On twisted symmetries and quantum mechanics with a magnetic field on noncommutative tori

Gaetano Fiore* ${ }^{* \dagger}$
Dip. di Matematica e Applicazioni, Università "Federico II", V. Claudio 21, 80125 Napoli, Italy
I.N.F.N., Sez. di Napoli, Complesso MSA, V. Cintia, 80126 Napoli, Italy
E-mail: gaetano.fiore@na.infn.it

We study the twist-induced deformation procedure of a torus \mathbb{T}^{n} and of quantum mechanics of a scalar charged quantum particle on \mathbb{T}^{n} in the presence of a magnetic field B.
We first summarize our recent results regarding the equivalence of the undeformed theory on \mathbb{T}^{n} to the analogous one on \mathbb{R}^{n} subject to a quasiperiodicity constraint: we describe the sections of the associated hermitean line bundle on \mathbb{T}^{n} as wavefunctions $\psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ periodic up to a suitable phase factor V depending on B and require the covariant derivative components ∇_{a} to map the space \mathscr{X}^{V} of such ψ 's into itself. The ∇_{a} corresponding to a constant B generate a Lie algebra \mathbf{g}_{Q} and together with the periodic functions the algebra \mathscr{O}_{Q} of observables. The non-abelian part of \mathbf{g}_{Q} is a Heisenberg Lie algebra with the electric charge operator Q as the central generator; the corresponding Lie group G_{Q} acts on the Hilbert space as the translation group up to phase factors. The unitary irreducible representations of \mathscr{O}_{Q}, Y_{Q} corresponding to integer charges are parametrized by a point in the reciprocal torus.
We then apply the \star-deformation procedure induced by a Drinfel'd twist $\mathscr{F} \in U \mathbf{g}_{Q} \otimes U \mathbf{g}_{Q}$, sticking for simplicity to abelian twists, to the symmetry Hopf algebra $U \mathbf{g}_{Q}$, to the algebra \mathscr{X} of functions on \mathbb{T}^{n} and to \mathscr{O}_{Q} in a gauge-independent way, to \mathscr{X}^{V} and to the action of \mathscr{O}_{Q} on the latter in a specific gauge. $\mathscr{X}^{V}, \mathscr{O}_{Q}$ are 'rigid', i.e. isomorphic to $\mathscr{X}_{\star}^{V}, \mathscr{O}_{Q \star}$, although \mathscr{X} and \mathscr{X}_{\star} are not isomorphic and therefore \mathscr{X}_{\star}^{V} as a \mathscr{X}_{\star}-bimodule is not isomorphic to the \mathscr{X}-bimodule \mathscr{X}^{V}.

Corfu Summer Institute on Elementary Particles and Physics - Workshop on Non Commutative Field Theory and Gravity,
September 8-12, 2010
Corfu Greece

[^0]
1. Introduction

The formulation on noncommutative spaces of quantum field theories, especially of the gauge type, is a major challenge in present research in mathematical and theoretical physics. A very powerful tool at hand is deformation quantization by Drinfel'd twists \mathscr{F}, which aims at building at the same time noncommutative deformations of a space(time) manifold X, of quantum theories on X and of their symmetries. Here we apply it to quantum mechanics of a single scalar particle on a manifold with nontrivial topology, a n-torus \mathbb{T}^{n}, in the presence of a $U(1)$-gauge field A with nonvanishing integral Chern numbers (i.e. fluxes of the associated field strength B). This can be considered a necessary preliminary step towards quantum field theory, independently of the approach we choose to reach the latter (path-integral as e.g. in [6], second quantization [10], etc.).

Calling λ the deformation parameter, deformation quantization [1] of an algebra \mathscr{A} (over \mathbb{C}, say) into a new one \mathscr{A}_{\star} means that the two have the same underlying vector space over the ring $\mathbb{C}[[\lambda]]$ of power series in $\lambda, V\left(\mathscr{A}_{\star}\right)=V(\mathscr{A})[[\lambda]]$, but the product \star of \mathscr{A}_{\star} is a deformation of the product • of \mathscr{A}. For instance, on the algebra \mathscr{X} of smooth functions on a manifold X, as well as on the algebra of differential operators on $\mathscr{X}, f \star h$ can be defined by

$$
\begin{equation*}
f \star h:=\cdot \circ[\overline{\mathscr{F}}(\triangleright \otimes \triangleright)(f \otimes h)], \tag{1.1}
\end{equation*}
$$

where $\overline{\mathscr{F}}$ is a bi-pseudodifferential operator depending on the deformation parameter λ so that \star is associative and reduces to \cdot when $\lambda=0$. If one replaces all \cdot by \star 's in an equation of motion, e.g. in the Schrödinger equation of a particle with electrical charge q

$$
\begin{equation*}
\mathrm{H}_{\star} \psi(x)=i \hbar \partial_{t} \psi(x), \quad \mathrm{H}_{\star}:=\left[\frac{1}{2 m} \nabla^{a} \star \nabla_{a}+\mathrm{V}\right] \star, \quad \nabla_{a}=-i \partial_{a}+q A_{a}, \tag{1.2}
\end{equation*}
$$

one obtains a pseudodifferential equation and therefore introduces a (very special) non-locality in the interactions. [Interest in the latter can motivate the reader to study the effect of \star-products even if he/she is not ready to interpret noncommutative coordinates as physical observables of position]. Here and in the sequel we use natural units, so that $\hbar=1=c$, and absorb the positron charge e in the definition of A; then the quantization of charge reads $q \in \mathbb{Z}$. The undeformed differential equation $\mathrm{H} \psi=i \partial_{t} \psi$ is recovered for $\lambda=0$. One of the simplest examples is the Grönewold-Moyal-Weyl *-product on \mathbb{R}^{n}, i.e. (1.1) with $f, h \in \mathscr{C}^{\infty}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
\overline{\mathscr{F}} \equiv \sum_{I} \overline{\mathscr{F}}_{I}^{(1)} \otimes \overline{\mathscr{F}}_{I}^{(2)}:=\exp \left[\frac{i}{2} \theta^{a b} \partial_{a} \otimes \partial_{b}\right], \quad \theta^{a b}:=\lambda \vartheta^{a b}, \tag{1.3}
\end{equation*}
$$

where $\left.a, b=1, \ldots, n, \partial_{a}=\partial / \partial x^{a}\right)$, and $\vartheta^{a b}$ is a fixed real antisymmetric matrix. Given a lattice $\Lambda \subset \mathbb{R}^{n}$ of rank n, (1.1) \& (1.3) can be used also to deform the product in the algebra $\mathscr{X}=\mathscr{C}^{\infty}\left(\mathbb{T}^{n}\right)$ of smooth functions on the torus $\mathbb{T}^{n}=\mathbb{R}^{n} / \Lambda$, which can be identified with that of functions f on \mathbb{R}^{n} periodic under translation by a $\lambda \in \Lambda$. For simplicity we shall assume $\Lambda=2 \pi \mathbb{Z}^{n}$, i.e. $f(x+2 \pi l)=f(x)$ for all $l:=\left(l_{1}, \ldots, l_{m}\right) \in \mathbb{Z}^{n}$, or equivalently f is a function (Laurent series) of $u \equiv\left(u^{1}, \ldots, u^{n}\right) \equiv\left(e^{i x^{1}}, \ldots, e^{i x^{n}}\right)$ only; so the reciprocal lattice is \mathbb{Z}^{n}. Then (1.1) is Connes-Rieffel

[^1]\star-product. Better definitions of \star involve the Fourier transforms/series of f, h and will be recalled later. In either case the ∂_{a} generate translations and belong to the Lie algebra \mathbf{g}_{0} of the group G_{0} of symmetries of X. As the twist $\mathscr{F} \equiv \overline{\mathscr{F}}^{-1}$ belongs to $U \mathbf{g}_{0} \otimes U \mathbf{g}_{0}[[\lambda]]$, it determines also a deformation $H \rightsquigarrow \hat{H}$ of the Hopf algebra $H=U \mathbf{g}_{0}$, so that $\widehat{\mathscr{X}} \equiv \mathscr{X}_{\star}$ is a \hat{H}-module algebra, as \mathscr{X} was a H-module algebra: the space symmetries are preserved, although in a deformed form.

As known, if B has non-vanishing integral Chern numbers the (smooth) states of a charged (for simplicity scalar) particle on \mathbb{T}^{n} have to be represented by wavefunctions in the space $\Gamma\left(\mathbb{T}^{n}, E\right)$ of sections of the associated hermitean line bundle $E \stackrel{\pi}{\mapsto} \mathbb{T}^{n}$, rather than in \mathscr{X}. But as the patches of any trivialization of E are not mapped into themselves by translations, $\Gamma\left(\mathbb{T}^{n}, E\right)$ and any isomorphic (by the Serre-Swan theorem [14]) finitely generated projective \mathscr{X}-module $e \mathscr{X}^{m}$ [here $m \in \mathbb{N}$, $e \in M_{m}(\mathscr{X})$ is a projector] are not $U \mathbf{g}_{0}$-modules. Therefore we cannot apply the standard \star deformation $e \mathscr{X}^{n} \rightsquigarrow e_{\star} \mathscr{X}_{\star}^{n}$ choosing $H=U \mathbf{g}_{0}$. The way out is based on our recent results [11], which we summarize in section 2 . Describing $\Gamma\left(\mathbb{T}^{n}, E\right)$ as a subspace \mathscr{X}^{V} of $C^{\infty}\left(\mathbb{R}^{n}\right)$ whose elements are periodic up to a suitable phase factor V, we have shown that $\Gamma\left(\mathbb{T}^{n}, E\right)$ is a module of a central extension of G_{0} that we call the projective translation group G_{Q}; the central generator in the Lie algebra \mathbf{g}_{Q} is the electric charge operator Q. This is the analog in the smooth framework of wellknown facts in the holomorphic one (see e.g. [2]). The ∇_{a} belongs to the algebra of observables $\mathscr{O}_{Q} \supset \mathscr{X}$ on $\mathscr{X}^{V} ; \mathscr{O}_{Q}$ is a G_{Q}-module transforming under the adjoint action of G_{Q}. The gauge transformations of $\Gamma\left(\mathbb{T}^{n}, E\right)$ are described by those of \mathscr{X}^{V}. The irreducible unitary representations of Y_{Q}, \mathscr{O}_{Q} with $Q=q \in \mathbb{Z}$ are parametrized by a point on the reciprocal torus $\mathbb{R}^{n} / \mathbb{Z}^{n}$.

In the remaining sections we deform $H=U \mathbf{g}_{Q}, \mathscr{X}, \mathscr{X}^{V}, \mathscr{O}_{Q}, \ldots$ by a twist $\mathscr{F} \in U \mathbf{g}_{Q} \otimes U \mathbf{g}_{Q}$. For simplicity we stick to twists of Reshetikhin (i.e. abelian) type; the corresponding deformations \mathscr{X}_{\star} are only a subset of the possible Connes-Rieffel noncommutative tori. We describe the twistinduced deformations $H \rightsquigarrow \hat{H}$ of a cocommutative Hopf $*$-algebra in section 3.1, of its modules and module $*$-algebras in section 3.2. In section 4 we apply them to $\mathscr{X}, \mathscr{O}_{Q}, \mathscr{X}^{V}, \ldots$ and obtain \hat{H} module $*$-algebras $\mathscr{X}_{\star}, \mathscr{O}_{Q \star}, \ldots$ and a \hat{H}-equivariant \mathscr{X}_{\star}-bimodule and left $\mathscr{O}_{Q \star}$-module \mathscr{X}_{\star}^{V}, which is completed into a Hilbert space. We also determine the deforming map $D_{\mathscr{F}}: \mathscr{O}_{Q \star} \leftrightarrow \mathscr{O}_{Q}[[\lambda]]$, a \hat{H}-module $*$-algebra isomorphism, which simplifies the study of the deformed representation theory: $\mathscr{X}^{V}, \mathscr{O}_{Q}$ are 'rigid' (their deformation boils down to a change of generators on the same representation space), i.e. there are isomorphisms $\mathscr{X}_{\star}^{V} \simeq \mathscr{X}^{V}, \mathscr{O}_{Q \star} \simeq \mathscr{O}_{Q}$, although \mathscr{X} and \mathscr{X}_{\star} are not isomorphic and therefore \mathscr{X}_{\star}^{V} as a \mathscr{X}_{\star}-bimodule is not isomorphic to the \mathscr{X}-bimodule \mathscr{X}^{V}.

We shall use the following abbreviations. $\mathbb{N}_{0}=\mathbb{N} \cup\{0\} ; X \equiv \mathbb{T}^{n} ; M^{t}$ stands for the transpose of matrix M; elements $h, k \in \mathbb{C}^{n}$ are considered as columns; $h \cdot k:=h^{t} k$ (at the rhs the product is row by column); $u^{l}:=e^{i l \cdot x} ; U(1):=\{z \in \mathbb{C}| | z \mid=1\}$; we denote as $V(\mathscr{A}), \mathscr{Z}(\mathscr{A})$ resp. the vector space underlying an algebra \mathscr{A}, the center of $\mathscr{A} ;[a \star, b]:=a \star b-b \star a ; a \wedge b:=a \otimes b-b \otimes a$. We stick to linear spaces and algebras over \mathbb{C} or the ring $\mathbb{C}[[\lambda]]$ of formal power series in λ with coefficients in \mathbb{C}. We shall often change notation: $\quad \mathscr{A}_{\star} \mapsto \widehat{\mathscr{A}}, \mathscr{X}_{\star} \mapsto \hat{\mathscr{X}}, \mathscr{O}_{Q \star} \mapsto \hat{\mathscr{O}}_{Q}, \mathscr{X}_{\star}^{V} \mapsto \widehat{\mathscr{X}}^{V}$ $x^{a} \star \mapsto \hat{x}^{a}, u^{a} \star \mapsto \hat{u}^{a}, \partial_{a^{\star}} \mapsto \hat{\partial}_{a}, p_{a^{\star}} \mapsto \hat{p}_{a}, a_{i}^{+} \star \mapsto \hat{a}_{i}^{+}$, etc ('hat notation'). In the new notation e.g. (1.2) becomes

$$
\left\{\frac{1}{2 m}\left[-i \hat{\partial}_{a}+q \hat{A}_{a}(\hat{x})\right]\left[-i \hat{\partial}_{a}+q \hat{A}_{a}(\hat{x})\right]+\hat{\mathrm{V}}(\hat{u})\right\} \hat{\psi}(\hat{x})=E \hat{\psi}(\hat{x}) ;
$$

here $\hat{V}=\wedge(V), \hat{A}_{a}=\wedge\left(A_{a}\right), \hat{\psi}=\wedge(\psi)$ and \wedge is the generalized Weyl map (section 4). The pseudodifferential eq. (1.2) has thus become a noncommutative differential equation of second order (i.e. of second degree in $\hat{\partial}_{a}$). Solving the latter may be considerably simpler.

2. The undeformed theory

2.1 Quasiperiodic wavefunctions and related connections on \mathbb{R}^{n}

The particle probability density $|\psi|^{2}$ is periodic, i.e. invariant under discrete translations $\lambda \in \Lambda$, if ψ is quasiperiodic, i.e. invariant up to a phase factor V. A set of quasiperiodicity conditions of the form

$$
\begin{equation*}
\psi(x+2 \pi l)=V(l, x) \psi(x) \quad \forall x \in \mathbb{R}^{n}, \quad l \in \mathbb{Z}^{n} \tag{2.1}
\end{equation*}
$$

relates the values of ψ in any two points $x, x+2 \pi l$ of the lattice $x+2 \pi \mathbb{Z}^{n}$ through a phase factor $V(l, x)$. Nontrivial solutions ψ of (2.1) may exist only if the factors relating three generic points $x, x+2 \pi l, x+2 \pi\left(l+l^{\prime}\right)$ of the lattice are consistent with each other, i.e.

$$
\begin{equation*}
V\left(l+l^{\prime}, x\right)=V\left(l, x+2 \pi l^{\prime}\right) V\left(l^{\prime}, x\right), \quad \forall l, l^{\prime} \in \mathbb{Z}^{n} \tag{2.2}
\end{equation*}
$$

Note that this implies $V(0, x) \equiv 1$ and $[V(l, x)]^{-1}=V(-l, x+2 \pi l)$. We introduce an auxiliary Hilbert space \mathscr{H}_{Q} with an orthonormal basis $\{|q\rangle\}_{q \in \mathbb{Z}}$ and on \mathscr{H}_{Q} a self-adjoint operator Q by $Q|q\rangle=q|q\rangle$. Given a smooth function $V: \mathbb{Z}^{n} \times \mathbb{R}^{n} \mapsto U(1)$ fulfilling (2.2) we introduce the space

$$
\begin{equation*}
\mathscr{X}^{V}:=\left\{\psi \in C^{\infty}\left(\mathbb{R}^{n}\right) \otimes|q\rangle \quad \mid \quad \psi(x+2 \pi l)=V(l, x) \psi(x) \quad \forall x \in \mathbb{R}^{n}, l \in \mathbb{Z}^{n}\right\} \tag{2.3}
\end{equation*}
$$

as the space of smooth wavefunctions of a particle with electric charge q (in e units), since it is an eigenspace with eigenvalue q of $\mathbf{1} \otimes Q$, which we adopt as the electric charge operator. We give the covariant derivative a form independent of q through $\nabla:=(-i) d \otimes \mathbf{1}+A(x) \otimes Q$; here d stands for the exterior derivative. We shall abbreviate $\nabla=-i d+A(x) Q, \psi \in C^{\infty}\left(\mathbb{R}^{n}\right)|q\rangle$, etc. The components of ∇ have to map \mathscr{X}^{V} into itself,

$$
\begin{equation*}
\nabla_{a}: \mathscr{X}^{V} \mapsto \mathscr{X}^{V} \tag{2.4}
\end{equation*}
$$

Given such a ∇, also $Q B_{a b}(x) \psi(x)=\left\{\frac{i}{2}\left[\nabla_{a}, \nabla_{b}\right] \psi\right\}(x)$ fulfills (2.1), implying that all the $B_{a b}=$ $\frac{1}{2}\left(\partial_{a} A_{b}-\partial_{b} A_{a}\right)$ are periodic functions. From the Fourier expansions it follows

$$
\begin{equation*}
B_{a b}(x)=\beta_{a b}^{A}+\underbrace{\sum_{l \neq \boldsymbol{0}} \beta_{a b}^{l} e^{i l \cdot x}}_{B_{a b}^{\prime}(x)} \quad \Rightarrow \quad A_{a}(x)=x^{b} \beta_{b a}^{A}+\alpha_{a}+\underbrace{\sum_{l \neq \mathbf{0}} \alpha_{a}^{l} e^{i l \cdot x}}_{A_{a}^{\prime}(x)}+\text { gauge transf. } \tag{2.5}
\end{equation*}
$$

where $\mathbf{0}:=(0, . ., 0) \in \mathbb{Z}^{n}$ and the periodic function $A^{\prime}(x)$ is such that $B^{\prime}=d A^{\prime}$. We decompose the covariant derivative in a gauge-independent part $A_{a}^{\prime} Q$ and a gauge-dependent part p_{a} :

$$
\begin{equation*}
\nabla_{a}:=-i \partial_{a}+A_{a} Q=p_{a}+A_{a}^{\prime} Q, \quad \quad A_{a}^{\prime} \in \mathscr{X} \tag{2.6}
\end{equation*}
$$

Going back to (2.4), $\nabla_{a} \psi$ will fulfill (2.1) iff also $p_{a} \psi$ does, by the periodicity of $A_{a}^{\prime}(x)$; up to a gauge transformation this implies the first formula in

$$
\begin{equation*}
V(l, x) \equiv V^{\beta^{A}}(l, x):=e^{-i q 2 \pi l^{t} \beta^{A} x}, \quad p_{a}=-i \partial_{a}+x^{b} \beta_{b a}^{A} Q+\alpha_{a} Q \tag{2.7}
\end{equation*}
$$

which is consistent with (2.2) for all eigenvalues $q \in \mathbb{Z}$ of Q iff the quantization conditions

$$
\begin{equation*}
v_{a b} \in \mathbb{Z}, \quad v_{a b}:=2 \pi \beta_{a b}^{A} \tag{2.8}
\end{equation*}
$$

for all a, b are satisfied. For $q \beta^{A}=0$ we find $V \equiv 1$ and $\mathscr{X}^{1}=\mathscr{X} \otimes|0\rangle \simeq \mathscr{X}$. Otherwise (2.1), $(2.7)_{1}$ do not admit solutions of the form $\psi(x)=e^{i k \cdot x} f(x), f \in \mathscr{X}$.

For all $f \in \mathscr{X} Q, p_{a}, f \cdot, \nabla_{a}, \mathrm{H}$ map \mathscr{X}^{V} into itself; they belong to the $*$-algebra of observables $\mathscr{O}_{Q} \equiv$ algebra of polynomials in Q, p_{1}, \ldots, p_{m} with coefficients f in \mathscr{X}, constrained by

$$
\begin{array}{lll}
{\left[p_{a}, p_{b}\right]=-i 2 \beta_{a b}^{A} Q,} & {[Q, \cdot]=0,} & {\left[p_{a}, f\right]=-i\left(\partial_{a} f\right),} \\
f^{*}(x)=\overline{f(x)}, & p_{a}^{*}=p_{a}, & Q^{*}=Q \tag{2.9}
\end{array}
$$

These relations defining \mathscr{O}_{Q} depend on the A_{a} only through the $\beta_{a b}^{A}$ of (2.8), in particular are gaugeindependent. Q, p_{a} generate the real Lie algebra \mathbf{g}_{Q} of a Lie group $G_{Q} . \mathscr{O}_{Q}$ and \mathscr{X} are $U \mathbf{g}_{Q}$-module *-algebras under the action

$$
p_{a} \triangleright p_{b}=-i 2 \beta_{a b}^{A} Q, \quad \quad p_{a} \triangleright f=-i\left(\partial_{a} f\right), \quad Q \triangleright f=0, \quad Q \triangleright p_{a}=0
$$

for all $f \in \mathscr{X}$, and \mathscr{X}^{V} is a left $U \mathbf{g}_{Q}$-equivariant \mathscr{O}_{Q}-module and \mathscr{X}-bimodule (but not an algebra, unless $V \equiv 1$); this means that all these structures are compatible with each other and the Leibniz rule ${ }^{2}$. The Weyl forms of $x^{a *}=x^{a}$, (2.9) and of their consequences $\left[p_{a}, x^{b}\right]=-i \delta_{a}^{b}$ are easily determined with the help of the Baker-Campbell-Hausdorff (BCH) formula and synthetically read

$$
\begin{align*}
& e^{i\left(h \cdot x+p \cdot y+Q y^{0}\right)} e^{i\left(k \cdot x+p \cdot z+Q z^{0}\right)}=e^{i\left[(h+k) \cdot x+p \cdot(y+z)+Q\left(y^{0}+z^{0}\right)\right]} e^{-\frac{i}{2}\left[k \cdot y-h \cdot z+2 Q y^{t} \beta^{A} z\right]} \\
& {\left[e^{i\left(h \cdot x+p \cdot y+Q y^{0}\right)}\right]^{*}=e^{-i\left(h \cdot x+p \cdot y+Q y^{0}\right)}} \tag{2.11}
\end{align*}
$$

for any $h, k \in \mathbb{R}^{n}$ and $\left(y^{0}, y\right),\left(z^{0}, z\right) \in \mathbb{R}^{n+1}$. We define G_{Q} and other groups C_{Q}, R, Y_{Q}, T by

$$
\begin{align*}
& G_{Q}:=\left\{g_{\left(z^{0}, z\right)}:=e^{i\left(p \cdot z+Q z^{0}\right)} \mid\left(z^{0}, z\right) \in \mathbb{R}^{n+1}\right\}, \quad \quad \text { "projective translation group" } \\
& R:=\left\{e^{i\left(h^{0}+h \cdot x\right)} \mid\left(h^{0}, h\right),\left(z^{0}, z\right) \in \mathbb{R}^{n+1}\right\}, \quad T:=\left\{e^{i\left(h^{0}+l \cdot x\right)} \mid h^{0} \in \mathbb{R}, l \in \mathbb{Z}^{n}\right\}, \tag{2.12}\\
& Y_{Q}:=\left\{e^{i\left(h^{0}+l \cdot x+p \cdot z+Q z^{0}\right)} \mid h^{0} \in \mathbb{R}, l \in \mathbb{Z}^{n},\left(z^{0}, z\right) \in \mathbb{R}^{n+1}\right\}, \quad \text { "observables' group" } \\
& C_{Q}:=\left\{e^{i\left(h^{0}+h \cdot x+p \cdot z+Q z^{0}\right)} \mid\left(h^{0}, h\right),\left(z^{0}, z\right) \in \mathbb{R}^{n+1}\right\} ;
\end{align*}
$$

the group law can be read off (2.11) and depends on A only through $\beta^{A} . c^{*}=c^{-1}$ for all $c \in Y_{Q}, R$. The inclusions $G_{Q}, T \subset Y_{Q}$ and $T \subset R$ hold as subgroup inclusions. R is isomorphic to $\mathbb{R}^{n} \times U(1)$. $T \sim \mathbb{Z}^{n} \times U(1)$ is a normal subgroup of Y_{Q}, and $Y_{Q}=G_{Q} \bowtie T$. Moreover, we shall call \mathscr{Y}_{Q} the group algebra of Y_{Q}; it is a C^{*}-algebra. All $y \in Y_{Q}$ and $o \in \mathscr{O}_{Q}$ map \mathscr{X}^{V} into itself. The $f \in T, \mathscr{X}$ act by multiplication, while in the gauge (2.7) $Q, p_{a} \in \mathbf{g}_{Q}$ and $g \in G_{Q}$ act as follows:

$$
\begin{array}{ll}
Q \triangleright|q\rangle=q|q\rangle, \quad Q \triangleright \psi=q \psi, \quad p_{a} \triangleright|q\rangle=\left(q x^{t} \beta^{A}+q \alpha\right)_{a}|q\rangle, \quad f \triangleright \psi=f \psi, \\
p_{a} \triangleright \psi=\left(-i \partial+q x^{t} \beta^{A}+q \alpha\right)_{a} \psi, & {\left[g_{\left(z^{0} z\right)} \triangleright \psi\right](x)=e^{i q\left[z^{0}+x^{t} \beta^{A} z+\alpha^{t} z\right]} \psi(x+z) ;} \tag{2.13}
\end{array}
$$

g_{z} acts shifting the argument by z and by multiplication by a phase factor, whence the name projective translation group. Let $r:=\frac{1}{2} \operatorname{rank}\left(\beta^{A}\right)$; it is $r \in \mathbb{N}_{0}$. By the Frobenius theorem \exists a matrix S with $S_{a b} \in \mathbb{Z}, \operatorname{det} S= \pm 1$ such that after the change of generators

$$
\begin{equation*}
p_{a} \mapsto\left(S^{t} p\right)_{a}, \quad x^{a} \mapsto\left(S^{-1} x\right)^{a}, \quad \Rightarrow \quad u^{l} \mapsto u^{\left(S^{-1}\right)^{t} l} \tag{2.14}
\end{equation*}
$$

[^2]resp. in $\mathbf{g}_{Q}, C^{\infty}\left(\mathbb{R}^{n}\right)$ and \mathscr{X}, the commutation relations $\left[x^{a}, p_{b}\right]=i \delta_{b}^{a}$ remain true, while $(2.9)_{1}$ become
\[

$$
\begin{equation*}
\left[p_{j}, p_{r+j}\right]=i b_{j} Q \quad j=1, \ldots, r, \quad\left[p_{a}, p_{b}\right]=0 \quad \text { otherwise, } \tag{2.15}
\end{equation*}
$$

\]

where $v_{j}:=2 \pi b_{j} \in \mathbb{Z}$ and fulfill $v_{j+1} / v_{j} \in \mathbb{N}$. This shows that

$$
\begin{equation*}
\mathbf{g}_{Q} \simeq \mathbf{h}_{Q 2 r+1} \oplus \mathbb{R}^{n-2 r}, \quad G_{Q} \simeq \mathbf{H}_{Q 2 r+1} \times \mathbb{R}^{n-2 r} \tag{2.16}
\end{equation*}
$$

where $\mathbf{h}_{Q k}, \mathbf{H}_{Q k}$ denote the Heisenberg Lie algebra, group of dimension k and central generator Q.
Introducing fundamental k-dimensional cells $C_{a_{1} \ldots a_{k}}^{y}$ for $k \leq n$ and $a_{1}<a_{2}<\ldots .<a_{k}$ by

$$
\begin{equation*}
C_{a_{1} \ldots a_{k}}^{y}:=\left\{x \in \mathbb{R}^{n} \mid x^{a_{h}} \in\left[y^{a_{h}}, y^{a_{h}}+2 \pi\left[, h=1, \ldots, k ; x^{a}=y^{a} \text { otherwise }\right\},\right.\right. \tag{2.17}
\end{equation*}
$$

one easily finds that the flux $\phi_{a b}$ of $B=B_{a b} d x^{a} d x^{b}$ through a plaquette $C_{a b}^{y}$ equals that of $\tilde{\beta}^{A}=$ $\beta_{a b}^{A} d x^{a} d x^{b}$

$$
\begin{equation*}
\phi_{a b}=\int_{C_{a b}^{y}} B=\int_{C_{a b}^{y}} \tilde{\beta}^{A}=2 \pi v_{a b} \tag{2.18}
\end{equation*}
$$

and similarly for higher powers B^{m}. By (2.1) $\psi^{\prime *} \psi$ is periodic for all $\psi^{\prime}, \psi \in \mathscr{X}^{V}$, and the formula

$$
\begin{equation*}
\left(\psi^{\prime}, \psi\right):=\int_{C_{1 . \ldots n}^{v}} d^{n} x \overline{\psi^{\prime}(x)} \psi(x), \tag{2.19}
\end{equation*}
$$

defines a hermitean structure in \mathscr{X}^{V} making the latter a pre-Hilbert space. (The results are independent of y.) As $p_{a} \triangleright\left(\psi^{\prime *} \psi\right) \equiv p_{a}\left(\psi^{\prime *} \psi\right)=-i \partial_{a}\left(\psi^{\prime *} \psi\right)$, which has a vanishing integral, by the Leibniz rule the p_{a} are essentially self-adjoint. If some $\psi_{0} \in \mathscr{X}^{V}$ vanishes nowhere, then $\psi \psi_{0}^{-1}$ is well-defined and periodic, i.e. in \mathscr{X}, for all $\psi \in \mathscr{X}^{V}$, whence the decomposition $\mathscr{X}^{V}=\mathscr{X} \psi_{0}$. We shall call \mathscr{H}^{V} the Hilbert space completion of $\mathscr{X}^{V} . Y_{Q}$ extends as a group of unitary transformations of $\mathscr{H}^{V} ; f \in T$ still act by multiplication, $g_{\left(z^{0} z\right)} \in G_{Q}$ in the above gauge still acts as in (2.13) $)_{6}$. We shall call $\left(\rho^{\beta^{A}}\left(\mathscr{O}_{Q}\right), \mathscr{X}^{\beta^{A}}\right)$ and $\left(\rho^{\beta^{A}}\left(Y_{Q}\right), \mathscr{H}^{\beta^{A}}\right)$ the representations that we have used so far, determined by $\rho^{\beta^{A}}(o) \psi:=o \triangleright \psi$ with action \triangleright defined by (2.7-2.13).

Given a representation $\left(\rho\left(\mathscr{O}_{Q}\right), \mathscr{X}^{V}\right)$ of \mathscr{O}_{Q} as a $*$-algebra of operators on \mathscr{X}^{V}, a unitary equivalent one is obtained through a smooth gauge transformation $U=e^{i q \varphi}, \varphi \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, acting as a unitary transformation $\left(\rho\left(\mathscr{O}_{Q}\right), \mathscr{X}^{V}\right) \mapsto\left(\rho^{U}\left(\mathscr{O}_{Q}\right), \mathscr{X}^{V^{U}}\right)$, with

$$
\begin{equation*}
\rho^{U}(o)=U \rho(o) U^{-1}, \quad \psi^{U}=U \psi, \quad V^{U}(l, x)=U(x+2 \pi l) V(l, x) U^{-1}(x) . \tag{2.20}
\end{equation*}
$$

U is a unitary transformation $\left(\rho\left(Y_{Q}\right), \mathscr{H}^{V}\right) \mapsto\left(\rho^{U}\left(Y_{Q}\right), \mathscr{H}^{V^{U}}\right)$ also for the associated representatrion of Y_{Q} as a group of unitary operators on the Hilbert space completion. All the relations (2.1-2.6), (2.8-2.12), (2.14-2.19) remain valid. Starting from $\left(\rho^{\beta^{A}}\left(\mathscr{O}_{Q}\right), \mathscr{X}^{\beta^{A}}\right)$, choosing $U(x)=$ $e^{i \frac{q}{2} x^{f} \beta^{s} x}$ and setting $\beta:=\beta^{A}+\beta^{s}$, we find an equivalent representation $\left(\rho^{U}\left(\mathscr{O}_{Q}\right), \mathscr{X}^{V^{U}}\right)$ characterized by

$$
\begin{equation*}
V^{U}(l, x)=e^{-i q 2 \pi l^{t} \beta(x+l \pi)}, \quad p_{a}=-i \partial_{a}+x^{b} \beta_{b a} Q+\alpha_{a} Q \tag{2.21}
\end{equation*}
$$

[for $U(x) \equiv 1$, i.e. $\beta=\beta^{A}$, we recover the original gauge (2.7)]. We shall adopt the shorter notations $\mathscr{X}^{\beta} \equiv \mathscr{X}^{\beta^{A^{U}}}, \mathscr{H}^{\beta} \equiv \mathscr{H}^{\beta^{A^{U}}}$, etc. for the spaces of complex functions fulfilling (2.1) with V given by (2.21). Performing a change (2.14) and choosing β^{S} so that β becomes lower-triangular we find

$$
\beta^{A} \stackrel{(2.14)}{\mapsto} \bar{\beta}^{A}:=\left(\begin{array}{cc}
-b \tag{2.22}\\
b & \\
& 0_{n-2 r}
\end{array}\right) \quad \Rightarrow \quad \beta \stackrel{(2.14)}{\mapsto} \bar{\beta}=\left(\begin{array}{cc}
0_{r} \\
2 b & \\
& 0_{n-2 r}
\end{array}\right)
$$

(0_{k} is the $k \times k$ zero matrix; the missing blocks are zero matrices of the appropriate sizes), and (2.1) becomes

$$
\begin{equation*}
\psi(x+2 \pi l)=e^{-i 2 q \sum_{j=1}^{r} v_{j} l_{r+j} x^{j}} \psi(x) \quad \forall x \in \mathbb{R}^{n}, l \in \mathbb{Z}^{n} \tag{2.23}
\end{equation*}
$$

The most general solution of (2.23) reads [11]

$$
\begin{equation*}
\psi(x)=\sum_{k \in K} \sum_{l \in \mathbb{Z}^{r}} e^{i \sum_{j=1}^{r}\left(k_{j}+2 q v_{j} l_{j}\right) x^{j}} \psi_{k}\left(x^{r+1}+2 \pi l_{1}, \ldots, x^{2 r}+2 \pi l_{r}, x^{2 r+1}, \ldots, x^{n}\right) \tag{2.24}
\end{equation*}
$$

where all ψ_{k} belong resp. to $\mathscr{S}\left(\mathbb{R}^{r} \times \mathbb{T}^{n-2 r}\right), \mathscr{L}^{2}\left(\mathbb{R}^{r} \times \mathbb{T}^{n-2 r}\right)$ if $\psi \in \mathscr{X}^{\beta}, \mathscr{H}{ }^{\beta}$, and

$$
\begin{equation*}
K:=\left\{0,1, \ldots,\left|2 q v_{1}\right|-1\right\} \times \ldots \times\left\{0,1, \ldots,\left|2 q v_{r}\right|-1\right\} \subset \mathbb{Z}^{r} . \tag{2.25}
\end{equation*}
$$

The subspaces $\mathscr{X}_{k} \subset \mathscr{X}^{\beta}, \mathscr{H}_{k} \subset \mathscr{H}^{\beta}$ characterized by $\psi_{s} \equiv 0$ for $s \in K \backslash\{k\}$ are orthogonal to each other. In next subsection we present bases of $\mathscr{X}_{k}, \mathscr{X}^{\beta}$.

2.2 Physical representations of Y_{Q}, \mathscr{O}_{Q}

The physical representations of Y_{Q}, \mathscr{O}_{Q} are characterized by integer eigenvalues of Q; so we consider an irreducible one with $Q=q \in \mathbb{Z}$ and drop the subscript $Q: C, Y, G, g, \mathscr{O}, \mathbf{h}_{k}, \mathbf{H}_{k}$. Let \mathscr{C}, \mathscr{Y} be the group C^{*}-algebras of C, Y. We abbreviate $\tilde{\alpha}:=q \alpha, \tilde{\beta}^{A}:=q \beta^{A}, \tilde{v}_{j}:=q v_{j} \in \mathbb{N}$, etc. All commutation relations depend only on $\tilde{\beta}^{A}$. After the Frobenius transformation $(x, p) \mapsto\left(S^{-1} x, S^{t} p\right)$ we let

$$
\begin{equation*}
m_{r+j}:=\exp \left[i\left(x^{j}+\pi p_{r+j} / \tilde{v}_{j}\right)\right], \quad \quad m_{j}:=\exp \left[i\left(x^{r+j}-\pi p_{j} / \tilde{v}_{j}\right)\right] \tag{2.26}
\end{equation*}
$$

Proposition 1. [11] Y decomposes into a product of commuting subgroups as follows

$$
\begin{equation*}
Y=M^{1} \ldots M^{r} \mathbf{H}_{3}^{1} \ldots \mathbf{H}_{3}^{r} Y_{2 r+1} \ldots Y_{n} \tag{2.27}
\end{equation*}
$$

- M^{j} is discrete, generated by $m_{j}, m_{r+j}, e^{\frac{i \pi}{\nabla_{j}}}, m_{j}^{-1}, m_{r+j}^{-1}$, that fulfill $\quad m_{j} m_{r+j}=m_{r+j} m_{j} e^{\frac{i \pi}{\bar{V}_{j}}}$;
- $\mathbf{H}_{3}^{j}:=\left\{e^{i\left(h+w p_{j}+z p_{r+j}\right)} \mid(h, w, z) \in \mathbb{R}^{3}\right\}$ is isomorphic to the 3-dim Heisenberg Lie group \mathbf{H}_{3}
- $Y_{a}:=\left\{e^{i\left(l x^{a}+h+z p_{a}\right)} \mid l \in \mathbb{Z},(h, z) \in \mathbb{R}^{2}\right\}$ is isomorphic to the observables' group on a circle.
$\zeta_{j}:=\left(m_{j}\right)^{2 \tilde{v}_{j}}, \quad \zeta_{r+j}:=\left(m_{r+j}\right)^{2 \tilde{v}_{j}} \quad(j=1, \ldots, r) \quad$ and their inverses are central;
with $e^{i h} \in U(1)$ they generate the subgroup $\mathscr{Z}(Y) \subset Y$ and the subalgebra $\mathscr{Z}(\mathscr{Y}) \subset \mathscr{Y}$.
$M:=M^{1} . . M^{r}$ commutes with $\mathrm{H}_{0}=\sum_{a=1}^{n} p_{a}^{2}$, so is the magnetic translation group in the sense of [16].
By Proposition 1 the irreducible unitary representations (briefly irreps) of Y, \mathscr{O} for $n \geq 3$ are obtained from tensor products of those for $n=1,2$. The irreps of the C^{*}-algebra \mathscr{Y} are those of Y.
$\mathbf{n}=\mathbf{1}$ (quantum mechanics on a circle $\left.S^{1}\right)$. The Casimir eigenvalue $\zeta=e^{i 2 \pi \tilde{\alpha}}(\tilde{\alpha} \in \mathbb{R} / \mathbb{Z})$ identifies the inequivalent irreps of $Y, \mathscr{Y} \quad\left(\rho_{\tilde{\alpha}}, \mathscr{L}^{2}\left(S^{1}\right)\right)$, with

$$
\begin{equation*}
\rho_{\tilde{\alpha}}\left[e^{i l x}\right] \psi(x)=e^{i l x} \psi(x), \quad \quad \rho_{\tilde{\alpha}}\left(e^{i z p}\right) \psi(x)=e^{i \tilde{\alpha} z} \psi(x+z) \tag{2.28}
\end{equation*}
$$

The associated irrep $\left(\rho_{\tilde{\alpha}}, \mathscr{C}^{\infty}\left(S^{1}\right)\right)$ of \mathscr{O} is defined by $(2.28)_{1}$ and $\rho_{\tilde{\alpha}}(p) \psi=\left(\tilde{\alpha}-i \partial_{x}\right) \psi$.
$\left\{\frac{e^{i l x}}{\sqrt{2 \pi}}\right\}_{l \in \mathbb{Z}}$ is an orthonormal basis consisting of eigenvectors of $p: \rho_{\tilde{\alpha}}(p) e^{i l x}=(l+\tilde{\alpha}) e^{i l x}$.
$\mathbf{n}=\mathbf{2}=\mathbf{2 r}$. This implies $Y=M \mathbf{H}_{3}$. The Casimir eigenvalues $\zeta_{a}=e^{i 2 \pi \tilde{\alpha}_{a}}\left(\tilde{\alpha} \in \mathbb{R}^{2} / \mathbb{Z}^{2}\right)$ identify the inequivalent irreps of $Y, \mathscr{Y}\left(\rho_{\tilde{\alpha}}, \mathscr{H}\right)$, with

$$
\mathscr{H}=\bigoplus_{k=0}^{2 \tilde{v}-1} \mathscr{H}_{h}, \quad \begin{array}{ll}
\tilde{\alpha}\left(m_{2}\right) \mathscr{H}_{k}=e^{i \frac{\pi}{v}\left(\tilde{\alpha}_{2}-k\right)} \mathscr{H}_{k}, \quad \rho_{\tilde{\alpha}}\left(m_{1}\right) \mathscr{H}_{k}=\mathscr{H}_{k^{\prime}}, k^{\prime}=k+1 \bmod 2 \tilde{v} \\
\rho_{\tilde{\alpha}}\left(\mathbf{H}_{3}\right) \text { is Schrödinger representation of } \mathbf{H}_{3} \text { on } \mathscr{H}_{k} \simeq \mathscr{L}^{2}(\mathbb{R}) \tag{2.29}
\end{array}
$$

Setting $a:=\frac{p_{1}+i p_{2}}{\sqrt{2 \tilde{b}}}, \quad a^{*}:=\frac{p_{1}-i p_{2}}{\sqrt{2 \tilde{b}}}, \mathbf{n}:=a^{*} a$, we find $\left[a, a^{*}\right]=\mathbf{1}$. Defining

$$
\begin{align*}
& \psi_{0,0}(x ; \tilde{\alpha})=N \sum_{k \in \mathbb{Z}} e^{i k x^{1}-\frac{1}{2 b}\left(\tilde{b} x^{2}+k+\tilde{\alpha}_{1}+i \tilde{\alpha}_{2}\right)^{2}}, \quad \psi_{\mathrm{n}, k}=\rho_{\tilde{\alpha}}\left[\frac{\left(a^{*}\right)^{\mathrm{n}}}{\sqrt{n!}}\left(m_{1}\right)^{k}\right] \psi_{0,0} \tag{2.30}\\
& \rho_{\tilde{\alpha}}\left(a^{*}\right)=\frac{-\partial_{2}-i \partial_{1}+\tilde{b} x^{2}+\tilde{\alpha}_{1}-i \tilde{\alpha}_{2}}{\sqrt{2 \tilde{b}}}, \quad m_{1}=e^{\frac{1}{b}\left(i \tilde{\alpha}_{1}+\partial_{1}\right)}, \quad m_{2}=e^{i x^{1}+\frac{1}{b}\left(i \tilde{\alpha}_{2}+\partial_{2}\right)}
\end{align*}
$$

(N is a normalization factor) one finds that $\left\{\psi_{\mathrm{n}, k}\right\}_{\mathrm{n} \in \mathbb{N}_{0}}$ is an orthonormal basis of \mathscr{H}_{k} and $\left\{\psi_{\mathrm{n}, k}\right\}_{(\mathrm{n}, k) \in \mathbb{N}_{0} \times K}$ an orthonormal basis of \mathscr{H}, consisting of eigenvectors of $\mathbf{n}, m_{2}: \mathbf{n} \psi_{\mathrm{n}, k}=\mathrm{n} \psi_{\mathrm{n}, k}$, $m_{2} \psi_{\mathrm{n}, k}=e^{i \frac{\pi}{v}\left(\tilde{\alpha}_{2}-k\right)} \psi_{\mathrm{n}, k} . \quad$ It is $a \psi_{0, k}=0$. Up to a gaussian factor, the $\psi_{\mathrm{n}, k}$ are Jacobi Theta functions or their derivatives and are analytic in $z=x^{1}+i x^{2}$ [11].
2.3 The line bundle E as a quotient and the isomorphism $\mathscr{X}^{V} \simeq \Gamma\left(\mathbb{T}^{n}, E\right)$

As known, the formula $T_{l}: x \mapsto x+2 \pi l\left(l \in \mathbb{Z}^{n}\right)$ defines a free action of the abelian group \mathbb{Z}^{n} on \mathbb{R}^{n}, and setting " $x \sim y$ iff $y=T_{l}(x)$ for some $l \in \mathbb{Z}^{n "}$ defines an equivalence relation in \mathbb{R}^{n}. The elements of the quotient $\mathbb{T}^{n}=\mathbb{R}^{n} / 2 \pi \mathbb{Z}^{n}$ are the corresponding equivalence classes, i.e. $[x]=\left\{T_{l}(x), l \in \mathbb{Z}^{n}\right\}$. The universal cover map is $P: x \in \mathbb{R}^{n} \mapsto[x] \in \mathbb{T}^{n}$. Similarly, given a smooth phase factor $V: \mathbb{Z}^{n} \times \mathbb{R}^{n} \mapsto U(1)$ fulfilling (2.2) we define [11] a free action of the abelian group \mathbb{Z}^{n} on $\mathbb{R}^{n} \times \mathbb{C}$ by

$$
\begin{equation*}
\chi_{l}^{V}:(x, w) \in \mathbb{R}^{n} \times \mathbb{C} \mapsto(x+2 \pi l, V(l, x) w), \quad l \in \mathbb{Z}^{n} \tag{2.31}
\end{equation*}
$$

an equivalence relation \sim_{V} in $\mathbb{R}^{n} \times \mathbb{C}$ by setting $"(x, w) \sim_{V}\left(x^{\prime}, w^{\prime}\right)$ iff $\left(x^{\prime}, w^{\prime}\right)=\chi_{l}^{V}[(x, w)]$ for some $l \in \mathbb{Z}^{n "}$, and E by

$$
\begin{equation*}
E=\left(\mathbb{R}^{n} \times \mathbb{C}\right) / \sim_{V} \tag{2.32}
\end{equation*}
$$

in other words, an element of E is an equivalence class $[(x, w)]=\left\{\chi_{l}^{V}[(x, w)], l \in \mathbb{Z}^{n}\right\} . E$ is trivial (i.e. $E=\mathbb{T}^{n} \times \mathbb{C}$) if V is [i.e. $V(l, x) \equiv 1$]. Given a smooth function $\psi: \mathbb{R}^{n} \mapsto \mathbb{C}$ fulfilling (2.1) we can define a $\tilde{\psi} \in \Gamma\left(\mathbb{T}^{n}, E\right)$, i.e. a smooth global section of E, by

$$
\tilde{\psi}:[x] \in \mathbb{T}^{n} \mapsto[(x, \psi(x))]=\left\{\chi_{l}^{V}[(x, \psi(x))], l \in \mathbb{Z}^{n}\right\} \stackrel{(2.1)}{=}\left\{(x+2 \pi l, \psi(x+2 \pi l)), l \in \mathbb{Z}^{n}\right\} \in E
$$

The correspondence $\psi \in \mathscr{X}^{V} \mapsto \tilde{\psi} \in \Gamma\left(\mathbb{T}^{n}, E\right)$ is one-to-one and allows us to lift the hermitean structure (,), the covariant derivative ∇, the actions of $\mathscr{O}, \mathbf{g}, Y, G$, the gauge transformations from \mathscr{X}^{V} to $\Gamma\left(\mathbb{T}^{n}, E\right)$. Therefore we can and shall identify $\Gamma\left(\mathbb{T}^{n}, E\right)$ with \mathscr{X}^{V}.

The above data determine also trivializations of $E, \Gamma\left(\mathbb{T}^{n}, E\right), \tilde{\nabla}$. For each set X_{i} of a (finite) open cover $\left\{X_{i}\right\}_{i \in \mathscr{I}}$ of \mathbb{T}^{n} let $W_{i} \subset \mathbb{R}^{n}$ be such that the restriction $P_{i} \equiv P: W_{i} \mapsto X_{i}$ is invertible. Let

$$
\begin{equation*}
\tilde{\psi}_{i}(u):=\psi\left[P_{i}^{-1}(u)\right], \quad A_{i a}(u):=A_{a}\left[P_{i}^{-1}(u)\right], \quad \nabla_{i}:=-i d+q A_{i} \tag{2.33}
\end{equation*}
$$

for $u \in X_{i}$. In $X_{i} \cap X_{j}$ (2.1) implies ${ }^{3}$

$$
\begin{equation*}
\tilde{\psi}_{i}=t_{i j} \tilde{\Psi}_{j}, \quad \nabla_{i}=t_{i j} \nabla_{j} t_{j i}, \quad t_{i j}(u):=V\left\{\frac{1}{2 \pi}\left[P_{i}^{-1}(u)-P_{j}^{-1}(u)\right], P_{j}^{-1}(u)\right\} \tag{2.34}
\end{equation*}
$$

Condition (2.2) becomes the (Čech cohomology) cocycle condition for the transition functions $t_{i j}$:

$$
\begin{equation*}
t_{i k}=t_{i j} t_{j k}, \quad \text { in } X_{i} \cap X_{j} \cap X_{k} \tag{2.35}
\end{equation*}
$$

The set $\left\{\left(X_{i}, U_{i}\right)\right\}_{i \in \mathscr{I}}$, with $U_{i}(u):=U\left[P_{i}^{-1}(u)\right]$, defines the trivialization of a gauge transformation:

$$
\begin{equation*}
\tilde{\psi}_{i} \mapsto \tilde{\psi}_{i}^{U}=U_{i} \tilde{\psi}_{i}, \quad t_{i j}^{U}=U_{i} t_{i j} U_{j}^{-1}, \quad \quad \nabla_{i} \mapsto \nabla_{i}^{U}=U_{i} \nabla_{i} U_{i}^{-1} \tag{2.36}
\end{equation*}
$$

3. Twist-induced deformations

3.1 Twisted $H=U \mathbf{g}$ to a noncocommutative Hopf algebra \hat{H}

The Universal Enveloping $*$-Algebra (UEA) $H:=U \mathbf{g}$ of the Lie algebra \mathbf{g} of any Lie group G is a Hopf $*$-algebra. We briefly recall what this means. Let

$$
\begin{array}{lll}
\varepsilon(\mathbf{1})=1, & \Delta(\mathbf{1})=\mathbf{1} \otimes \mathbf{1}, & S(\mathbf{1})=\mathbf{1}, \\
\varepsilon(g)=0, & \Delta(g)=g \otimes \mathbf{1}+\mathbf{1} \otimes g, & S(g)=-g,
\end{array} \quad \text { if } g \in \mathbf{g} ; ~ \text {, }
$$

ε, Δ are extended to all of H as $*$-algebra maps, S as a $*$-antialgebra map:

$$
\begin{array}{lll}
\varepsilon: H \mapsto \mathbb{C}, & \varepsilon(a b)=\varepsilon(a) \varepsilon(b), & \varepsilon\left(a^{*}\right)=[\varepsilon(a)]^{*} \\
\Delta: H \mapsto H \otimes H, & \Delta(a b)=\Delta(a) \Delta(b), & \Delta\left(a^{*}\right)=[\Delta(a)]^{* \otimes *} \tag{3.1}\\
S: H \mapsto H, & S(a b)=S(b) S(a), & S\left\{\left[S\left(a^{*}\right)\right]^{*}\right\}=a .
\end{array}
$$

The extensions of ε, Δ, S are unambiguous, as $\varepsilon(g)=0, \Delta\left(\left[g, g^{\prime}\right]\right)=\left[\Delta(g), \Delta\left(g^{\prime}\right)\right], S\left(\left[g, g^{\prime}\right]\right)=$ $\left[S\left(g^{\prime}\right), S(g)\right]$ if $g, g^{\prime} \in \mathbf{g}$. The maps ε, Δ, S are the abstract operations by which one constructs the trivial representation, the tensor product of any two representations and the contragredient of any representation, respectively. $H=U \mathbf{g}$ endowed with $*, \varepsilon, \Delta, S$ is a Hopf $*$-algebra.

One can deform $(H, *, \varepsilon, \Delta, S)$ into a new Hopf algebra $(\hat{H}, *, \varepsilon, \hat{\Delta}, \hat{S})$ using a $t w i s t$ [7]:

1. \hat{H} is the ring $H[[\lambda]]$ of formal power series in a real deformation parameter λ with coefficients in H, endowed with the same $*$-algebra structure (over $\mathbb{C}[[\lambda]]$) and counit ε as H;
2. the coproduct $\hat{\Delta}$ is related to $\Delta(g) \equiv \sum_{I} g_{(1)}^{I} \otimes g_{(2)}^{I} \quad$ by $\quad \hat{\Delta}(g)=\mathscr{F} \Delta(g) \mathscr{F}^{-1} \equiv \sum_{I} g_{(\hat{1})}^{I} \otimes g_{(\hat{2})}^{I}$;
3. the antipodes S, \hat{S} are related by $\hat{S}(g)=\gamma S(g) \gamma^{-1}$, with $\quad \gamma=\sum_{I} \mathscr{F}_{I}^{(1)} S\left(\mathscr{F}_{I}^{(2)}\right)$,
where the twist $[7]($ see also $[15,3])$ is for our purposes a unitary element $\mathscr{F} \in(H \otimes H)[[\lambda]]$ fulfilling

$$
\begin{align*}
& \mathscr{F}=\mathbf{1} \otimes \mathbf{1}+O(\lambda), \quad(\varepsilon \otimes \mathrm{id}) \mathscr{F}=(\mathrm{id} \otimes \varepsilon) \mathscr{F}=\mathbf{1}, \\
& (\mathscr{F} \otimes \mathbf{1})[(\Delta \otimes \mathrm{id})(\mathscr{F})]=(\mathbf{1} \otimes \mathscr{F})[(\mathrm{id} \otimes \Delta)(\mathscr{F})]=: \mathscr{F}_{3} . \tag{3.2}
\end{align*}
$$

[^3]*, $\varepsilon, \hat{\Delta}, \hat{S}$ fulfill the analogs of conditions (3.1). While H is cocommutative, \hat{H} is noncocommutative with a unitary triangular structure $\mathscr{R}=\mathscr{F}_{21} \mathscr{F}^{-1}$, i.e. $\tau \circ \hat{\Delta}(g)=\mathscr{R} \Delta(g) \mathscr{R}^{-1}$ and $\mathscr{R}^{-1}=\mathscr{R}_{21}=\mathscr{R}^{* \otimes *}$, where τ is the flip operator $[\tau(a \otimes b)=b \otimes a] . \hat{\Delta}, \hat{S}$ replace Δ, S in the construction of the tensor product of any two representations and the contragredient of any representation, respectively.

In this work we take $H=U \mathbf{g}_{Q}, \mathscr{F} \in\left(U \mathbf{g}_{Q} \otimes U \mathbf{g}_{Q}\right)[[\lambda]]$ and for simplicity use only abelian twists, i.e. of the form $\mathscr{F}=e^{i \lambda h^{(2)}}$, where $h^{(2)} \in \Lambda^{2}(\mathbf{h})$ and \mathbf{h} is a real Cartan subalgebra $\mathbf{h} \subset \mathbf{g}$. This leads to $\gamma=\mathbf{1}, \hat{S}=S$. We can always choose the change (2.14) so that \mathbf{h} is spanned by the transformed p_{r+1}, \ldots, p_{n} and by $Q . \mathscr{F}$ will be of the form

$$
\mathscr{F}=e^{\frac{i}{2}\left(p_{a} \otimes \theta^{a b} p_{b}+\Xi^{a} p_{a} \wedge Q\right)}, \quad \quad \theta=\lambda\left(\begin{array}{cc}
0_{r} & \tag{3.3}\\
& \theta^{\prime}
\end{array}\right), \quad \Xi=\lambda\left(\begin{array}{c}
\\
\xi^{\prime}
\end{array}\right)
$$

here θ^{\prime} is a real antisymmetric of size $(n-r), \xi^{\prime} \in \mathbb{R}^{n-r}$, and the missing blocks are zero matrices of the appropriate sizes. Note that (3.3) implies $\theta \beta^{A} \theta=0$. Incidentally, considering Q as a primitive element, i.e. $\Delta(Q)=Q \otimes \mathbf{1}+\mathbf{1} \otimes Q$, and not just $\mathbf{1}$ times a constant, will be essential to extend the 1particle results to multi-particle systems and QFT as done in [10]: the previous formula formalizes the additivity of the electric charge in composite systems. Here are examples for $n=2,3,4$:

$$
\begin{aligned}
& \beta^{A}=\left(\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right), \quad \theta=0_{2}, \quad \Xi=\binom{0}{\xi}, \quad \Rightarrow \quad \mathscr{F}=e^{\frac{i}{2} \xi p_{2} \wedge Q}, \quad \hat{\Delta}=\Delta, \\
& \beta^{A}=\left(\begin{array}{ccc}
0 & -b & 0 \\
b & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \theta=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \eta \\
0 & -\eta & 0
\end{array}\right), \quad \Rightarrow \quad \begin{array}{l}
\mathscr{F}=e^{\frac{i}{2} \eta p_{2} \wedge p_{3}}, \quad \hat{\Delta}(Q)=\Delta(Q), \\
\hat{\Delta}\left(p_{a}\right)=\Delta\left(p_{a}\right)+\delta_{a 1} \frac{\eta b}{2} p_{3} \wedge Q,
\end{array} \\
& \beta^{A}=\left(\begin{array}{c}
0_{2}-b \\
b
\end{array} 0_{2}\right), \quad \theta=\left(\begin{array}{cccc}
0 & 0 & 0 \\
00 & 0 & 0 \\
0 & 0 & \eta \\
00 & -\eta & 0
\end{array}\right), \quad \Rightarrow \quad \begin{array}{l}
\hat{F}=e^{\frac{i}{2} \eta p_{3} \wedge p_{4}}, \quad \hat{\Delta}(Q)=\Delta(Q), \\
\hat{\Delta}\left(p_{a}\right)=\Delta\left(p_{a}\right)+\delta_{a}^{1} \frac{\eta b_{1}}{2} p_{3} \wedge Q+\delta_{a}^{4} \frac{\eta b_{2}}{2} p_{2} \wedge Q .
\end{array}
\end{aligned}
$$

3.2 Twisted H-modules and H-module algebras

A left H-module $(\mathscr{M}, \triangleright)$ is defined to be a vector space \mathscr{M} over \mathbb{C} equipped with a left action, i.e. a \mathbb{C}-bilinear map $(g, a) \in H \times \mathscr{M} \mapsto g \triangleright a \in \mathscr{M}$ such that (3.4) $)_{1}$ holds. Equipped also with an antilinear involution $*$ fulfilling $(3.4)_{2}(\mathscr{M}, \triangleright, *)$ is a left H-*-module. A left H-module $*$-algebra \mathscr{A} is a $*$-algebra over \mathbb{C} equipped with a left H-module structure $(V(\mathscr{A}), \triangleright)$ such that

$$
\begin{equation*}
\left(g g^{\prime}\right) \triangleright a=g \triangleright\left(g^{\prime} \triangleright a\right), \quad(g \triangleright a)^{*}=[S(g)]^{*} \triangleright a^{*}, \quad g \triangleright(a b)=\sum_{I}\left(g_{(1)}^{I} \triangleright a\right)\left(g_{(2)}^{I} \triangleright b\right) . \tag{3.4}
\end{equation*}
$$

Given such an $\mathscr{A},(V(\mathscr{A})[[\lambda]], \triangleright)$ endowed with the new product and $*$-structure

$$
\begin{equation*}
a \star a^{\prime}:=\sum_{I}\left(\overline{\mathscr{F}}_{I}^{(1)} \triangleright a\right)\left(\overline{\mathscr{F}}_{I}^{(2)} \triangleright a^{\prime}\right), \quad a^{* \star}:=S(\gamma) \triangleright a^{*} \tag{3.5}
\end{equation*}
$$

gets a \hat{H}-module $*$-algebra \mathscr{A}_{\star} : in fact, \star is associative by (3.2), fulfills $\left(a \star a^{\prime}\right)^{* *}=a^{\prime * \star} \star a^{* \star}$ and

$$
\begin{equation*}
g \triangleright\left(a \star a^{\prime}\right)=\sum_{I}\left[g_{(\hat{1})}^{I} \triangleright a\right] \star\left[g_{(\hat{2})}^{I} \triangleright a^{\prime}\right] . \tag{3.6}
\end{equation*}
$$

Finally, given a left H-module $*$-algebra \mathscr{A} and a left H-equivariant \mathscr{A}-*-bimodule \mathscr{M}, i.e. a left H-*-module and \mathscr{A}-bimodule \mathscr{M} such that (3.4) ${ }_{3}$ holds for all $a \in \mathscr{A}, b \in \mathscr{M}$ and for all $a \in \mathscr{M}$, $b \in \mathscr{A}$, then $V(\mathscr{M})[[\lambda]]$ gets a left \hat{H}-equivariant $\mathscr{A}_{\star}-*$-bimodule \mathscr{M}_{\star} when endowed with the $*-$ structure and the left, right \mathscr{A}_{\star}-multiplications (3.5) for all $a \in \mathscr{A}_{\star}, a^{\prime} \in \mathscr{M}_{\star}$ and $a \in \mathscr{M}_{\star}, a^{\prime} \in \mathscr{A}_{\star}$.

If \mathscr{A} is defined by H-equivariant generators a_{i} and polynomial relations (most interesting \mathscr{A} are), then also \mathscr{A}_{\star} is, with the same Poincaré-Birkhoff-Witt series and related polynomial relations. One can define a linear map $\wedge: f \in \mathscr{A} \mapsto \hat{f} \in \mathscr{A}_{\star} \quad$ (generalized Weyl map) by the equation

$$
\begin{equation*}
f\left(a_{1}, a_{2}, \ldots\right)=\hat{f}\left(a_{1} \star, a_{2} \star, \ldots\right) \quad \text { in } V(\mathscr{A})[[\lambda]]=V\left(\mathscr{A}_{\star}\right) . \tag{3.7}
\end{equation*}
$$

Using (3.2) it is easy to show that \wedge, \wedge^{-1} fulfill

$$
\begin{align*}
& \wedge\left(f f^{\prime}\right)=\sum_{I} \wedge\left[\mathscr{F}_{I}^{(1)} \triangleright f\right] \star \wedge\left[\mathscr{\mathscr { F }}_{I}^{(2)} \triangleright f^{\prime}\right], \tag{3.8}\\
& \wedge^{-1}\left(\hat{f} \star \hat{f}^{\prime}\right)=\sum_{I}\left[\overline{\mathscr{F}}_{I}^{(1)} \triangleright \wedge^{-1}(\hat{f})\right]\left[\overline{\mathscr{F}}_{I}^{(2)} \triangleright \wedge^{-1}\left(\hat{f}^{\prime}\right)\right]=\left[\wedge^{-1}(\hat{f})\right] \star\left[\wedge^{-1}\left(\hat{f}^{\prime}\right)\right] .
\end{align*}
$$

If one can express the H-action on \mathscr{A} in the (cocommutative) left "adjoint-like" form

$$
\begin{equation*}
g \triangleright a=\sum_{I} \sigma\left(g_{(1)}^{I}\right) a \sigma\left(S g_{(2)}^{I}\right), \tag{3.9}
\end{equation*}
$$

through a (*)-algebra map $\sigma: H \mapsto \mathscr{A}$, then we can make $\mathscr{A}[[\lambda]]$ into a \hat{H}-module $*$-algebra by defining the corresponding action $\hat{\triangleright}$ in the (noncocommutative) "adjoint-like" form:

$$
\begin{equation*}
g \hat{\triangleright} a:=\sum_{I} \sigma\left(g_{(\hat{\mathrm{I}})}^{I}\right) a \sigma\left(\hat{S} g_{(\hat{\mathrm{z}})}^{I}\right) \tag{3.10}
\end{equation*}
$$

(here the linear extension $\sigma: \hat{H}=H[[\lambda]] \mapsto \mathscr{A}[[\lambda]]$ is used). Formula

$$
\begin{equation*}
D_{\mathscr{F}}^{\sigma}(a):=\sum_{I}\left(\overline{\mathscr{F}}_{I}^{(1)} \triangleright a\right) \sigma\left(\overline{\mathscr{F}}_{I}^{(2)}\right) \tag{3.11}
\end{equation*}
$$

defines a \hat{H}-module $*$-algebra isomorphism $D_{\mathscr{F}}^{\sigma}: \mathscr{A}_{\star} \leftrightarrow \mathscr{A}[[\lambda]]$ (a deforming map, in the language of $[9,10]$), i.e. a map intertwining between \triangleright and $\stackrel{\rightharpoonup}{ }$, $*$ and $*_{\star}$, the original product and $*$:

$$
\begin{equation*}
g \stackrel{\triangleright}{ }\left[D_{\mathscr{F}}^{\sigma}(a)\right]=D_{\mathscr{F}}^{\sigma}(g \triangleright a), \quad\left[D_{\mathscr{F}}^{\sigma}(a)\right]^{*}=D_{\mathscr{F}}^{\sigma}\left[a^{* \star}\right], \quad D_{\mathscr{F}}^{\sigma}\left(a \star a^{\prime}\right)=D_{\mathscr{F}}^{\sigma}(a) D_{\mathscr{F}}^{\sigma}\left(a^{\prime}\right) \tag{3.12}
\end{equation*}
$$

If \mathscr{A} can be defined by a set of H-equivariant generators a_{i} and polynomial relations we find that the $\check{a}_{i}:=D_{\mathscr{F}}^{\sigma}\left(a_{i}\right) \equiv \hat{D}_{\mathscr{F}}^{\sigma}\left(\hat{a}_{i}\right)$, which make up an alternative set of generators of $\mathscr{A}[[\lambda]]$, in fact span a \hat{H}-submodule and fulfill the same deformed polynomial relations as \hat{a}_{i}, so they provide an explicit realization of $\widehat{\mathscr{A}} \sim \mathscr{A}_{\star}$ within $\mathscr{A}[[\lambda]]$. Therefore $D_{\nrightarrow \neq}^{\sigma}$ can be seen as a change from a set of H equivariant to a set of \hat{H}-equivariant generators of $\mathscr{A}[[\lambda]]$. If, as in next section, $\mathscr{A} \supseteq H$ then one can adopt as σ the inclusion map id : $H \mapsto \mathscr{A}$, then (3.9) becomes the adjoint action of H, and the action defined by (3.10) makes $H[[\lambda]]$ itself into a \hat{H}-module $*$-algebra. In general, in the 'hat notation' the deforming map is a map $\widehat{D}_{\mathscr{F}}^{\sigma}: \widehat{\mathscr{A}} \leftrightarrow \mathscr{A}[[\lambda]]$.

Finally, one can try to extend the above definitions also to suitable completions (e.g. Hilbert space) of $*$-modules $\mathscr{M}[[\lambda]]$ and of $*$-algebras $\mathscr{A}[[\lambda]]$ (as algebras of operators on $\mathscr{M}[[\lambda]]$), as we will do below.

4. Twisted deformations of $\mathscr{X}, \mathscr{X}^{V}, \mathscr{O}_{Q}, \ldots$

Let \mathscr{D}_{Q} be the H-module $*$-algebra of polynomials in Q, p_{1}, \ldots, p_{m} with (left, say) coefficients $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ fulfilling again (2.9). We adopt (3.3) as a (formal) twist and tentatively define the \star product by (1.1) for any $f, h \in \mathscr{D}_{Q}$; the λ-power (i.e. θ-power) series involved in (1.1) is termwise well-defined and reduces to a finite sum if either f or g is a polynomial in x^{a}, p_{a}, in particular

$$
\begin{align*}
& (h \cdot x+p \cdot y) \star(k \cdot x+p \cdot z)=(h \cdot x+p \cdot y)(k \cdot x+p \cdot z)+\frac{i}{2}\left(h+2 Q \beta^{A} y\right)^{t} \theta\left(k+2 Q \beta^{A} z\right), \\
& (h \cdot x+p \cdot y) \star e^{i k \cdot x}=e^{i k \cdot x}\left[h \cdot x+p \cdot y+k \cdot y-\left(\frac{h}{2}+Q \beta^{A} y\right)^{t} \theta k\right], \\
& e^{i k \cdot x} \star(h \cdot x+p \cdot y)=e^{i k \cdot x}\left[h \cdot x+p \cdot y+\left(\frac{h}{2}+Q \beta^{A} y\right)^{t} \theta k\right], \quad Q \star o=Q o=o \star Q, \tag{4.1}\\
& (h \cdot x+p \cdot y) \star e^{i k \cdot x}|q\rangle=e^{i k \cdot x}\left[h \cdot x+p \cdot y+k \cdot y-\left(\frac{h}{2}+Q \beta^{A} y\right)^{t} \theta k\right],
\end{align*}
$$

for all $h, k, y, z \in \mathbb{R}^{n}$ and $o \in \mathscr{D}_{Q}$. In deriving these relations we have used the fomula $p_{a} \triangleright e^{i(k \cdot x+p \cdot z)}=$ $e^{i(k \cdot x+p \cdot z)}\left(k+2 Q \beta^{A} z\right)_{a}$. The $*$-structure is undeformed, as $\gamma=\mathbf{1}$. Eq. (4.1) $)_{1}$ entails in particular the basic Moyal \star-product $x^{a} \star x^{b}=x^{a} x^{b}+\mathbf{1} \frac{i}{2} \theta^{a b}$. The θ-power series involved in (1.1) is infinite but convergent if both f, h are exponentials:

$$
\begin{align*}
e^{i(h \cdot x+p \cdot y)} \star e^{i(k \cdot x+p \cdot z)} & =e^{i(h \cdot x+p \cdot y)} e^{i(k \cdot x+p \cdot z)} e^{-\frac{i}{2}\left(h+Q \beta^{A} y\right)^{t} \theta\left(k+Q \beta^{A} z\right)} \\
& \stackrel{(2.11)}{=} e^{i((h+k) \cdot x+p \cdot(y+z)]} e^{-\frac{i}{2}\left[h \cdot z-k \cdot y-Q y \beta^{A} z+\left(h+Q \beta^{A} y\right)^{t} \theta\left(k+Q \beta^{A} z\right)\right]} \tag{4.2}
\end{align*}
$$

for all $h, k, y, z \in \mathbb{R}^{n}$. All the \star-products are associative as a consequence of the cocycle condition (3.2). We also stress that they are gauge-independent, since \mathscr{F} is expressed in terms of p_{a} (rather than ∂_{a}, x^{a}) and so are (2.10). Moreover, from the antisymmetry of θ it easily follows ($h \cdot x+p$. $y)^{k} \star(h \cdot x+p \cdot y)=(h \cdot x+p \cdot y)^{k+1}$ for all $k \in \mathbb{N}$, whence by iteration $[(h \cdot x+p \cdot y) \star]^{k}=(h \cdot x+p \cdot y)^{k} \star$ and $\exp [i(h \cdot x+p \cdot y)] \star=\exp [i(h \cdot x+p \cdot y) \star]$; in particular, $\exp [i h \cdot x] \star=\exp [i h \cdot x \star]$, which is a series converging for all $x \in \mathbb{R}^{n}$. Therefore we can replace $(h \cdot x+p \cdot y)$ by $(h \cdot x+p \cdot y) \star$ as argument in the exponentials in (4.1-4.2), etc. Going to the 'hat notation', we find as consequences

$$
\begin{align*}
& {[h \cdot \hat{x}+\hat{p} \cdot y, k \cdot \hat{x}+\hat{p} \cdot z]=i\left[h \cdot z-k \cdot y-2 \hat{Q} y^{t} \beta^{A} z+\left(h+2 \hat{Q} \beta^{A} y\right)^{t} \theta\left(k+2 \hat{Q} \beta^{A} z\right)\right]} \\
& (h \cdot \hat{x}+\hat{p} \cdot y) e^{i k \cdot x}=e^{i k \cdot \hat{x}}\left[h \cdot \hat{x}+\hat{p} \cdot y+k \cdot y-\left(h+2 \hat{Q} \beta^{A} y\right)^{t} \theta k\right], \quad[\hat{Q}, \hat{o}]=0, \\
& e^{\left.i\left(h \cdot \hat{x}+\hat{p} \cdot y+\hat{Q}^{0} y^{0}\right)\right)} e^{i\left(k \cdot \hat{x}+\hat{p} \cdot z+\hat{Q}^{0}\right)}=e^{i[(h+k) \cdot \hat{x}+\hat{p} \cdot(y+z)]} e^{-\frac{i}{2}\left[h \cdot z-k \cdot y+\left(h+2 \hat{Q} \beta^{A} y\right)^{t} \theta\left(k+2 \hat{Q} \beta^{A} z\right)+2 \hat{Q}\left(y^{0}+z^{0}\right)\right]} \tag{4.3}\\
& \hat{Q}^{\hat{*}}=\hat{Q}, \quad \quad \hat{p}_{a}^{\hat{x}}=\hat{p}_{a}, \quad \hat{x}^{a \hat{*}}=\hat{x}^{a}, \quad\left[e^{i\left(k \cdot \hat{x}+\hat{p} \cdot y+\hat{Q}^{0} y^{0}\right.}\right]^{\hat{*}}=e^{-i\left(k \cdot \hat{x}+\hat{p} \cdot y+\hat{Q}^{0}\right)}
\end{align*}
$$

(here $h, k, y, z \in \mathbb{R}^{n}, y^{0}, z^{0} \in \mathbb{R}, \hat{o} \in \widehat{\mathscr{D}}_{Q}$). The fourth is the Weyl form of the first and third [it can be formally derived also by the BCH formula]; for $y=z=0$ it becomes

$$
\begin{equation*}
e^{i h \cdot \hat{x}} e^{i k \cdot \hat{x}}=e^{i(h+k) \cdot \hat{x}} e^{-\frac{i}{2} h^{t} \theta k} \tag{4.4}
\end{equation*}
$$

i.e. the relation defining the Grönewold-Moyal-Weyl spaces, if $h, k \in \mathbb{R}^{n}$, and Connes-Rieffel noncommutative tori, if $h, k \in \mathbb{Z}^{n}$ [however, they are not the most general ones due to the particular form $(3.3)_{2}$ for $\left.\theta\right]$. Up to isomorphisms, the latter product depends only on the group $\mathrm{H}^{2}\left(\mathbb{Z}^{n}, U(1)\right)$ cohomology class of the $U(1)$-valued two-cocycle $\Theta(h, k):=e^{-\frac{i}{2} h^{t} \theta k}$. As the replacement $\theta \rightarrow \theta+\theta^{\prime}$
with $\theta^{\prime} \in M_{n}(2 \pi \mathbb{Z})$ leaves the algebras unchanged, one may restrict to $0 \leq \theta^{a b}<2 \pi$. In all the previous relations the deformation parameters Ξ of (3.3) have given no contribution.

Motivated by the previous arguments we shall postulate (4.4) as defining relations for the (uncountable) set of generators (parametrized by the continuous indices $h, k, y, z \in \mathbb{R}^{n}, y^{0}, z^{0} \in \mathbb{R}$) of the various algebras and linear spaces we introduce below. The functions f on \mathbb{R}^{n} that one needs for QM and QFT [test functions f in Schwarz space $\mathscr{S} \equiv \mathscr{S}\left(\mathbb{R}^{n}\right), f \in \mathscr{L}^{2} \equiv \mathscr{L}^{2}\left(\mathbb{R}^{n}\right)$, distributions $f \in \mathscr{S}^{\prime}$, etc.] all admit suitably generalized notions of Fourier transform \tilde{f} (Fourier, Fourier-Plancherel, Fourier for distributions), so that f can be expressed in terms of the anti-Fourier transform $f(x)=\int d^{n} k e^{i k \cdot x} \tilde{f}(k)$; the symbol \tilde{f} respectively belongs to $\widetilde{\mathscr{S}}=\mathscr{S}, \widetilde{\mathscr{L}}^{2}=\mathscr{L}^{2}, \widetilde{\mathscr{S}}^{\prime}$. The previous arguments suggest that we correspondingly define $\widehat{\mathscr{S}}, \widehat{\mathscr{L}^{2}}, \widehat{\mathscr{S}^{\prime}}$ as the spaces (and \hat{H}-*-modules) of objects of the form

$$
\begin{equation*}
\hat{f}(\hat{x})=\int_{\mathbb{R}^{n}} d^{n} k e^{i k \cdot \hat{x}} \tilde{f}(k) \tag{4.5}
\end{equation*}
$$

The (Connes-Rieffel) deformation of $\mathscr{X}=C^{\infty}\left(\mathbb{T}^{n}\right)$ is the $\hat{*}$-algebra

$$
\begin{equation*}
\widehat{\mathscr{X}}=\left\{\hat{f}(\hat{x})=\sum_{m \in \mathbb{Z}^{n}} f_{m} \hat{u}^{m} \quad \mid \quad\left\{f_{m}\right\}_{m \in \mathbb{Z}^{n}} \in \mathscr{S}\left(\mathbb{Z}^{n}\right)\right\}, \quad \hat{u}^{m}:=e^{i m \cdot \hat{x}} \tag{4.6}
\end{equation*}
$$

where $\mathscr{S}\left(\mathbb{Z}^{n}\right)$ is the space of sequences of complex numbers rapidly decreasing at "infinity", i.e. fulfilling the inequalities $\sup _{m \in \mathbb{Z}^{n}}\left|f_{m}\right|(1+|m|)^{h}<\infty$ for all $h \in \mathbb{N}_{0}$. $\widehat{\mathscr{X}}$ is the subspace of $\widehat{\mathscr{S}^{\prime}}$ characterized by $\tilde{f}(k)=\sum_{m \in \mathbb{Z}^{n}} f_{m} \delta^{(n)}(k-m)$, with $\left\{f_{m}\right\}_{m \in \mathbb{Z}^{n}} \in \mathscr{S}\left(\mathbb{Z}^{n}\right)$. We denote as $\widehat{\mathscr{O}_{Q}}$ the \hat{H} module $*$-algebra of polynomials in $\hat{Q}, \hat{p}_{1}, \ldots, \hat{p}_{m}$ with coefficients in $\widehat{\mathscr{X}}$, constrained by (4.3).

We can define a generalized Weyl map \wedge on various domains by setting on the generators

$$
\begin{equation*}
\wedge(Q)=\hat{Q}, \quad \wedge\left(x^{a}\right)=\hat{x}^{a}, \quad \wedge\left(p_{a}\right)=\hat{p}_{a}, \quad \wedge\left(e^{i(h \cdot x+p \cdot y)}\right)=e^{i(h \cdot \hat{x}+\hat{p} \cdot y)} \tag{4.7}
\end{equation*}
$$

for all $h, y \in \mathbb{R}^{n}$, and extending it using linearity and (3.8) (formulated in 'hat notation'). Eq. (4.7)4 is formally consistent with (3.8) and (4.3); essentially, we have already proved this when showing $\exp [i(h \cdot x+p \cdot y)] \star=\exp [i(h \cdot x+p \cdot y) \star]$. Restricting to $y=0, h=l \in \mathbb{Z}^{m}$ one finds the (invertible) Weyl map $\wedge: \mathscr{X}[[\lambda]] \mapsto \widehat{\mathscr{X}}$ and its extensions to $\mathscr{L}^{2}, \mathscr{X}^{\prime}$:

$$
\begin{equation*}
f=\sum_{l \in \mathbb{Z}^{m}} f_{l} u^{l} \quad \Rightarrow \quad \wedge(f)=\sum_{l \in \mathbb{Z}^{m}} f_{l} \hat{u}^{l}=\hat{f} \tag{4.8}
\end{equation*}
$$

We will also use (4.7) to define maps $\wedge: \mathscr{O}_{Q}[[\lambda]] \mapsto \widehat{\mathscr{O}_{Q}}$ and $\wedge: Y_{Q}[[\lambda]] \mapsto \widehat{Y_{Q}}$. Also the inverses (or generalized Wigner maps) \wedge^{-1} are immediately determined from (4.7).

As $H \subset \mathscr{D}_{Q}$ we can use (3.11) with $\sigma=$ id to construct deforming maps (i.e. \hat{H}-module $*-$ algebra isomorphism) on various domains. On the generators of \mathscr{D}_{Q} we find

$$
\begin{equation*}
\check{x}^{a} \equiv \hat{D}_{\mathscr{F}}\left(\hat{x}^{a}\right)=\left(x-\frac{\theta}{2} p-\Xi \frac{Q}{2}\right)^{a}, \quad \check{p}_{a} \equiv \hat{D}_{\mathscr{F}}\left(\hat{p}_{a}\right)=\left(p+\beta^{A} \theta p Q+\beta^{A} \Xi Q\right)_{a}, \quad \check{Q} \equiv \hat{D}_{\mathscr{F}}(\hat{Q})=Q ; \tag{4.9}
\end{equation*}
$$

using the BCH relation and the one $p_{a} \triangleright e^{i(h \cdot x+p \cdot y)}=e^{i(h \cdot x+p \cdot y)}\left(h+2 Q \beta^{A} y\right)_{a}$ we find

$$
\begin{equation*}
\hat{D}_{\mathscr{F}}\left[e^{i\left(h \cdot \hat{x}+\hat{p} \cdot y+y^{0} \frac{\hat{\partial}}{2}\right)}\right]=e^{i\left\{h \cdot x+p^{t}\left[y+\theta\left(\frac{h}{2}+\beta^{A} y Q\right)\right]+Q\left[\frac{y^{0}}{2}-\Xi^{t}\left(\frac{h}{2}+\beta^{A} y Q\right)\right]\right\} .} \tag{4.10}
\end{equation*}
$$

Choosing $y=0, h^{b}=\delta_{a}^{b}$ in (4.10) one finds in particular $\check{u}^{a} \equiv \hat{D}_{\mathscr{F}}\left(\hat{u}^{a}\right)=u^{a} \exp \left[-\frac{i}{2}(\theta p-\Xi Q)^{a}\right]$. Eq. $(4.9)_{2,3}$ and (4.10) allow to define deforming maps $\hat{D}_{\mathscr{F}}: \widehat{\mathscr{O}_{Q}} \mapsto \mathscr{O}_{Q}[[\lambda]]$ and $\hat{D}_{\mathscr{P}}: \widehat{Y_{Q}} \mapsto Y_{Q}[[\lambda]]$; as $\hat{D}_{\mathscr{F}}^{-1}$
maps the unitaries in Y_{Q} into unitaries in $\widehat{Y_{Q}}$ obtained by a (linear) redefinition of the parameters h, y, y^{0}, and viceversa, $\hat{D}_{\mathscr{F}}$ extends as a map of C^{*}-algebras $\hat{D}_{\mathscr{F}}: \widehat{\mathscr{Y}}_{Q} \mapsto \mathscr{Y}_{Q}[[\lambda]]$ The existence of such an algebra map means that the deformation $\mathscr{Y}_{Q} \rightsquigarrow \widehat{\mathscr{Y}}_{Q}$ of the algebra structure of \mathscr{Y}_{Q} is "trivial", i.e. amounts just to a change of generators in $\mathscr{Y}_{Q}[[\lambda]]$ (whereas the deformation $\mathscr{X} \rightsquigarrow \widehat{\mathscr{X}}$ of the subalgebra \mathscr{X} is not "trivial" at all, at least for θ generic). Similarly for the deformation $\mathscr{O}_{Q} \rightsquigarrow \widehat{\mathscr{O}_{Q}}$. At the level of formal deformations (i.e. of power series in λ, i.e. in θ) this result was actually expected by cohomological reasons [8] (in fact, the first and second Hochschild cohomology groups of $U \mathbf{g}_{Q}$ vanish). This is to be contrasted with the nontrivial deformation $\mathscr{X} \rightsquigarrow \widehat{\mathscr{X}}$. Replacing $Q \mapsto q \in \mathbb{Z}$ and applying $\hat{D}_{\mathscr{F}}^{-1}$ one determines the analog of M and $\mathscr{Z}(\mathscr{Y})$ [cf. (2.12)]:

$$
\begin{equation*}
\widehat{M}:=\{\hat{m} \in \widehat{Y} \mid[\hat{m}, \hat{H}]=0\}=\hat{D}_{\mathscr{F}}^{-1}(M), \quad \quad \mathscr{Z}(\widehat{\mathscr{Y}})=\hat{D}_{\mathscr{F}}^{-1}[\mathscr{Z}(\mathscr{Y})] . \tag{4.11}
\end{equation*}
$$

We now look for the deformed analogs of $\mathscr{X}^{V}, \mathscr{H}^{V}$. As in subsection 2.2 we set $\tilde{\beta}^{A}=q \beta^{A}$, etc. We start with the gauge (2.21-2.22). From (3.3) it follows

$$
\begin{equation*}
\beta \theta=0, \quad \beta \Xi=0, \quad \Rightarrow \quad \tilde{\beta} \theta=0, \quad \tilde{\beta} \Xi=0 . \tag{4.12}
\end{equation*}
$$

In such a gauge we define the space $\widehat{\mathscr{X}}^{\beta} \subset \widehat{\mathscr{S}}^{\prime}|q\rangle$ by

$$
\begin{equation*}
\widehat{\mathscr{X}}^{\beta}:=\left\{\hat{\psi} \in \widehat{\mathscr{S}}^{\prime}|q\rangle\left|\tilde{\psi}\left(k+2 \pi \tilde{\beta}^{t} l\right)=e^{i 2 \pi l^{t}(k+\pi \tilde{\beta} l)} \tilde{\psi}(k), \int_{\mathbb{R}^{n}} d^{n} k\right| \tilde{\psi}(k) \mid[1+|k|]^{h}<\infty \quad \forall(k, l, h) \in \mathbb{R}^{n} \times \mathbb{Z}^{n} \times \mathbb{N}\right\} \tag{4.13}
\end{equation*}
$$

This ensures ${ }^{4}$ for all $\hat{\psi} \in \widehat{\mathscr{X}}^{\beta}$ the noncommutative quasiperiodicity property in the first line of

$$
\begin{array}{lc}
\hat{\psi}(\hat{x}+2 \pi l)=\hat{V}(l, \hat{x}) \hat{\Psi}(\hat{x}), & l \in \mathbb{Z}^{n}, \\
\hat{\nabla}_{a}=-i \hat{\partial}_{a}+\hat{A}_{a} \hat{Q}=\hat{p}_{a}+\hat{A}_{a}^{\prime} \hat{Q} & \hat{A}_{a}^{\prime} \in \widehat{\mathscr{X}}, \tag{4.15}
\end{array}
$$

where \hat{V}, \hat{p}_{a} are defined by

$$
\begin{equation*}
\hat{V}(l, \hat{x}) \equiv \hat{V}^{\beta}(l, \hat{x}):=e^{-i \hat{Q} 2 \pi l^{t} \beta(\hat{x}+l \pi)}, \quad \hat{p}_{a} \equiv \hat{p}_{a}^{\beta}:=-i \hat{\partial}_{a}+\hat{x}^{b} \beta_{b a} \hat{Q}+\alpha_{a} \hat{Q} \tag{4.16}
\end{equation*}
$$

in complete analogy with (2.21). The second line is our definition of the deformed covariant derivative. Using (4.12), (4.4) and the relation $e^{-i q 4 \pi^{2} l^{t} \beta^{A} l^{\prime}}=1$, consequence of (2.8), it is easy to check that \hat{V}^{β} fulfills (2.2). For $\hat{V} \equiv \mathbf{1}$, or equivalently $\tilde{\beta}=\tilde{\beta}^{A}=0$, $\widehat{\mathscr{X}}^{\beta}$ reduces to $\widehat{\mathscr{X}}|q\rangle$. By (4.15) ${ }_{1}$ $\widehat{\mathscr{X}}^{\beta}$ is mapped into itself by multiplication by all $\hat{f} \in \widehat{\mathscr{X}}$, the action of $\hat{p}_{a}{ }^{5}$ and therefore also by

$$
\begin{align*}
& \hat{V}^{\beta}(l, \hat{x}) \hat{\psi}(\hat{x}) \stackrel{(4.4)}{=} \int_{\mathbb{R}^{n}} d^{n} k e^{-i 2 \pi l^{t} \tilde{\beta}(\hat{x}+l \pi)}+i k^{t} \hat{x} e^{i \pi l^{t} \tilde{\beta} \theta k} \tilde{\psi}(k)|q\rangle \stackrel{(4.12)}{=} \int_{\mathbb{R}^{n}} d^{n} k e^{i\left(k^{t}-2 \pi l^{t} \tilde{\beta}\right) \hat{x}} e^{-i 2 \pi^{2} l^{t} \tilde{\beta} l} \tilde{\psi}(k)|q\rangle \\
& =\int_{\mathbb{R}^{n}} d^{n} k e^{i k \cdot \hat{x}} e^{-i 2 \pi^{2} l^{t} \tilde{\beta}} \tilde{\psi}\left(k+2 \pi \tilde{\beta}^{t} l\right) \stackrel{(4.13)}{=} \int_{\mathbb{R}^{n}} d^{n} k e^{i k \cdot(\hat{x}+2 \pi l)} \tilde{\psi}(k)=\hat{\psi}(\hat{x}+2 \pi l) \tag{4.14}
\end{align*}
$$

(in the third equality we have performed the shift $k \mapsto k+2 \pi q \tilde{\beta}^{t} l$ of the integration variable).
${ }^{5}$ In fact, if $\hat{\psi}$ fulfills the quasiperiodicity condition (4.15) 1 , also $\hat{u}^{m} \hat{\psi}$ and $\hat{p}_{a} \hat{\psi}$ do:
$\left[\hat{p}_{a} \hat{\psi}\right](\hat{x}+2 \pi l) \stackrel{(4.15-4.16)}{=}\left(\hat{p}+\pi l^{t} \tilde{\beta}\right)_{a} e^{-i \pi l^{t} \tilde{\beta}(\hat{x}+l \pi)} \psi(\hat{x}) \stackrel{(4.3)_{3}}{=} e^{-i \pi l^{t} \tilde{\beta}(\hat{x}+l \pi)}\left(\hat{p}-\pi l^{t} \tilde{\beta} \theta \tilde{\beta}^{A}\right)_{a} \psi(\hat{x}) \stackrel{(4.12)}{=} e^{-i \pi l^{t} \tilde{\beta}(\hat{x}+l \pi)}\left[\hat{p}_{a} \hat{\psi}\right](\hat{x})$.
The quasiperiodicity is unambiguously defined, since for all $q \in \mathbb{Z}, l, l^{\prime} \in \mathbb{Z}^{n}$

$$
\hat{\psi}\left[\hat{x}+2 \pi\left(l+l^{\prime}\right)\right]=e^{-i \pi l^{\prime} \tilde{\beta}\left(\hat{x}+l^{\prime} 2 \pi+l \pi\right)} \hat{\psi}\left(\hat{x}+2 \pi l^{\prime}\right) \quad \Leftrightarrow \quad e^{\left.\left.-i \pi\left(l+l^{\prime}\right)\right)^{\prime} \tilde{\beta} \hat{x}+\left(l+l^{\prime}\right) \pi\right]}=e^{-i \pi l^{\prime} \tilde{\beta}\left(\hat{x}+l^{\prime} 2 \pi+l \pi\right)} e^{-i \pi l^{\prime} \tilde{\beta}\left(\hat{x}+l^{\prime} \pi\right)} ;
$$

that the last equality holds follows from (2.8), the BCH formula and the fact that the commutator between the last two exponents is proportional to $l^{t} \tilde{\beta} \theta \tilde{\beta} l^{\prime}$, and thus vanishes by (4.12).
the action of $\hat{\nabla}_{a}$. In other words, $\widehat{\mathscr{X}}^{\beta}$ is a (\hat{H}-equivariant) $\widehat{\mathscr{O}}_{Q}$-module. As an internal consistency check, one can verify that the decomposition of \hat{p}_{a} in the second line of (4.15) indeed fulfills (4.3). Moreover, eq. (4.15) guarantees that $\hat{\psi}^{\prime /} \hat{\psi} \in \widehat{\mathscr{X}}$. The magnetic field $\hat{B}_{a b}$ is defined by

$$
\begin{equation*}
-2 i \hat{Q} \hat{B}_{a b}:=\left[\hat{\nabla}_{a}, \hat{\nabla}_{b}\right]=\left[\hat{p}_{a}+\hat{Q} \hat{A}_{a}^{\prime}(\hat{u}), \hat{p}_{b}+\hat{Q} \hat{A}_{b}^{\prime}(\hat{u})\right] \quad \stackrel{(4.3)}{\Rightarrow} \quad \hat{B}_{a b} \in \widehat{\mathscr{X}} ; \tag{4.17}
\end{equation*}
$$

the constant part in the Laurent series expansion of $\hat{B}_{a b}$ in the \hat{u}^{a} is $\left[\beta^{A}+2 \hat{Q} \beta^{A} \theta \beta^{A}\right]_{a b}$. On the other hand, since the conditions on $\tilde{\psi}$ in (4.13) characterize also the Fourier transform of $\psi \in \mathscr{X}^{\beta}$ (an easy check), then we can extend \wedge to \mathscr{X}^{β} so that $\wedge\left(\mathscr{X}^{\beta}\right)=\mathscr{X}^{\beta}$, but only in the gauge (4.12) ${ }^{6}$.

In the notation (4.5-4.6) we define integration over the noncommutative torus $\int_{\hat{X}}: \hat{f} \in \widehat{\mathscr{X}} \mapsto$ $\int_{\hat{X}} \hat{f} \in \mathbb{C}$ in one of the equivalent ways

$$
\begin{equation*}
\int_{\hat{X}} \hat{f}:=\int_{X}\left[\wedge^{-1}(\hat{f})\right](x)=(2 \pi)^{n} f_{\mathbf{0}} . \tag{4.18}
\end{equation*}
$$

This is just Connes-Rieffel integration [4, 13]. It fulfills linearity, reality, the trace property and invariance under the action of H, \hat{H}; the latter means $\int_{\hat{X}} g \hat{\triangleright} \hat{f}=\varepsilon(g) \int_{\hat{X}} \hat{f}$, in particular $\int_{\hat{X}} \hat{p}_{a} \triangleright \hat{f}=$ $-i \int_{\hat{X}} \hat{\partial}_{a} \hat{f}=0$ for any $\hat{f} \in \widehat{\mathscr{X}}$ (as $\hat{Q} \hat{\triangleright} \hat{f}=0$). $\int_{\hat{X}}$ reduces to the ordinary translation invariant integration over \mathbb{T}^{n} if $\theta=0$. For all $\hat{\psi}^{\prime}, \hat{\psi} \in \widehat{\mathscr{X}}^{\beta}$ it is $\hat{\psi}^{\prime \hat{}} \hat{\psi} \in \widehat{\mathscr{X}}$. In the appendix we show the first equality in

$$
\begin{equation*}
\int_{\hat{X}} \hat{\psi}^{\hat{\gamma}} \hat{\psi}^{\prime}=\int_{X} \psi^{*} \psi^{\prime} \stackrel{(2.19)}{=}\left(\psi, \psi^{\prime}\right)=:\left(\hat{\psi}, \hat{\psi}^{\prime}\right) ; \tag{4.19}
\end{equation*}
$$

the second is the definition of the Hermitean structure in \mathscr{X}^{β}. It follows that one can use it also to define an Hermitean structure (,) in $\breve{\mathscr{X}}^{\beta}$ (last equality); we shall call $\widehat{\mathscr{H}}^{\beta}$ the Hilbert space completion of the latter in the Hilbert norm $\|\hat{\psi}\|:=(\hat{\psi}, \hat{\psi})^{1 / 2}$. The map $\wedge: \mathscr{X}^{\beta} \mapsto \widehat{\mathscr{X}}^{\beta}$ [with β fulfilling (4.12)] extends to a unitary H-equivariant transformation $\wedge: \mathscr{H}^{\beta} \mapsto \widehat{\mathscr{H}}^{\beta}$. On $\widehat{\mathscr{X}}$ (i.e. for $\hat{V} \equiv \mathbf{1}$) formula (4.19) reduces to $\left(\hat{f}^{\prime}, \hat{f}\right)=\int_{\hat{X}} \hat{f}^{\prime \hat{\jmath}} \hat{f}=\sum_{l \in \mathbb{Z}^{\prime}} \overline{f_{l}^{\prime}} f_{l}$, implying that $\int_{\hat{X}}: \hat{f} \in \widehat{\mathscr{X}} \mapsto \int_{\hat{X}} \hat{f} \in \mathbb{C}$ is a normalized positive-definite trace ${ }^{7}$.

Next goal would be to extend the previous construction to generic gauges. The gauge-transformed magnetic field should still belong to $\widehat{\mathscr{X}}$. As we have not determined the most general gauge transformation, we stop here the discussion. We hope to report soon on this point elsewhere.

$$
\begin{aligned}
& { }^{6} \text { In fact, using (2.21), (4.12) computation we find for any } f \in \mathscr{S}^{\prime} \\
& e^{i k \cdot x} \star|q\rangle=e^{i k \cdot x} e^{\frac{-i}{2} k \cdot(\theta p+\Xi q)} \triangleright|q\rangle=e^{i k \cdot x} e^{\frac{-i}{2} k \cdot\left[\theta\left(\tilde{\beta}^{\prime} x+\tilde{\alpha}\right)+\Xi q\right]} \triangleright|q\rangle=e^{i k \cdot\left[x-\frac{\tilde{\alpha}}{2}-\frac{q}{2} \Xi\right]}|q\rangle \quad \Rightarrow \quad f(x)|q\rangle=f^{\prime}(x) \star|q\rangle
\end{aligned}
$$

where $f^{\prime}(x):=f\left[x+\frac{\tilde{\alpha}}{2}+\frac{q}{2} \Xi\right]$. If $\psi(x) \equiv \psi_{0}(x)|q\rangle \in \mathscr{X}^{\beta}$ then by $(2.13)_{6}$ also $\psi^{\prime}(x):=\psi_{0}^{\prime}(x)|q\rangle$ belongs to \mathscr{X}^{β}. Setting $\wedge(|q\rangle)=|q\rangle$, we thus find $\wedge(\psi)=\wedge\left(\psi_{0}|q\rangle\right)=\wedge\left(\psi_{0}^{\prime}\right) \star \wedge(|q\rangle)=\widehat{\psi_{0}^{\prime}}|q\rangle=\widehat{\psi^{\prime}}$.
${ }^{7}$ Actually, $\int_{\hat{X}}$ is the only normalized positive-definite trace and the C^{*}-algebra $\widehat{\widehat{\mathscr{X}}}$ is simple if θ is quite irrational, i.e. if the lattice Λ_{θ} generated by its columns is such that $\Lambda_{\theta}+\mathbb{Z}^{n}$ is dense in \mathbb{R}^{n} (see e.g. [12], p. 537-538). The C^{*}-algebra $\widehat{\widehat{X}}$ admits a faithful representation $\rho^{\beta}: \widehat{\mathscr{X}} \mapsto \mathscr{B}\left(\widehat{\mathscr{H}}^{\beta}\right)$ in terms of bounded operators acting on $\widehat{\mathscr{H}}^{\beta}$, defined by $\rho^{\beta}(\hat{f}) \hat{\psi}=\hat{f} \hat{\psi}$ for any $\hat{f} \in \widehat{\mathscr{X}}, \hat{\psi} \in \widehat{\mathscr{H}}^{\beta}$. If $\hat{\psi}_{0} \in \widehat{\mathscr{X}}^{\beta}$ is cyclic and separating then the Tomita involution is just the extension of $\hat{*}$ to $\widehat{\mathscr{H}}^{\beta}$. $\widehat{\mathscr{H}}^{\beta}$ can be recovered also by the GNS construction with state $\omega^{\beta}(\hat{f}):=\left(\hat{\psi}_{0}, \hat{f} \hat{\psi}_{0}\right)=$ $\int_{X}\left(f \star \psi_{0}\right) \psi_{0}^{*}$; that the integrand is a periodic function follows from $\widehat{\mathscr{X}}^{\beta}$ being a $\widehat{\mathscr{X}}$-bimodule, $\wedge^{-1}\left(\hat{f} \hat{\psi}_{0}\right)=f \star \psi_{0}$ and (4.19). More explicitly, one easily finds $\omega^{\beta}\left(\hat{u}^{m}\right)=\int_{X} e^{i m \cdot x} \mu_{m}(x)$, where $\mu_{m}(x):=\psi_{0}\left(x-\frac{1}{2} \theta m\right) \psi_{0}^{*}(x) e^{-i \frac{q}{2} m^{\prime} \theta \alpha}$. When $\hat{V}=1, \psi_{0} \equiv \frac{1}{\sqrt{(2 \pi)^{n}}} \in \widehat{\mathscr{X}}, \rho^{1}(\hat{f})=\frac{1}{(2 \pi)^{n}} \int_{X} f=f_{\mathbf{0}}$, and this reduces to the GNS construction of the Hilbert space completion of $\widehat{\mathscr{X}}$.

Appendix: Proof of the first equality in (4.19)

$$
\begin{aligned}
\hat{f}_{\theta}(\hat{x}) & :=\left[\hat{\psi}^{\prime \hat{x}} \hat{\psi}\right](\hat{x})=\int_{\mathbb{R}^{n}} d^{n} k \int_{\mathbb{R}^{n}} d^{n} h \overline{\tilde{\psi}}(h) \tilde{\psi}(k) e^{-i h \cdot \hat{x}} e^{i k \cdot \hat{x}} \stackrel{(4.4)}{=} \int_{\mathbb{R}^{n}} d^{n} k \int_{\mathbb{R}^{n}} d^{n} h \overline{\tilde{\psi}}(h) \tilde{\psi}(k) e^{i(k-h) \cdot \hat{x}-\frac{i}{2} k^{t} \theta h} \\
& =\int_{\mathbb{R}^{n}} d^{n} k \tilde{f}_{\theta}(k) e^{i k \cdot \hat{x}} \quad \tilde{f}_{\theta}(k):=\int_{\mathbb{R}^{n}} d^{n} h \overline{\tilde{\psi}}(h) \tilde{\psi}(k+h) e^{-\frac{i}{2} k^{t} \theta h}
\end{aligned}
$$

In the third equality we have shifted the integration variable and used the antisymmetry of θ. We choose a ε-dependent $(\varepsilon \in] 0,1[)$ family of functions $\chi_{\varepsilon} \in \mathscr{S}$ with the property that $\chi_{\varepsilon}(k)=1$ for $|k| \leq \varepsilon / 2$ and $\chi_{\varepsilon}(k)=0$ for $|k| \geq 0$. As $\hat{f}_{\theta} \in \widehat{\mathscr{X}}$ is such that $\tilde{f}(k)=\sum_{m \in \mathbb{Z}^{n}} f_{m} \delta^{(m)}(k-m)$, we find

$$
f_{\theta \mathbf{0}}=\int_{\mathbb{R}^{n}} d^{n} k \tilde{f}_{\theta}(k) \chi_{\varepsilon}(k)
$$

for all $\varepsilon \in] 0,1\left[\right.$. Hence $\quad f_{\theta \mathbf{0}}=\lim _{\varepsilon \downarrow 0} \int_{\mathbb{R}^{n}} d^{n} k \tilde{f}_{\theta}(k) \chi_{\varepsilon}(k)=\int_{\mathbb{R}^{n}} d^{n} k \tilde{f}(k) \chi_{\varepsilon}(k)=f_{\mathbf{0}}$,
where $\tilde{f}(k):=\tilde{f}_{\theta=0}(k)=\int_{\mathbb{R}^{n}} d^{n} h \bar{\psi}(h) \tilde{\psi}(k+h)=\sum_{l} f_{l} \delta^{(m)}(k-l)$. This and (4.18) imply (4.19).

References

[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Ann. Physics 111 (1978), 61-110. A review in: D. Sternheimer, in Particles, fields and gravitation, 107-145, AIP Conf. Proc. 453, 1998.
[2] C. Birkenhake, H. Lange, Complex Abelian varieties, Springer-Verlag, Berlin, 2004.
[3] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge University Press (1994).
[4] A. Connes, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A599-A604.
[5] A. Connes, M. Rieffel, "Yang-Mills for noncommutative two-Tori", in Operator Algebras and Mathematical Physics AMS Contemp. Math. 62 (1987), 237-266.
[6] M. R. Douglas, N. Nekrasov, "Noncommutative Field Theory", Rev. Mod. Phys. 73 (2001), 977-1029.
[7] V. G. Drinfel'd, Sov. Math. Dokl. 28 (1983), 667.
[8] F. du Cloux, Asterisque (Soc. Math. France) 124-125 (1985), 129.
[9] G. Fiore, J. Math. Phys. 39 (1998), 3437-3452.
[10] G. Fiore, J. Phys. A: Math. Theor. 43 (2010) 155401.
[11] G. Fiore, On the relation between quantum mechanics with a magnetic field on \mathbb{R}^{n} and on a torus \mathbb{T}^{n}. arXiv:1103.0034
[12] J. M. Gracia-Bondía, J. C. Várilly, H. Figueroa, Elements of noncommutative geometry, Birkhäuser, Boston, 2001.
[13] M. A. Rieffel, Pacific J. Math. 93 (1981), 415-429.
[14] J.-P. Serre, Séminaire Dubreil, Fasc. 2, Exposé 23, 1957-58, 18 pp. R.G. Swan, Trans. Am. Math. Soc. 105 (1962), 264-277.
[15] L. A. Takhtadjan, Introduction to quantum group and integrable massive models of quantum field theory, 69-197. Nankai Lectures Math. Phys., World Sci., 1990.
[16] J. Zak, Phys. Rev. 134 (1964), A1602; Phys. Rev. 134 (1964), A1607; Phys. Rev. 139 (1965), A1159.

[^0]: *Speaker.
 ${ }^{\dagger}$ A footnote may follow.

[^1]: ${ }^{1}$ Since $\Lambda=2 \pi \mathbb{Z}^{n}$ can be always be obtained by a linear transformation of $\mathbb{R}^{n}[x \mapsto g x, g \in G L(n)]$, this is no loss of generality, as we are not concerned with holomorphic algebra of functions, holomorphic line bundles, etc; in fact, if $n=2 m$ and we regard $\mathbb{T}^{n}=\mathbb{R}^{n} / \Lambda$ as a complex m-torus then the holomorphic structure w.r.t. complex variables $z^{j}=x^{j}+i x^{m+j}$ is not invariant under $x \mapsto g x$ for generic $g \in G L(n)$. See also the end of section 2.2.

[^2]: ${ }^{2}$ Namely, for all $c \in \mathscr{O}_{\varrho}, \psi \in \mathscr{X}^{V}, f \in \mathscr{X}, g \in \mathbf{g}_{\varrho} g \triangleright(c \psi f)=(g \triangleright c) \psi f+c(g \triangleright \psi) f+c \psi(g \triangleright f)$.

[^3]: ${ }^{3}$ The points $x \in W_{j}, x^{\prime} \in W_{i}$ such that $u=P_{j} x=P_{i} x^{\prime}$ are related by $x^{\prime}=x+2 \pi l$, with some $l \in \mathbb{Z}^{n}$. One has just to replace the arguments l, x of V in (2.1) resp. by $P_{i}^{-1}(u)-P_{j}^{-1}(u), P_{j}^{-1}(u)$.

