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1. Introduction

Locally interacting discrete integrable spin chains have been the subject of much interest since
they cropped up in string theory in the study of the AdS/CFT correspondence [1]. Their classi-
cal, long wavelength limit, provides a connection to continuous σ -models describing particular
dynamics of the string (references on this subject can be found in e.g. [2, 3]).
Our motivation for this work is to develop a Hamiltonian approach different in its principle from
the usual Lagrangian formulation of the long wavelength limit, in order to use in cases where the
latter cannot be applied. In our approach we start from the Hamiltonian integrability formulation
(quantum R-matrix and Lax matrix) guaranteeing a priori Liouville integrability of the classical
continuous models. This is done through a Lax matrix-classical r-matrix formulation, provided
that some consistency checks be made. On all known specific examples it will be checked that
it yields the same results as the Lagrangian approach. It is indeed a key result that the Poisson
structure is the same, in all cases when comparison is available, as the canonical structure derived
from the long wavelength classical Lagrangian. This thereby validates the procedure and allows to
use it in more general situations where the Lagrangian approach may not be used, in particular as a
systematic way to build more general types of classical continuous integrable models by exploiting
the richness of the algebraic approach.
This contribution is based on [4], where the interested reader can find all the details of the con-
struction.

2. The general setting

In this section we outline the general procedure for obtaining a classical Lax formulation from
the classical limits of the R and monodromy matrices.
A quantum c-number non-dynamical R-matrix obeys the quantum Yang–Baxter (YB) equation [5]

R12 R13 R23 = R23 R13 R12 , (2.1)

where the labels i = 1,2,3 may include dependence on a complex spectral parameter λi. The aux-
iliary spaces are in this case loop-spaces Vi ⊗C(λi), where Vi are (isomorphic) finite-dimensional
vector spaces.
Assuming that R admits an expansion (“semiclassical”) in positive power series of a parameter
(usually denoted h̄) as

R12 = 1⊗1+ h̄r12 +O(h̄2) , (2.2)

the first non-trivial term arising when we substitute this in (2.1) is of order two and yields the
classical YB equation

[r12,r13]+ [r12,r23]+ [r13,r23] = 0 . (2.3)

This is the canonically known “classical Yang–Baxter equation”. It is not in general the sufficient
associativity condition for a classical linear Poisson bracket, except when r is non-dynamical and
skew-symmetric (see e.g. [6]). We shall hereafter limit ourselves to such situations.
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A quantum monodromy matrix T is generically built as a tensor product over “quantum spaces”
and algebraic product over “auxiliary space” of representations of the YB algebra associated to
R. Namely, one assumes a collection operators assembled in matrices L1i, acting on “quantum”
Hilbert spaces labeled by i and encapsulated in a matrix “acting” on the auxiliary space V1. For any
quantum space q they obey the quadratic exchange algebra [7, 8, 9]

R12 L1q L2q = L2q L1q R12 , (2.4)

where operators acting on different quantum spaces commute. The form of the monodromy matrix
T is then deduced from the co-module structure of the YB algebra

Ta ≡ La1 La2 . . . LaN (2.5)

and thus naturally obeys the same quadratic exchange algebra (2.4). In particular one can pick
L = R, the operators now acting on the second auxiliary space identified as “quantum space”. This
way, one builds closed inhomogeneous spin chains with general spins at each lattice site (labeled
by (i)) belonging to locally chosen representations of some Lie algebra (labeled by i).
We now establish that T has a classical limit by considering in addition the classical counterpart
of L, labeled by Lc which then satisfies the quadratic Poisson algebra, emerging directly as a semi-
classical limit of (2.4), after setting 1

h̄ [A, B]→{A, B}. It reads

{Lc
a(λ1), Lc

b(λ2)}= [rab(λ1 −λ2), Lc
a(λ1) Lc

b(λ2)] . (2.6)

The quantum monodromy matrix has also a classical limit given by (see also [10, 11])

T c
a,{i} = Lc

a1 . . . Lc
aN . (2.7)

The exchange algebra for T c takes the form

{T c
a ,T

c
b }= [rab, T c

a T c
b ] . (2.8)

This quadratic Poisson structure implies that the traces of powers of the monodromy matrix tr(T c)

generate Poisson-commuting quantities identified as classically integrable Hamiltonians. Perform-
ing the trace over the finite vector space yields a generating function tr(T c(λ )) for classically
integrable Hamiltonians obtained by series expansion in λ .

2.1 The long wavelength limit

The usual presentation of the long wavelength limit, such as that found in [2, 3], is a La-
grangian one where the Poisson structure is obtained from the standard derivation of canonical
variables using a Lagrangian density. Instead, we will present here a purely Hamiltonian version of
this limit by defining the long wavelength limit of a hierarchy of integrable quantum Hamiltonians
based on some affine Lie algebra Ĝ. We shall define a priori the Poisson structure of the classi-
cal variables by imposing classical integrability of the long wavelength limit of the Hamiltonian
through its associated classical Lax matrix. We consider a N-site closed spin chain Hamiltonian H,
initially assumed to be governed by a nearest-neighbour interaction that takes the form

H ≡
N

∑
1=1

Hll+1 . (2.9)
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The classical, long wavelength limit, is obtained by first defining local quantum states as linear
combinations of the base quantum states. The bras and kets are denoted respectively by ⟨n(l,θk)|
and |n(l,θk)⟩, where l denotes the site index and the θk’s denote the set of k angular variables. The
condition of “closed” spin chain, essentially formulated as N + l ≡ l, imposes periodicity or quasi-
periodicity conditions on the θk’s. Note that we have assumed that the base quantum states differ
only by the fact that they are defined in distinct sites, hence the frequently used notation below |nl⟩,
instead of |n(l,θk)⟩, should not be confusing.
If one considers nearest-neighbor local interactions then one defines the classical, but still defined
on the lattice, Hamiltonian as

H ≡
N

∑
1=1

Hl(t) , Hl(x, t) = ⟨nl|⊗ ⟨nl+1| Hll+1 |nl⟩⊗ |nl+1⟩ . (2.10)

For integrable models, we may similarly define the continuum limit of the full set of commuting
Hamiltonians. In these cases the generic Hamiltonians H(n) of the integrable hierarchy are obtained
directly from the analytic series expansion around some value λ0 of the spectral parameter of the
trace of the monodromy matrix (transfer matrix) as

trT (λ )≡
∞

∑
n=1

(λ −λ0)
nH(n) . (2.11)

By extension, we define in this case the classical Hamiltonians as the expectation value, over the N
site lattice quantum state, of H(n)

H (n)(x, t) =⊗N
1 . . .⟨nl|⊗ ⟨nl+1| . . . H(n) . . . |nl⟩⊗ |nl+1⟩ . . . . (2.12)

We next define a continuous limit and take simultaneously the thermodynamical limit in which
N → ∞. Accordingly, this is achieved by identifying the lattice spacing δ as being of order 1/N
and subsequently consider only slow-varying spin configurations (the long wavelength limit proper)
for which

li → l(x) , li+1 → l(x+δ ) . (2.13)

In this limit, the finite “site differences” turn into derivatives.
Given that (2.12) is applied to Hamiltonians of the integrable hierarchy obtained directly from the
series expansion of the trace of the monodromy matrix, it is immediate that the expectation value
procedure goes straightforwardly to the full monodromy matrix T (and thence to its trace over
the auxiliary space which is altogether decoupled from the quantum expectation value procedure).
Accordingly, we define first a lattice expectation value

Ta = . . .⟨nl|⊗ ⟨nl+1|... (La1 La2 . . .LaN) . . . |nl⟩⊗ |nl+1⟩ . . . , (2.14)

which nicely factors out as

Ta =
N

∏
i=1

⟨ni|Lai|ni⟩ . (2.15)
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Assuming now that L admits an expansion in powers of δ as

Lai = 1+δ lai +O(δ 2) , (2.16)

we consider the product (setting ⟨ni|lai|ni⟩= la(xi))

Ta =
N

∏
i=1

(1+δ lai +
∞

∑
n=2

δ nl(n)ai ) . (2.17)

Expanding this expression in powers of δ , we get

Ta = 1+δ ∑
i

lai +δ 2 ∑
i< j

lai la j +δ 2 ∑
i

l(2)ai + . . . . (2.18)

These, multiple in general, infinite series of the products of local terms, are characterized by two
indices: the overall power n of δ , and the number m of the set of indices i (that is the number of
distinct summation indices) over which the series is summed. Note that, in the T expansion one
always has n > m. The continuum limit soon to be defined more precisely, will entail the limit
δ → 0 with O(N) = O(1/δ ). We now formulate the following power-counting rule, that is terms
of the form (for notational convenience lai = l(1)ai below)

δ n ∑
i1<i2<...im

l(n1)
ai1 ...l(nm)

aim ,
m

∑
j=1

n j = n , (2.19)

with n > m are omitted in the continuum limit. For a sinlge summation, the latter is defined by

δ ∑
i

lai →
∫ A

0
dx la(x) (2.20)

and similarly for multiple summations. Here A is the length of the continuous interval defined as
the limit of Nδ . In other words, contributions to the continuum limit may only come from the
terms with n = m for which the power δ n can be exactly matched by the “scale” factor Nm of the
m-multiple sum over m indices i. In particular, only terms of order one in the δ expansion of local
classical matrices Lai ≡ ⟨ni|Lai|ni⟩ will contribute to the continuum limit. Any other contribution
acquires a scale factor δ n−m → 0, when the continuum limit is taken. This argument is of course
valid term by term in the double expansion. Being only a weak limit argument, it always has to be
checked for consistency.
Let’s remark that if L is taken to be R, one naturally identifies δ with the small parameter h̄, thus
identifying in some sense the classical and the continuum limits. However, this is not required in
general. It is clear to characterize separately both notions in our discussion as

classical limit : R = 1+ h̄r ,

continuum limit : L = 1+δ l . (2.21)

Recalling (2.13), the continuous limit of T , hereafter denoted T , is then immediately identified
from (2.15), as the path-ordered exponential from x = 0 to x = A

T = Pexp
(∫ A

0
dx l(x)

)
, (2.22)
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where suitable (quasi) periodicity conditions on the continuous variables θk(x) of the classical
matrix l(x), acting on the auxiliary space V ⊗C(λ ), are assumed. Of course the definition of
a continuous limit requires that the L-matrices are not too inhomogeneous (e.g. L-matrices at
neighbor sites should not be too different). This is in fact assured by the long wavelength limit
assumption.

2.2 The Lax matrix and r-matrix formulation

The above identification of T also defines it as the monodromy matrix of the first order dif-
ferential operator d/dx+ l(x). In addition, it has been built so as to straightforwardly generate the
classical continuous limit of the Hamiltonians in (2.12) from the analytic expansion

tr(T (λ ))≡
∞

∑
n=1

(λ −λ0)
nH (n) . (2.23)

We thus characterize l(x) as a local Lax matrix yielding the hierarchy of continuous Hamiltonians
H (n). In order for this statement to agree with the key assumption of preservation of integrability
we are now lead to require a Poisson structure for l (inducing one for the continuous dynamical
variables θk(x)) compatible with the demand of classical integrability of the continuous Hamilto-
nians. Indeed, such a structure is deduced from (2.6), as the ultra-local Poisson bracket

{l1(x,λ1), l2(y,λ2)}= [r12(λ1 −λ2), l1(x,λ1)+ l2(y,λ2)]δ (x− y) , (2.24)

where r is the classical limit (2.2) of the R-matrix characterizing the exchange algebra of the L-
operators. More specifically, recalling that Lai = 1+ δ lai +O(δ 2), plugging it into (2.6) and as-
suming ultra-locality of Poisson brackets one gets

{lai, lb j}= [rab, lai + lb j]
δi j

δ
. (2.25)

One then identifies, in the continuum limit δ → 0, the factor δi j/δ with δ (x− y). We then obtain
a hierarchy of classically integrable, mutually Poisson commuting Hamiltonians from the explicit
computation of the transfer matrix t(λ ) of the Lax operator d/dx+ l(x) as H(n) = dn

dλ n t(λ )|λ=λ0 .
Such Hamiltonians are however generally highly non-local and not necessarily very relevant as
physical models. We shall thus extend our discussion to local Hamiltonians.

2.3 Local spin chains

Local spin chain Hamiltonians are more interesting, physically meaningful and easier to ma-
nipulate. In particular, they are the most relevant objects in connection with string theory and
the AdS/CFT duality [1]. Their construction generically requires the determination of a so-called
“regular value” λ0 of the spectral parameter such that Lai(λ0) ∝ Pai, where P is the permutation
operator. In this sense the expansion of L can be expressed up to an appropriate normalization
factor as

L(λ ) = f (λ )(1+δ l +O(δ 2)) . (2.26)
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Of course only when the auxiliary space a and quantum space i are isomorphic has this “regu-
lar value” any relevance. One then defines the local Hamiltonians as (denoting as usual t(λ ) =
traTa(λ ))

H(n) =
dn

dλ n ln(t(λ ))
∣∣
λ=λ0

, (2.27)

Their long wavelength limit (e.g. (2.10)) is not obviously derivable from a straightforward “diag-
onal” expectation value of the T -matrix contrary to (2.12), since in general ⟨F(A)⟩ ̸= F(⟨A⟩), for
any functional of a set of operators A. However, we show below that this is indeed the case due to
locality properties. Let us first focus for simplicity (but, as we shall see, without loss of generality)
on the first local Hamiltonian

H(1) = t(λ0)
−1 d

dλ
t(λ )

∣∣
λ=λ0

, (2.28)

where, t−1(λ0) = P12P23 . . .PN−1N . This operator acts exactly as a one-site shift on tensorized
states, identifying of course site labels according to the assumed periodicity, i.e. N +1 = 1. (Nor-
malization issues are discussed in [4]). Computing the expectation value of H(1) we obtain

⟨H(1)⟩= ⟨n1|⊗ . . .⊗⟨nN |t−1(λ0)
d

dλ

(
f N(λ )Tra

N

∏
i=1

(1+δ lai +O(δ 2))
)
|n1⟩⊗ . . .⊗|nN⟩ .(2.29)

One has

⟨n1|⊗ ⟨n2|⊗ . . .⟨nN |t−1(λ0) = ⟨n2|⊗ ⟨n3|⊗ . . .⟨n1| (2.30)

and of course N +1 ≡ 1.
Taking into account the power-counting rule described in section 2.2 we obtain that

⟨H(1)⟩=
N

∏
i=1

⟨ni+1|ni⟩
d

dλ

(
f N(λ )tra

N

∏
i=1

(1+δ ⟨ lai ⟩+O(δ 2))
)
. (2.31)

We then easily establish that in the continuum limit, using the power counting rule and the fac-
torized form of both the state vector as ⟨n1| ⊗ . . .⊗ ⟨nN | that the operator to be valued over it
t−1(λ0) = P12P23 . . .PN−1N , ⟨t−1(λ0)⟩ = ⟨t(λ0)⟩−1. We finally obtain that in the continuum
limit

⟨H(1)⟩= ⟨t−1(λ0)
d

dλ
t(λ )

∣∣
λ=λ0

⟩= ⟨t(λ0)⟩−1 d
dλ

⟨t(λ )⟩
∣∣
λ=λ0

=
d

dλ
(ln⟨t(λ )⟩)

∣∣
λ=λ0

. (2.32)

The computation may be easily generalized along the same lines for any higher Hamiltonian.
Higher local Hamilltonians are indeed obtained from (2.27), admitting thus an expansion as

H(n) = t−1(λ0)
dn

dλ n t(λ )
∣∣
λ0
+polynomials , (2.33)

depending only on lower order local Hamiltonians. When computing the expectation value of such
higher Hamiltonians one gets the expectation value of t−1(λ0)

dn

dλ n t(λ )|λ0 which in the continuum
classical limit yields

⟨t−1(λ0)
dn

dλ n t(λ )|λ0⟩= ⟨t(λ0)⟩−1 dn

dλ n ⟨t(λ )⟩|λ0 , (2.34)
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using the same arguments as in the n = 1 case. In addition, one obtains expectation values of the
polynomials of order k in the local Hamiltonians. In this case expectation values by tensor product
of local vectors ⟨n1| . . .⟨nN | are exactly factorized over products of k local monomials hi1 . . .hkk ,
except if some of the indices i coincide (or at least overlap for multiple indices). Locality of the
lower Hamiltonians plays here a crucial role. It is clear that such families of terms with coinciding
or overlapping indices correspond to a second “label” M = k− 1 and therefore their contribution
will necessarily be suppressed in the continuum limit, with respect to the contribution of the generic
terms (non-coinciding indices) with M = k by the power-counting argument. Hence, it is consistent
to conclude that in the continuum limit

⟨Polynomial in (H(i))⟩= Polynomial in (⟨H(i)⟩) (2.35)

and therefore

⟨H(n)⟩= ⟨ dn

dλ n ln(t(λ ))
∣∣∣
λ=λ0

⟩= dn

dλ n ln(⟨t(λ )⟩)
∣∣∣
λ=λ0

. (2.36)

This is the final, key result in systematically establishing the classical continuum limit of integrable
spin chains. We may now apply this general procedure to all sorts of examples, starting with the
simpler applications.

3. Examples

3.1 The isotropic Heisenberg model

The isotropic Heisenberg model (XXX chain) Hamiltonian describing first neighbor spin-spin
interactions is given by

H =
1
2

N

∑
j=1

(
σ x

j σ x
j+1 +σ y

j σ y
j+1 +σ z

j σ
z
j+1

)
. (3.1)

It is well known that when one considers the long wavelength limit one obtains a classical σ -model
[2, 3]. We shall briefly review how this process works. The coherent spin state is parametrized by
the parameters x, t via the fields θ , φ as

|n(x, t)⟩= cosθ(x, t) eiφ(x,t) |+⟩ + sinθ(x, t) e−iφ(x,t) |−⟩ , (3.2)

where the ranges of variables is θ ∈ (0,π/2) and φ ∈ (0,π). One can verify the completeness
relation ∫

dµ(n)|n⟩⟨n|= 1 , (3.3)

where the integration measure is given by

dµ(n) =
4
π

sinθ cosθ dθ dφ . (3.4)
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Then as was described in [2, 3] and in subsection 2.1, one obtains a classical Hamiltonian via the
expectation value procedure by employing (2.10). The appropriate XXX 2-site Hamiltonian is

Hll+1 ∝ (Pll+1 − I) , (3.5)

where P is the permutation operator acting as P(a⊗b) = b⊗a for a, b vectors in V . From the
definition of H we are led to compute quantities of the type

⟨a|⊗ ⟨b| P |a⟩⊗ |b⟩= ⟨a|b⟩⊗⟨b|a⟩= |⟨a|b⟩|2 . (3.6)

They are expressed in terms of scalar products of the form

⟨ñ|n⟩= cos(θ − θ̃) cos(φ − φ̃)+ icos(θ + θ̃) sin(φ − φ̃) . (3.7)

In the long wavelength limit, |n⟩− |ñ⟩ = |δn⟩, θ̃(x) = θ(x+ δ ) and φ̃(x) = φ(x+ δ ). We finally
conclude that

H ∝
∫

dx (θ
′2 + sin2(2θ) φ

′2) . (3.8)

We shall now derive the Lax representation yielding (3.8) following section 2. The R-matrix for
the XXX model is [12]

R(λ ) = λ + ih̄P . (3.9)

This R-matrix is a solution of the quantum YB equation [5]. It has a consistent normalized classical
limit defined as

r(λ ) =
1
λ

P , (3.10)

which satisfies the classical YB equation. Alternatively, the classical r-matrix may be written as

r(λ ) =
1
λ

(
1
2(σ

z +1) σ−

σ+ 1
2(−σ z +1)

)
. (3.11)

Set first

Lan(λ ) = Ran(λ − ih̄
2
) (3.12)

and demand that L satisfies the fundamental algebraic relation

Rab(λ1 −λ2) Lan(λ1) Lbn(λ2) = Lbn(λ2) Lan(λ1) Rab(λ1 −λ2) , (3.13)

where as usual in the spin chain framework we call n the quantum space and a the auxiliary space.
Following the general derivation of section 2 and going directly to the continuous limit we disregard
higher powers in δ = h̄ (in this case the two small parameters are naturally identified). We next
define a “local Lax matrix" as a mean value of L on the same coherent spin state, taken solely over
the quantum space

⟨n|Lan(λ )|n⟩= 1+ ih̄l(x,λ ) , (3.14)

9
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where

l =

(
1
2⟨n|σ

z|n⟩ ⟨n|σ−|n⟩
⟨n|σ+|n⟩ −1

2⟨n|σ
z|n⟩

)
=

1
2

(
cos2θ(x) sin2θ(x) e−2iφ(x)

sin2θ(x) e+2iφ(x) −cos2θ(x)

)
, (3.15)

where we have used the form of the coherent states to compute the matrix elements explicitly. Then
l satisfies the classical fundamental algebraic relation

{l1(x,λ1), l2(y,λ2)}= [r12(λ1 −λ2), l1(λ1)+ l2(λ2)]δ (x− y) . (3.16)

Setting l(x,λ ) = Π/λ and taking into account the above algebraic relations we get

{Π1, Π2}= P12(Π2 −Π1)δ (x− y) . (3.17)

The parametrization in terms of the continuum parameters θ(x), ϕ(x) gives rise to the classical
version of sl2. Indeed, parametrizing the generators of the classical current algebra as

Sz = cos2θ , S± =
1
2

sin2θ e∓2iφ . (3.18)

we obtain from the fundamental relation that

{S+,S−}= Szδ (x− y) , {Sz,S±}=±2S±δ (x− y) . (3.19)

The continuum parameters θ(x) and ϕ(x) can also be expressed in terms of canonical variables p
and q as

cos2θ(x) = p(x) , φ(x) = q(x) and {q(x), p(y)}= iδ (x− y) . (3.20)

The l-matrix in (3.15) coincides obviously with the potential term in the Lax matrix of the classical
Heisenberg model. Precisely, one recalls that one must consider as classical Lax operator a la
Zakharov–Shabat L = d/dx+ l(x). The monodromy matrix for L is well known now to yield the
classical Hamiltonians including the first non trivial one (see [10])

H ∝
∫

dx

((
dSz

dx

)2

+

(
dSx

dx

)2

+

(
dSy

dx

)2
)

. (3.21)

Recalling (3.18) and substituting in the expression above we obtain the Hamiltonian (3.8), hence
the process above works consistently.
Having exemplified the general construction of Section 2 to a simple system and checked the con-
sistency of the approach we now turn to more complicated systems by first moving to trigonometric
and elliptic sl(2) R-matrices, corresponding to the XXZ and XYZ spin chains.

3.2 The anisotropic Heisenberg model

Consider the generic anisotropic XYZ model with Hamiltonian

H =
1
2

N

∑
j=1

(
Jxσ x

j σ x
j+1 + Jyσ y

j σ y
j+1 + Jzσ z

j σ
z
j+1

)
. (3.22)
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For the following computations it is convenient to set

Jξ = 1−δ 2aξ , ξ ∈ {x, y, z} . (3.23)

The Hamiltonian is written as

H =
N

∑
j=1

P j j+1 −
N
2
− δ 2ax

2

N

∑
j=1

σ x
j σ x

j+1 −
δ 2ay

2

N

∑
j=1

σ y
j σ y

j+1 −
δ 2az

2

N

∑
j=1

σ z
j σ

z
j+1 . (3.24)

The additive constant may be omitted here. Taking into account equations (3.5)–(3.8), (3.24) and
keeping terms of order δ 2 we get

H ∝
∫

dx
(

θ
′2 + sin2(2θ) φ

′2 +ax sin2(2θ)cos2(2φ)+ay sin2(2θ)sin2(2φ)+az cos2(2θ)
)
.(3.25)

This may be seen as an anisotropic “deformation” of the classical Heisenberg Hamiltonian. The
last three terms are essentially potential-like terms. In the special case of the XXZ model the terms
with coupling constant ax,ay are zero, whereas in the XXX case all potential terms vanish and one
recovers the Hamiltonian (3.8). If we now recall the parametrization (3.18), then the expression
above reduces to the Hamiltonian of the Landau-Lifshitz model or the anisotropic classical magnet
[10]

H ∝
∫

dx

((
dSz

dx

)2

+

(
dSx

dx

)2

+

(
dSy

dx

)2

+axS2
x +ayS2

y +azS2
z

)
. (3.26)

We now derive the classical l-matrix for the anisotropic cases. We focus in more detail on the XXZ
R-matrix

R(λ ) =

(
sinh(λ + iµ

2 σ z + iµ
2 ) sinh(iµ)σ−

sinh(iµ)σ+ sinh(λ − iµ
2 σ z + iµ

2 )

)
. (3.27)

The classical limit of the XXZ R-matrix, after appropriate normalization, is given as (we divide
with the constant factor sinhλ )

R(λ ) = 1+ iµ r(λ )+O(µ2) , (3.28)

where

r(λ ) =
1

sinhλ

(
(σ z

2 + 1
2) coshλ σ−

σ+ (−σ z

2 + 1
2) coshλ

)
. (3.29)

The associated classical Lax operator is again obtained from L(λ ) = R(λ − iµ
2 ) as (once again

moving immediately to the continuous limit)

⟨n|L(λ )|n⟩= 1+ iµ l(x,λ )+O(µ2) , (3.30)

with

l(λ ) =
1

sinhλ

(
⟨n|σ z

2 |n⟩ coshλ ⟨n|σ−|n⟩
⟨n|σ+|n⟩ −⟨n|σ z

2 |n⟩ coshλ

)

=
1

sinhλ

(
1
2 Sz coshλ S−

S+ −1
2 Sz coshλ

)
, (3.31)
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where SZ, S± are the classical generators of the current sl(2) algebra realized in terms of the angular
variables in (3.18). The continuous variables x,y were omitted here for simplicity and will be from
now on whenever there is no ambiguity.
Let us also briefly characterize the classical algebra underlying the model. We set

li(λ ) =
coshλ
sinhλ

Di +
1

sinh(λ )
Ai , r12(λ ) =

coshλ
sinhλ

D12 +
1

sinh(λ )
A12 . (3.32)

Substituting this expressions to (3.16) and taking into account that

[A12, A1] =−[D12, A2] , (3.33)

we end up with the following set of Poisson structures

{D1, D2}= 0 , {D1, A2}= [D12, A2]δ (x− y) , {A1, A2}=−[A12, D1]δ (x− y) , (3.34)

which give rise to the sl2 Poisson algebra (3.19).
The full XYZ classical r-matrix also yields, through this process, the classical Lax operator of
the fully anisotropic classical Heisenberg model, satisfying also the fundamental linear algebraic
relation (3.16) (see also [10]). A detailed presentation of this derivation is omitted here for the sake
of brevity.
Generalizations of the Heisenberg model associated to higher rank algebras are also presented in
[4], where a more detailed analysis of the described process can be found.
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