab, 1 andγ5 components. This equation can be solved
for the torsion:

T = i[ψ ∧? ψ̄,γ5]γ5 = iψ ∧? ψ̄− iγ5ψ ∧? ψ̄γ5 (6.37)

For chiral gravitini:

T = 2iψ ∧? ψ̄ (6.38)

The Bianchi identities for the curvatures and the torsion are obtained from the commutative ones
simply by replacing exterior products by?-exterior products.

6.6 Commutative limit

The nonsupersymmetric NC theory with NC Majorana gravitino, and charge conjugation con-
ditions (6.12), reduces in theθ → 0 limit to the usualD = 4, N = 1 supergravity. Indeed the charge
conjugation conditions onV andΩ imply that the component fields̃Va, ω, andω̃ all vanish in
the limit θ → 0 (see the second line of (6.29)), and only the classical spin connectionωab, vier-
beinVa and Majorana fermionψ survive. Similarly the gauge parametersε, andε̃ vanish in the
commutative limit.

In the chiral case, the extra vielbeiñVa cannot vanish in the commutative limit, since its
supersymmetry variation is equal to that ofVa. Then one obtains a commutative limit that is a
(locally) supersymmetric version of gravity with a complex vielbein studied by Chamseddine, or a
bigravity-like theory (in our case a super-bigravity theory). For a discussion on chiral supergravity
see for ex. [17]. A detailed study of this commutative limit will not be carried out in the present
paper.
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7. Conclusions

The index-free notation, based on Clifford algebra expansion of the bosonic fields (see for ex.
ref.s [17, 7]), allows to study invariances with simple algebraic manipulations. This framework
is ideally suited to study noncommutative generalizations of field theories containing gravity, cf.
ref.s [7], where a complex noncommutative gravity was proposed. In these Proceedings we have
reviewed our construction of a a NC gravity with a commutative limit coinciding with the usual
Einstein-Cartan theory. We proved that a NC charge conjugation condition on the vierbein and on
the spin connection yields a real vierbein in the commutative limit. The theory can also be coupled
to (Majorana) fermion zero-forms (spin 1/2).

We have then presented noncommutative supergravity inD = 4 : if we use the NC Majorana
condition for the gravitino, the action is not?-supersymmetric. However also in this case we can
impose charge conjugation conditions on the vierbein and spin connection, so that the commutative
limit of the theory reproduces usualD = 4, N = 1 supergravity.

We recover?-local supersymmetry of the action when the gravitino is chiral. In this case we
cannot impose the charge conjugation condition on the vierbein (because then?-supersymmetry
requires the NC Majorana condition on the gravitino), and therefore the commutative limit does not
involve only one real vierbein, but reduces to a chiralD = 4, N = 1 supergravity with a complex
vierbein.

Note that the?-products deformations considered in this paper are associated to a very general
triangular Drinfeld twistF , a particular case being the Groenewold-Moyal?-product. In our
general framework one could consider promoting the twistF itself to a dynamical field, see [18]
for an example in the flat case.

Finally, we briefly comment on a class of solutions [21, 22] for the NC gravity and supergrav-
ity theories we have reviewed. These solutions can be simply obtained by consideringclassical
solutions for the vielbein and their classical Killing vectors, i.e. solutions of the undeformed theory
and their symmetries. Using a subsetK of these Killing vectors todefinea star product, all star
products involving the vielbein reduce to ordinary products, sinceV can always be chosen to satisfy
LKV = 0. ThenV is a solution also for the? - equations of motion of the deformed theory.

AcknowledgementsIt is a pleasure to thank the Corfu Summer Institute of elementary particle
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8. Appendix : gamma matrices inD = 4

We summarize in this Appendix our gamma matrix conventions inD = 4.

ηab = (1,−1,−1,−1), {γa,γb}= 2ηab, [γa,γb] = 2γab, (8.1)

γ5 ≡ iγ0γ1γ2γ3, γ5γ5 = 1, ε0123=−ε
0123= 1, (8.2)

γ
†
a = γ0γaγ0, γ

†
5 = γ5 (8.3)

γ
T
a =−CγaC

−1, γ
T
5 = Cγ5C

−1, C2 =−1, CT =−C (8.4)
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8.1 Useful identities

γaγb = γab+ηab (8.5)

γabγ5 =
i
2

εabcdγ
cd (8.6)

γabγc = ηbcγa−ηacγb− iεabcdγ5γ
d (8.7)

γcγab = ηacγb−ηbcγa− iεabcdγ5γ
d (8.8)

γaγbγc = ηabγc +ηbcγa−ηacγb− iεabcdγ5γ
d (8.9)

γ
ab

γcd =−iεab
cdγ5−4δ

[a
[c γ

b]
d]−2δ

ab
cd (8.10)

8.2 Charge conjugation and Majorana condition

Dirac conjugateψ̄ ≡ ψ
†
γ0 (8.11)

Charge conjugate spinorψc = C(ψ̄)T (8.12)

Majorana spinorψc = ψ ⇒ ψ̄ = ψ
TC (8.13)

8.3 Fierz identities for two spinor one-forms

ψ ∧ χ̄ =
1
4
[(χ̄ ∧ψ)1+(χ̄γ5∧ψ)γ5 +(χ̄γ

a∧ψ)γa +(χ̄γ
a
γ5∧ψ)γaγ5−

1
2
(χ̄γ

ab∧ψ)γab] (8.14)

Noncommutative Fierz identities

ψ ∧? χ̄ =
1
4
[Tr(ψ ∧? χ̄)1+Tr(ψγ5∧? χ̄)γ5 +Tr(ψγ

a∧? χ̄)γa +

Tr(ψγ
a
γ5∧? χ̄)γaγ5−

1
2

Tr(ψγ
ab∧? χ̄)γab] (8.15)
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