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1. Introduction

The formulation on noncommutative spaces of quantum fieddries, especially of the gauge
type, is a major challenge in present research in matheahatind theoretical physics. A very
powerful tool at hand is deformation quantization BDyinfel'd twists .#, which aims at building
at the same time noncommutative deformations of a spa@(timanifoldX, of quantum theories
on X and of their symmetries. Here we apply it to quantum meclsaoia single scalar particle
on a manifold with nontrivial topology, B-torusT", in the presence ofld (1)-gauge fieldA with
nonvanishing integral Chern numbers (i.e. fluxes of the @ased field strengthB). This can
be considered a necessary preliminary step towards quafi¢lontheory, independently of the
approach we choose to reach the latter (path-integral asnd@j, second quantization [10], etc.).

Calling A the deformation parameter, deformation quantization figroalgebracs (overC,
say) into a new oney, means that the two have the same underlying vector spacetweing
C[[A]] of power series in\, V(<7 ) =V (<7)[[A]], but the produck of <7 is a deformation of the
product- of «7. For instance, on the algebr& of smooth functions on a manifold, as well as
on the algebra of differential operators @i, f xh can be defined by

fxhi=-o[.Z(ap)(foh)], (1.1)

where.Z is a bi-pseudodifferential operator depending on the dedftion parametek so thatx is
associative and reduces-tawvhenA = 0. If one replaces allby x's in an equation of motion, e.g.
in the Schrédinger equation of a particle with electricadrgieq

H.@(x) = ihd Y(x), H, == [ D3h+V]x, (o= —i024+0As, (1.2)

one obtains a pseudodifferential equation and therefdredaces a (very special) non-locality in
the interactions. [Interest in the latter can motivate treeder to study the effect efproducts even
if he/she is not ready to interpret noncommutative coorginas physical observables of position].
Here and in the sequel we use natural units, softkal = ¢, and absorb the positron chargin the
definition of A; then the quantization of charge reagls Z. The undeformed differential equation
Hy =iody is recovered fold = 0. One of the simplest examples is the Gronewold-Moyal-Weyl
x-product onR", i.e. (1.1) withf ,h € €*(R") and

F = Z?f” 27 = exp ['zeabaawb] , g ) 9ab, (1.3)
wherea,b = 1,...,n, d; = 9/9x%), and3? is a fixed real antisymmetric matrix. Given a lattice
A C R" of rankn, (1.1) & (1.3) can be used also to deform the product in thetalg?™ = € (T")
of smooth functions on the tordg" = R"/A, which can be identified with that of functionfs
on R" periodic under translation by & € A. For simplicity we shall assuma = 2riZ", i.e.
f(x+2m) = f(x) for all | := (ly,...,Im) € Z", or equivalentlyf is a function (Laurent series) of
u=(ul,...,u") = (e‘xl,...,eixn) only; so the reciprocal lattice " 1. Then (1.1) is Connes-Rieffel

1SinceA = 2mZ" can be always be obtained by a linear transformatioR"fx — gx, g € GL(n)], this is no loss
of generality, as we are not concerned with holomorphic ladgef functions, holomorphic line bundles, etc; in fact,
if n=2mand we regard™ = R"/A as a complexmtorus then the holomorphic structure w.r.t. complex Jalga
Zl = xJ +ix™ is notinvariant undex — gx for genericg € GL(n). See also the end of section 2.2.
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*-product. Better definitions of involve the Fourier transforms/series tbfh and will be recalled
later. In either case thé, generate translatlons and belong to the Lie algeyaf the group
Go of symmetries ofX. As the twist# = .7 belongs thgo®Ugo[[)\]] it determines also a
deformationH ~ H of the Hopf aIgebreH Ugy, so that 2 = %, is aH-module algebra, as
Z was aH-module algebra: the space symmetries are preservedughhno a deformed form.

As known, ifB has non-vanishing integral Chern numbers the (smoothgsstdta charged (for
simplicity scalar) particle oi" have to be represented by wavefunctions in the spa€&, E) of
sections of the associated hermitean line buildhé T", rather than inZ". But as the patches of
any trivialization ofE are not mapped into themselves by translatién®,", E) and any isomorphic
(by the Serre-Swan theorem [14]) finitely generated project?’-modulee2 ™ [herem € N,
ec Mn(2) is a projector] are notgy,-modules. Therefore we cannot apply the standard
deformation e2™" ~~ e, 2" choosingH =Ug,. The way out is based on our recent results
[11], which we summarize in section 2. DescribiigI" E) as a subspacg ™V of C*(R") whose
elements are periodic up to a suitable phase fattave have shown thdt(T"E) is a module of a
central extensiomwf Gy that we call theprojective translation group &; the central generator in the
Lie algebrag, is the electric charge operatQr This is the analog in the smooth framework of well-
known facts in the holomorphic one (see e.g. [2]). Thebelongs to thelgebra of observables
Oy D X on2V; 0, is aGy-module transforming under the adjoint action@§. The gauge
transformations of (T"E) are described by those ¢"V. The irreducible unitary representations
of Yy, 0y with Q=q€ Z are parametrized by a point on the reciprocal taRig7Z".

In the remaining sections we deforkh=Ug,, 2", IV, 0,,... by atwist.Z ¢ Ug,®Ug,.
For simplicity we stick to twists oReshetikhir{i.e. abelian type; the corresponding deformations
Z, are only a subset of the possible Connes-Rieffel noncontiveitiri. We describe the twist-
induced deformations! ~ H of a cocommutative Hopt-algebra in section 3.1, of its modules
and modulex-algebras in section 3.2. In section 4 we apply then?tod,, 27V, ... and obtairH -
modulex-algebras?,, 0., ... and aH—equivariant%—bimodule and IefﬁQ*—moduleE&Q\’, which
is completed into a Hilbert space. We also determined&trming map D : Oy, < Oy [[A]],

a H-module x-algebra isomorphism, which simplifies the study of the defed representation
theory: 27V, 0, are ‘rigid’ (their deformation boils down to a change of geaters on the same
representation space), i.e. there are isomorphigfiis~ 27V, 0, ~ 0y, although2” and .2, are
notisomorphic and thereforg’ Y as a.2,-bimodule is not isomorphic to th -bimodule 2™V.

We shall use the following abbreviation§y = NU{0}; X = T"; Mt stands for the transpose
of matrix M; elementsh, k € C" are considered as columns: k := htk (at the rhs the product is
row by column);u':=€'*; U(1):={zc C||Z =1}; we denote a¥ (<), Z (/) resp. the vector
space underlying an algebea, the center ofe7; [a*b] :=axb—bxa aAb:=axb-bxa
We stick to linear spaces and algebras diesr the rlngC[[A]] of formal power series in with
coefficients inC. We shall often change notationzz, — A, X Ogu— Oy, Y — Vv
X X8, U — (02, Ogxt— da, Pax— Pa, & x— &', etc (hat notation). In the new notation e.g.

(1.2) becomes {%n[—ida‘i‘ C]Aa()’z)][—iaa‘i‘ qAa(X)HV(O)}lll()A() =EQ(X);

hereV = A(V), Aa = A(As), F = A() and A is the generalized Weyl mafsection 4). The
pseudodifferential eq. (1.2) has thus become a noncommeitdifferential equation of second
order (i.e. of second degree dy). Solving the latter may be considerably simpler.
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2. The undeformed theory

2.1 Quasiperiodic wavefunctions and related connectionsnaR"

The particle probability densityp|? is periodic, i.e. invariant under discrete translatidnsA,
if Y is quasiperiodic, i.e. invariant up to a phase fadforA set of quasiperiodicity conditions of
the form
Y(x+2m) =V(l,x) P(x) VxeR", lez" (2.1)

relates the values ap in any two pointsx,x+2m of the latticex+2mnZ" through a phase factor
V(I,x). Nontrivial solutionsy of (2.1) may exist only if the factors relating three gengraints
x,x+2m,x+2m(+1") of the lattice are consistent with each other, i.e.

VI ,%) =V (I, x+2m" )V (I',x), VIl ez, (2.2)

Note that this implies/(0,x) = 1 and [V (I,x)] "1 = V(—I,x+2m). We introduce an auxiliary
Hilbert spaces#, with an orthonormal basi§|g) }qcz and onJ%, a self-adjoint operatoQ by
Q|g) = g|g). Given a smooth functiol : Z" x R" — U (1) fulfilling (2.2) we introduce the space

2V = {PeC”®N@|g) | wx+2m)=V(I,x)P(x) VxeR" ez} (2.3)

as the space of smooth wavefunctions of a particle with tectargeq (in e units), since it is an
eigenspace with eigenvalugpof 1 Q, which we adopt as the electric charge operator. We give the
covariant derivative a form independentefthrough := (—i)d® 1+ A(X)®Q; hered stands for
the exterior derivative. We shall abbreviaie= —id+A(x)Q, @C”(R")|q), etc. The components
of 0 have to mapz™V into itself,

O 2V — 2V, (2.4)

Given such dJ, also QBap(X)(X) = {%[Da, h]yw}(x) fulfills (2.1), implying that all theB,, =
%(daAb— OpbAa) are periodic functions. From the Fourier expansions ioiof

Bao(¥) =B+ Y B = AdX) =X°Blatdat ; aze' *+gauge transf. (2.5)
10

170
N—— ——
Blp(¥) AL(X)

where0:= (0,..,0) € Z" and the periodic functiod\'(x) is such thaB’ = dA'. We decompose the
covariant derivative in a gauge-independent pg@ and a gauge-dependent ppst

(b i=—102+AaQ = pat+ALQ, A, Z. (2.6)

Going back to (2.4) .y will fulfill (2.1) iff also pay does, by the periodicity of,(x); up to a
gauge transformation this implies the first formula in

V(1,x) = VE (I, x) := e 19218 Pa= — 102 XBALQ+0a0, 2.7)
which is consistent with (2.2) for all eigenvalugs Z of Q iff the quantization conditions

Vab € Z, Vab - = 2rfBaAb (2.8)
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for all a,b are satisfied. FogB* =0 we findV =1 and 2! = 2°®|0) ~ 2". Otherwise (2.1),
(2.7} do not admit solutions of the formp(x) = €<*f(x), f € 2.

Forall f € 2 Q,pa, f-,0a,Hmap.2™V into itself; they belong to the-algebra of observables
O, = algebra of polynomials iQ, pi, ..., pm With coefficientsf in 2", constrained by

[pav pb] :_IZBQbQ> [Qv] :ov [pa>f] :_|(0af)>
f*(X) = W? pg = pa7 Q* = Q
These relations defining, depend on thé, only through theB}, of (2.8), in particular are gauge-
independentQ, p, generate the real Lie algebgg of a Lie groupG,. 0, and.Z™ areU g,-module
x-algebras under the action

Pal> Po = —i12B4,Q, Pa> f = —i(daf), Q>f =0, Q> pa=0, (2.10)

forall fe.2°,and 2"V is aleftU d, -€quivariantd, -module and2”-bimodule (but not an algebra,
unlessV =1); this means that all these structures are compatible edti other and the Leibniz
rule?. The Weyl forms ofx® = x2, (2.9) and of their consequencs,,x’] = —idP are easily

determined with the help of the Baker-Campbell-Hausd®f£ ) formula and synthetically read

(2.9)

g (hx+py+QP) di(kextpz+QP) _ (k) x+p (y+2)+QY*+2)| g3 [ky—hz+2Qy pA7]

) (2.11)
[é(hx+p~y+@>ﬂ)] — g i(hx+py+QyP)
for anyh,k € R" and(y*,y), (2, 2) € R™. We defineG, and other group€,,R,Y,, T by
G, = {g(zoz) =g(PzQ?) | (P 7)€ R”“}, “projective translation group”
R:= {9 | (10 h) (2£,2) € R™1}, T:= {0 | R, | ez, 212
2.12
Yo i= {dPH1xtpziQ?) |0 c R | €7 (£,2) e R™},  “observables’ group”

Co 1= {WHXIPZIQD) | (WO ), (£,2) € RM1;

the group law can be read off (2.11) and depend#only throughB*. ¢t =c 1 forallcc Y,,R

The inclusionsG,, T C Y, andT C Rhold as subgroup inclusion® is isomorphic taR" x U (1).

T ~Z" xU(1) is a normal subgroup of,, andY, = G,IxT. Moreover, we shall cal¥’; the group
algebra ofY,; it is aC*-algebra. Ally € Y, ando € ¢, map 2™V into itself. Thef € T, 2" act by
multiplication, while in the gauge (2.1, pa € g, andg € G, act as follows:

Qrla)=qla), Qey=aqy,  pa>|a) = (B +aa)la), foy="fy,
Pab @ = (—i0+QEBA+A@)al,  [Gay > W](X) = AL 20 (1 ),

gz acts shifting the argument tg/and by multiplication by a phase factor, whence the nanme
jective translation grouplLetr := %rank(BA); itis r € Ng. By the Frobenius theorema matrix
Swith S € Z, detS= +1 such that after the change of generators

(2.13)

Par— (SP)a, ¥ (S, = U sy (2.14)
2Namely, forallce 0y, e 2V, fe 2 ,ge O, 9> (cyYf) = (grc)@f+c(ge ¢) f+cy(gy ).
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resp. ing,, C*(R") and .2, the commutation relations?, pp] = id¢ remain true, while (2.9)
become

[P}, Pr+j] = b;Q i=1..r [Pa, Po] =0 otherwise (2.15)
wherev; :=2mb; € Z and fulfill vi;1/vj € N. This shows that

Oo ™ hQ2r+1 D Rer’ GQ ~ HQ2r+1 X Rer' (216)

wherehgi,Hok denote the Heisenberg Lie algebra, group of dimenkiand central generat®p.
Introducing fundamentdd-dimensional cellstgl,,,ak fork<nanda; <ay; < ... <a by

Cl.a = {XeR"[x* ey y"+2m, h=1,..k x* =y otherwisg, (2.17)

one easily finds that the flugsy, of B = Bandx@dxX° through a plaquett€?, equals that of3* =
B

%b:/cyB: B* = 2mvap (2.18)
ab

Yy
Cab

and similarly for higher powerB™. By (2.1) ¢/*y is periodic for ally/, ¢ € 2V, and the formula
W)= [T 9. 2.19)
1.n

defines a hermitean structure #V making the latter a pre-Hilbert space. (The results are-inde
pendent ofy.) As pa> (YY) = pa(P'*P) = —ida(Y'* ), which has a vanishing integral, by the
Leibniz rule thep, are essentially self-adjoint. If somg € 27V vanishes nowhere, thepwgl
is well-defined and periodic, i.e. i, for all ¢ € 27V, whence the decompositiod™ = .2 .
We shall call.#V the Hilbert space completion aV. Y, extends as a group of unitary trans-
formations of#V; f €T still act by multiplication,g»,) € G, in the above gauge still acts as in
(2.13%. We shall call(p?" (6,), 2°") and(pP" (Y, ), #*") the representations that we have used
so far, determined prA(O)L[I := o ¥ with action> defined by (2.7-2.13).

Given a representatiofip(&, ), 2’V) of &, as ax-algebra of operators o™, a unitary
equivalent one is obtained through a smooth gauge tranafmnu = €%, ¢ < C*(R",R), acting
as a unitary transformatiofp (&), 2°V) — (oY (65), 2V"), with

pY(0)=Up(o)u 1, W =uUy, VY (1, x)=U(x+2m)V(I,x)U1(x). (2.20)

U is a unitary transformatiorfp(Yo), #") — (p!(Yy),##"" ) also for the associated represen-
tatrion of Y, as a group of unitary operators on the Hilbert space congpietiAll the relations
(2.1-2.6), (2.8-2.12), (2.14-2.19) remain valid. Stagtirom (pﬁA(ﬁQ), %BA), choosingU (x) =
d2XB% and settingB := B*+ B3, we find an equivalent representatifo” (&, ), %VU) character-
ized by

VU (1,x) = e a2 Blxitm, Pa = —i02+X°BoaQ+ 0aQ (2.21)
[forU(x)=1,i.e.8 = pB* we recover the original gauge (2.7)]. We shall adopt thetehoaotations

28 = 2B P = P etc. for the spaces of complex functions fulfilling (2. 1t given
by (2.21). Performing a change (2.14) and choogdfgo that3 becomes lower-triangular we find

b (214) = O
pr="p=1b = B='B=|2b (2.22)

0n—2r 0n—2r
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(O is thekx k zero matrix; the missing blocks are zero matrices of the @pyate sizes), and (2.1)
becomes _
W(x+2m) = e 2aZiviliX g (x) VxeR" | e Z". (2.23)

The most general solution of (2.23) reads [11]

P(x) = Z< @ Xkt 2vlX gy ity oy 2 x@ LX), (2.24)
keK leZr

where allyy belong resp. to7 (R xT"?") | L2(R'xT" %) if ¢ e 27F, P, and
K :=1{0,1,...,|2qu1| —1} x ... x {0,1, .., |2quy| —1} C Z. (2.25)

The subspacegy c 2P, 74 c P characterized byys = 0 for s€ K\ {k} are orthogonal to
each other. In next subsection we present base0f2 F.
2.2 Physical representations oY, , 0,

The physical representations ¥f, 0, are characterized by integer eigenvalueofso we
consider an irreducible one wittQ = qcZ and drop the subscript: C,Y,G,q,0,h,,Hy. Let
%, % be the grouft*-algebras o€, Y. We abbreviated :=qa, *:=qB", Vi:i=qv;eN, etc. All
commutation relations depend onlyfih. After the Frobenius transformatiofix, p) — (S~*x, S p)
we let

My == expli (X + 1Py / V)], m; = expli (X —mp; /7)) (2.26)

Proposition 1. [11] Y decomposes into a product of commuting subgroups!sve®
Y =ML M HL HY Yo Y, (2.27)
o Ml is discrete, generated byjmr}H,el"VJg,mj‘l,rnr;lj, that fulfill mjmy; = mjm;e’ ;
o Hi:={ehtwpitzri) | (h w,2z) e R3} is isomorphic to the 3-dim Heisenberg Lie grodp
o Y:={d¥+h+zm) | | 7 (h z) € R?} is isomorphic to the observables’ group on a circle.
i = (m)?, &yji=(my))? (j=1,..,r) and their inverses are central;
with é" ¢ U (1) they generate the subgroug?(Y) C Y and the subalgebraZ (%) c % .

n
M:=ML.M" commutes withHy= > p2, so is themagnetic translation groupn the sense of [16].
a=1

By Proposition 1 the irreducible unitary representatiomsefly irreps) of Y, & for n> 3 are
obtained from tensor products of those fiee1,2. The irreps of th&€*-algebra?Z” are those o .

n=1 (quantum mechanics on a circB). The Casimir eigenvalué = 2@ (g e R/7Z)
identifies the inequivalent irreps of, %" (pg,.£%(SH)), with

pale] W) =€),  pa(@)w() = E¥Y(x+2). (2.28)

The associated irrepg, ¢ (S')) of ¢ is defined by (2.28)andpg (p)Y = (& —idy) Y.
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{%}@ is an orthonormal basis consisting of eigenvectorp:opg (p)e* = (14a&)e' .

n=2=2r. ThisimpliesY = MH3. The Casimir eigenvalueg, = €2 (& € R2/72) identify
the inequivalent irreps of, % (pa,#¢), with

%:Zéél%” pa(mp) =702 A4, pa(my) = i, K =k+1 mod D
o " pa(Hs) is Schrodinger representation ldf; on 4 ~.2%(R)
(2.29)

Setting a:= pijziigz, ai= pi/_zlgz, n:=a‘a, we find [a,a*] = 1. Defining

~ eyl 1 = ~ PR Y *\N
WO,O(X;G) _ NkZZeIkX 2b(b><2+k+or1+|az) : Ynk = P& [%(ml)k} Woo,
c

— 0r—i 1D+ B L(idy+0 ixt+ L (idrp+-0
pa(ar) = ~ZHAPEtdi® -y — sty — (%),

(2.30)

(N is a normalization factor) one finds thaf{ Ynx}ney, IS an orthonormal basis of%; and
{Wnk}mpengx  an orthonormal basis of”, consisting of eigenvectors af mp: N nk = Nn,
Mook = €3@ K g Itis agpx = 0. Up to a gaussian factor, thgy are Jacobi Theta
functions or their derivatives and are analyticzie: x* + ix? [11].

2.3 The line bundleE as a quotient and the isomorphism 2™V ~ I'(T"E)

As known, the formuldl : x — x+2m (I € Z") defines a free action of the abelian group
Z" on R", and setting X ~ y iff y = Tj(x) for somel € Z"™" defines an equivalence relation in
R". The elements of the quotiefit” = R"/2rZ" are the corresponding equivalence classes, i.e.
X] = {Ti(x), | € Z"}. The universal cover map B: x € R"— [x] € T". Similarly, given a smooth
phase facto¥ : Z" x R" — U (1) fulfilling (2.2) we define [11] a free action of the abelian gpo
Z" onR" x C by

XY (x;w) €R"x C (x+2n1,V(|,x)w), l ez, (2.31)

an equivalence relationy in R" x C by setting '(x,w) ~y (X,w) iff (X,w) = x[(x,w)] for
somel € Z"™', andE by
E=(R"XC)/~vy; (2.32)

in other words, an element & is an equivalence clagéx,w)] = {x[(x,w)], | € Z"}. E is trivial
(i.,e.E=T"x C)if Vis[i.e.V(l,x) = 1]. Given a smooth functiog : R" — C fulfilling (2.1) we
can define a) € I'(T",E), i.e. a smooth global section &f, by

P et [(xwe)| = {x[(cwe)] . 1€27} 2y { (c+2m, wixr2m)), 162"} €E.

The correspondencg ¢ 27V — @ € '(T",E) is one-to-one and allows us to lift the hermitean
structure( , ), the covariant derivativél, the actions o?’,g,Y, G, the gauge transformations from
2V to(T"E). Therefore we can and shall identifiT", E) with 2™V

The above data determine also trivializationsEof (T",E), 0. For each sek; of a (finite)
open cover X }ic.» of T" letW C R" be such that the restrictidd = P : W — X; is invertible. Let

i(u) == Y[R~ H(u)], Aa(U) == Ag[R (U], [ = —id+qA (2.33)
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for ue X. In XN X; (2.1) implie$

G=t{, O=t0, tij (u) 5:V{%T[R_1(U)—Pj_l(u)] , Pj_l(u)} (2.34)
Condition (2.2) becomes th€éch cohomology) cocycle condition for the transition flimst; i
tik = tijtjk, in X N XN Xy (2.35)

The set{ (X, Ui) }ic.r, with U (u) := U [P~(u)], defines the trivialization of a gauge transformation:

& — @ = Ui, tj =UitjU; O— 0 =u0u™ (2.36)

3. Twist-induced deformations

3.1 TwistedH =Ug to a noncocommutative Hopf algebraH

The Universal Enveloping-Algebra (UEA)H :=Ug of the Lie algebray of any Lie groupG
is a Hopfx-algebra. We briefly recall what this means. Let

(1) =1, A(l) =11, S(1) =1,
£(9) =0, A(g) = g®1+1®g, S9) = -9, ifgeg;
€, are extended to all dfl asx-algebra mapsS as ax-antialgebra map:
£:H~C, g(ab) = g(a)e(b), g(a) =le(d)]",
A:H—H®H, A(ab) = A(a)A(b), Ala") = [A(a)]*®* (3.1)
S:H~H, Sab) = S(b)S(a), S{[S@)]"} =

The extensions of,A,S are unambiguous, as(g) =0, A([g,g]) = [A(g),A(g )]. S(lg,9]) =
[S(g’),S(g)] if g,d € g. The maps,A,Sare the abstract operations by which one constructs the
trivial representation, the tensor product of any two reprégations and the contragredient of any
representation, respectiveld =Ug endowed with, €, A, Sis a Hopfx-algebra.

One can defornfH, x, £,A,S) into a new Hopf algebraH, *, &,A, S) using atwist[7]:

1. His the ringH[[A]] of formal power series in a real deformation paramatevith coefficients
in H, endowed with the samealgebra structure (oveZ[[A]]) and counits asH;

2. the coproduch is related taA(g) =¥, g'(1)®g'(2) by A(g)=.ZA(g)F =5, gl(i)®gl(é);
3. the antipode§, Sare related by S(g) = yS(g)y %, with y=5,.% (ﬁ‘ (2)>

where thewist[7](see also [15, 3]) is for our purposes a unitatgment# < (HH )[[A]] fulfilling

=1®1+0(A), (e®id).7 = (id®e).7 =1,

(F@1)[(Axid)(F)] = (1.7)[(id @A) (F)] =: F3. (3.2)

3The pointsxe Wj, X' € W such that = Pjx = PX are related by’ = x+2r, with somel € Z". One has just to
replace the argumentsx of V in (2.1) resp. byp*(u)—P; (u), P (u).
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«, €, 7\, Sfulfill the analogs of conditions (3.1). Whild is cocommutativetd is noncocommutative
with a unitary triangular structure? =.#,1.7 1, i.e. ToA(g) = ZA(9)Z * and# ' = R, = %,
whereT is the flip operator f(azb) =bwal. A,S replaceA,Sin the construction of the tensor
product of any two representations and the contragrediegmyrepresentation, respectively.

In this work we taked =Ug,, .7 €(Ug,®UQg, )[[A]] and for simplicity use only abelian twists
i.e. of the formZ = &*"” wheren® ¢ A? (h) andh is areal Cartan subalgebinac g. This leads
toy=1, S= S We can always choose the change (2.14) sotthiatspanned by the transformed
Pri1,---» Pn @nd byQ. .# will be of the form

F = eié(pa®9abpb+5apa/\Q)’ 0—2A <Or 9/) ’ = <£,> (3.3)

here®' is a real antisymmetric of siz@—r), £’ € R™", and the missing blocks are zero matrices of
the appropriate sizes. Note that (3.3) implgf3*6 = 0. Incidentally, considerin€ as a primitive
element, i.,eA(Q) = Q1+ 1®Q, and not justl times a constant, will be essential to extend the 1-
particle results to multi-particle systems and QFT as darj&0]: the previous formula formalizes
the additivity of the electric charge in composite systehsre are examples for= 2,3, 4:

BA=<E‘Ob>, 6=0,. z:@, ~ FoefmQ A-a
0-bo 00O F = e2NP2/\Ps, AQ) =A(Q),
gr=|b oo, 6=|l00n]|, = ) .
000 0-n0 A(Pa) = A(Pa)+0a’5 P3AQ,
000 0 | X
a_[O2—b) 5 (0000 F =e21PhP - A(Q) =A(Q),
F=lbo/) % looon| = . Labs Abs
00-10 A(pa) =A(Pa) + 0375+ PsAQ+33752 P2AQ.

where in the last lind := diag(b;, b,). Note that fom =2 H is not deformedH = H.

3.2 TwistedH-modules andH-module algebras

A left H-module(.# 1) is defined to be a vector spac# overC equipped with a left action,
i.e. aC-bilinear map(g,a) € H x.# — grac . such that (3.4) holds. Equipped also with an
antilinear involutionx fulfilling (3.4), (.# ,>,*) is a leftH-+-module. A leftH-modulex-algebra
</ is ax-algebra ovefC equipped with a lefH-module structurgV (),>>) such that

Ggra=g(@a,  (@ar=[sglva,  g@)=Y (dyoa)(darb) @
Given such an#, (V(«)[[A]],>) endowed with the new product amestructure

axad = Z( ) ( 7! )Da) a*:=9(y)ra (3.5)

10



On twisted symmetries and magnetic fields on noncommutative Gaetano Fiore

gets aH-modulex-algebra,: in fact,  is associative by (3.2), fulfillsaxa )* = a*a* and

g> (axd)=y, [g'(i)p a]*[g'(é)p a’} . (3.6)
Finally, given a leftH-modulex-algebrac/ and a leftH-equivariantes-x-bimodule 7, i.e. a left
H-x-module ande/-bimodule.# such that (3.4) holds for allae 7, be .# and for allac .#,
be o7, thenV (.#)[[A]] gets a leftH-equivariant«,-«-bimodule.#, when endowed with the-
structure and the left, right7,-multiplications (3.5) for alac 7, & € .#, andac .#,, a € <.

If o is defined byH-equivariant generators g and polynomial relations (most interest-
ing 7 are),then also.< is, with the same Poincaré-Birkhoff-Witt series and relatetypomial
relations. One can definelmear map A: feo/ — fea/ (generalized Weyl magby the
equation

f(ag,ap,...) = f(apx,apx,...) inV()[[A]] =V (). (3.7)

Using (3.2) it is easy to show that A~ fulfill
AE) = 57| Ye 1] % 2|70 1]
AL
If one can express thd-action ong in the (cocommutative) left “adjoint-like” form

gra= Zo (g'(l)) ao (SQZ)) , (3.9)

through a §)-algebra mapo : H — <7, then we can maker[[A]] into a H-module+-algebra by
defining the corresponding actiénn the (noncocommutative) “adjoint-like” form:

gda:= Z o (g'(i)) ao (éqé)) (3.10)
(here the linear extensiom: H =H[[A]] — «7[[A]] is used). Formula

DI(a) =5, (?f” >a) a(?fz)) (3.11)

(3.8)

—hy

5 =5 [Z1VeA D] [Fen )] = (A AHD] = (A2 ).

defines &1-module x-algebra isomorphismDY : <7, < 7 [[A]] (adeforming mapin the language
of [9, 10]), i.e. a map intertwining betweerands, x andx,, the original product and:

g5[D%(@)] =D (gra),  [DY(@)" =DZ[a%],  DY(axd)=DI(@DI(d). (3.12)

F

If <7 can be defined by a set bff-equivariant generatorg and polynomial relations we find that
thed := DZ(a) = DZ(4), which make up an alternative set of generators/dfA |, in fact span a
H-submodule and fulfill the same deformed polynomial retatiasa;, so they provide an explicit
realization ofe/ ~ <7, within 2/ [[A]]. ThereforeD9 can be seen as a change from a seltief
equivariant to a set dfl-equivariant generators a#[[A]]. If, as in next sectiongZ D H then one
can adopt ag the inclusion map id H — <7, then (3.9) becomes the adjoint actiontbf and
the action defined by (3.10) make[A]] itself into aH-modulex-algebra. In general, in the ‘hat
notation’ the deforming map is a M), : .7 « /[[A]].

Finally, one can try to extend the above definitions also table completions (e.g. Hilbert
space) ofk-modules Z[[A]] and ofx-algebrase/[[A]] (as algebras of operators o [[A]]), as we
will do below.

11
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4. Twisted deformations of 27, 27V, 0, ...

Let 2, be theH-modulex-algebra of polynomials i, p1, ..., pm With (left, say) coefficients
f € C*(R") fulfilling again (2.9). We adopt (3.3) as a (formal) twist ateshtatively define the-
product by (1.1) for anyf,h € %,; the A-power (i.e.0-power) series involved in (1.1) is termwise
well-defined and reduces to a finite sum if eitieor g is a polynomial ind, p,, in particular

(h-x+p-Y)x(k-x+p-2) = (h-x+p-y) (kx+p-2) + 5 (h+2QB%)' 8(k+2QB"2),
(h-x+p-y)x&** = &*[h-x+p-y+k-y— (5+QB%Y) 6k],

&% (h-x+py) = & [h-x+p-y+(2+QB%)t6K], Qx0=Q0=0xQ,
(h-x+p-y)x€<¥|a) = &*[h-x+p-y+k-y—(5+QB%) k],

(4.1)

for all h,k,y,z€ R"ando € %,. In deriving these relations we have used the fonpytag **P2) —=
&k*P2) (k4 2QB*2),. Thex-structure is undeformed, as= 1. Eq. (4.1) entails in particular the
basic Moyalx-productx®xx® =xax°+1563. The 6-power series involved in (1.1) is infinite but
convergent if bothf, h are exponentials:

dhxtpy) L dkxtp2)  _  d(hx+py) d(kxt+p2) g 5(h+QBAY) 6 (k+QB*2)
LY dlhek)xtply 2] g [h2-ky-QuB zH(n+QBY)'0(k+QB")] (4 0y

for all h,k,y,z € R". All the x-products are associative as a consequence of the cocyulition
(3.2). We also stress that they ayauge-independensince.# is expressed in terms qf, (rather
than d,,x®) and so are (2.10). Moreover, from the antisymmetryddt easily follows (h-x+ p-
Y)¥x (h-x+p-y) = (h-x+p-y)k for all k € N, whence by iterationi(h-x-+p-y)x X = (h-x+p-y)*x
and expi(h-x+p-y)]* = expli(h-x+ p-y)*]; in particular, exfih-x]x = explih-xx], which is a series
converging for allx € R". Therefore we can replad®-x+ p-y) by (h-x+p-y)* as argument in the
exponentials in (4.1-4.2), etc. Going to the ‘hat notatiové find as consequences

[h-%+ Py, k-%+p-Z = i [h-z—k-y—2Qy B*z+ (h+2QB*Y)' 8 (k+2QB"2)]

(h-%+pry)e** = &% [h-24 py-+k-y— (h+2QB"Y)" 6K], [Q.6 =0,

(%4 py+QY) g (k2tp2+Q2)  dl(hth) R+p(y12)] @ 5 [n7-ky+(h20B%)'6(k+2Q8"2)+2Q(y*+2)] (4.3)

o =0, B = Pa, g = 2, [ei(k~>2+ﬁ')/+@)p)} L e i(kxtpy+QyP)
(hereh,k,y,ze R" YW L2 cR,06¢ @Q). The fourth is the Weyl form of the first and third [it can be
formally derived also by the BCH formula]; foy=z= 0 it becomes

gh Rk _ ei(h+k)~>?e—12ht9k’ (4.4)

i.e. the relation defining the Grénewold-Moyal-Weyl spadkh, k € R", and Connes-Rieffel non-
commutative tori, ih, k € Z" [however, they are not the most general ones due to the piartiorm
(3.3), for 6]. Up to isomorphisms, the latter product depends only orgtoeip H2(Z",U (1)) co-
homology class of the (1)-valued two-cocycl®(h, k) :=e 2" As the replacemerl — 6+ 6’

12
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with 8’ € M,(21Z) leaves the algebras unchanged, one may restrict<a9®° < 27t. In all the
previous relations the deformation parametersf (3.3) have given no contribution.

Motivated by the previous arguments we shall postulate) (ds4defining relations for the
(uncountable) set of generators (parametrized by the momtis indices, k,y,z € R", y°,2 € R)
of the various algebras and linear spaces we introduce beldve functionsf on R" that one
needs for QM and QFT [test functiorlsin Schwarz space” = .7 (R"), f € £?=_2?R"),
distributions f € .7, etc.] all admit suitably generalized notions of Fouri@nsformf (Fourier,
Fourier-Plancherel, Fourier for distributions), so tiatan be expressed in terms of the anti-Fourier
transform f(x) = [d"k é*f(k); the symbolf respectively belongs to? =7, 2= g2
The previous arguments suggest that we correspondlnglylelléﬂ .22 7' as the spaces (and
H-x-modules) of objects of the form

f(x) = Rnd”k d*f(k). (4.5)
The (Connes-Rieffel) deformation of” = C*(T") is thex-algebra

2 = {fA()A() = Smezn fn0™ | {fm}mezn € Z(Z")}, am = @mx (4.6)

where. (Z") is the space of sequences of complex numbers rapldly déugeats“infinity”, i.e.
fulfilling the inequalities sup.zn | fml (1+|m\) < forallhe No. 2 is the subspace of”’
characterized byf (k) = ¥ mezn fm 0" )(k m), with {fm}mezn € (Z"). We denote a®, the -
modulex-algebra of polynomials i, p1, ..., pm With coefficients inZ’, constrained by (4.3).
We can define generalized Weyl map on various domains by setting on the generators

ANQ=Q  AGE) =R, A(pa)=Pa,  A(MIPV) = dOTEY (47

for all h,y € R", and extending it using linearity and (3.8) (formulatedhat notation’). Eq. (4.7%)

is formally consistent with (3.8) and (4.3); essentiallg ave already proved this when showing
expli(h-x+p-y)|Jx = exp[l(h X+ p-y)*]. Restricting toy =0, h=I1 €Z™ one finds the (invertible)
WeylmapA @ Z7[[A]] — 2 and its extensions %, 27"

f=73 fiu = ANf)=§ fid =f. (4.8)

lezm |EZm
We will also use (4.7) to define maps. 0, [[A]] — 5’5 andA : Yo [[A]] — Y,. Also the inverses (or
generalized Wigner maps ! are immediately determined from (4.7).
As H C 2, we can use (3.11) witlw = id to constructdeforming mapgi.e. H-module x-
algebra isomorphism) on various domains. On the generafarg we find

P=D;(R)=(x-3p-329)%  Pa=Ds(Pa)=(p+B*0pQ+B*=Q)a,  Q=D-(Q)=0Q;
(4.9)
using the BCH relation and the opg>€MPY) = dhxpy) (h4-2QB%y), we find
B, [dhe+ |6~y+y0%)] _ J{mp 005+ Q[ =548 | (4.10)

Choosingy = 0, h° = 5P in (4.10) one finds in particular= D (07) =2 exp[—5(8p—=Q)3]. Eq.
(4.9) 3 and (4.10) allow to define deforming maPs : @, — 0, [[A]] andD > Y — Yo [[A]); asD ;2

13
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maps the unitaries i, into unitaries in\/(g obtained by a (linear) redefinition of the parameters
h,y,y°, and viceverseD , extends as a map 6 -algebradD ; : /@; — % [[A]] The existence of such
an algebra map means that the deformat#gn~~ /@; of the algebra structure &%, is “trivial”,

i.e. amounts just to a change of generatorgii|A]] (whereas the deformatio®” ~~ 2 of the
subalgebra?” is not “trivial” at all, at least for@ generic). Similarly for the deformatiofr, ~~ 5’;

At the level of formal deformations (i.e. of power seriesiini.e. in 6) this result was actually
expected by cohomological reasons [8] (in fact, the first@ewbnd Hochschild cohomology groups
of Ug, vanish). This is to be contrasted with the nontrivial defation 2" ~ Z. Replacing
Q~ g€ Z and applyingD;* one determines the analogMfand 2 (%) [cf. (2.12)]:

M = {MmeY | M H] =0} = DY(M), 2 (#) =01 2(@)). (4.12)

We now look for the deformed analogs @fV, #V. As in subsection 2.2 we sét‘* =qpB*,
etc. We start with the gauge (2.21-2.22). From (3.3) it folo

B6 =0, ==0, = B6=0, P==0. (4.12)

In such a gauge we define the sp@ C§’|q> by

ﬁ:{tpe%m | Pkt2mBll) = 2B g o), /ﬂgn”k\tll(k)\ [1+]K]] "< oo ¥ (KI,h) € R™Z™N

(4.13)
This ensurésfor all ¢ e 3?8 the noncommutative quasiperiodicity property in the fiirse lof
PR+2m) =V (,R) J(), l ez,
~ L o R . (4.15)
(b = —i02+AQ = PatAQ Ae 7,
whereV, p, are defined by
V(1,2 =VA(1,8) = e 1AM, Pa = PE = —i0at RPoaQ+ Q. (4.16)

in complete analogy with (2.21). The second line is our dediniof the deformed covariant deriva-
tive. Using (4.12), (4.4) and the relati@r@™"'#"" = 1, consequence of (2.8), it is easy to check
thatVA fulfills (2.2). ForV = 1, or equivalently3 = B* = 0, 2P reduces to2|q). By (4.15)

3?5 is mapped into itself by multiplication by aff € ,9? the action ofpa® and therefore also by

4 \7,3“7;() o) (44) /Rgnk e42mt[;(>2+| 7T)+ikt>”<eimt[36km(k)‘q> (4.12) /R(njnk é<k‘*2m‘ﬁ>ﬁe*i2"2"ﬁ'lIJ(k)|q>

- / dk dRe 21 Bl g oty (42 / dk 2 G — Gr2m) O (4.14)
JRn JRn
(in the third equality we have performed the shift k+2nq[§tl of the integration variable).

SIn fact, if ¢ fulfills the quasiperiodicity condition (4.15)alsou™@ and gaJ do:

N . 415-4.16) , S 3R o (43)3 _imtB(R . ~ o (412 imtEox A -
[ap) (%-27) T = (prntt B e BRI gy z) (420 g BRI (it Bof) p(®) 2T e BRI ) (3).
The quasiperiodicity is unambiguously defined, since fbaa Z, I,1’ € Z"
GR+2m(+1')] = —imlt B(RH’27EH ”>11;(>2+2n|’) PN e TH) BRHIH T _ it B(RH"27e n)e—irn“ﬁ(kwn);
that the last equality holds follows from (2.8), the BCH fafm and the fact that the commutator between the last two
exponents is proportional 1§8681’, and thus vanishes by (4.12).
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the action of_L. In other words,ﬁfg isa (I—T—equivariant)é’;—module. As an internal consistency
check, one can verify that the decompositiorpgin'the second line of (4.15) indeed fulfills (4.3).
Moreover, eq. (4.15) guarantees tifgt ) € 2. The magnetic field,p is defined by

~2iQBap = [ (] = [pat QAL P+ QAL@)]  E Bpe 2y (417)
the constant part in the Laurent series expansidi,gfn the i is [3+2QB63"]ap. On the other
hand, since the conditions apin (4.13) characterize also the Fourier transformyof 2°F (an
easy check), then we can extendo .2"# so thatA(.27#) = 3/&”\5 but only in the gauge (4.12)

In the notation (4.5-4.6) we define integration over the momautative torusfy; : fe 2 —
Jx f € C in one of the equivalent ways

/)zf::/)( (AY(F)] () = (2" . (4.18)

This is just Connes-Rieffel integration [4, 13]. It fulfill;earity, reality, the trace property and

invariance under the action &f,H; the latter meangzgsf = £(g) Jx f, in particular [ paSf =

—i [30af =0 forany f € 2 (as@Sf = 0). J; reduces to the ordinary translation invariant inte-
gration overT"if 8 =0. Forall ¢/, € EZV\B itis (/*( € 2. In the appendix we show the first

equality in

Lo'w =] ww™ W)= .9 (4.19)
JX X

the second is the definition of the Hermitean structureZifi. It follows that one can use it also
to define an Hermitean structufe ) in 3&76 (last equality); we shall calliZ® the Hilbert space
completion of the latter in the Hilbert norm{ (|| := (¢, §)Y2. The mapr: 28— z° [with 3
fulfilling (4.12)] extends to a unitari -equivariant transformation : #F — B On f(i.e. for
V =1) formula (4.19) reduces td”, f) = 3 f/* f = 5,5 f/ fi, implying that; : f € 27— [y feC
is a normalized positive-definite trace

Next goal would be to extend the previous construction tegergauges. The gauge-transformed
magnetic field should still belong t@". As we have not determined the most general gauge trans-
formation, we stop here the discussion. We hope to report sadhis point elsewhere.

8In fact, using (2.21), (4.12) computation we find for ahy .7’
q=

e¥u|q) = Xe k(0P EU|q) = dxe2OPXDZdp g — kD F 21 5 f(xla) = F'(X)+[a)

wheref’(x):=f [x+%+%£}. If W(x) = Po(x)|q) € 2P then by (2.13) alsoy/’ (x) := Wh(x)|q) belongs ta2 P. Setting

A(la)) = [a), we thus find\ () = A(Wola)) = AW *A(ID) = Ghlay =&/

“Actually, Jx is the only normalized positive-definite trace and Cm*ealgebraﬁ?\is simple if @ is quite irrational,
i.e. if the lattice/Ag generated by its columns is such theg + Z" is dense inR" (see e.g. [12], p. 537-538). The
C*-algebraﬁ/&”\ admits a faithful representatiop® : X %(ﬁ) in terms of bounded operators acting df\B,

defined bypP (f) = f@ forany f € 27, € AP If o € 7% s cyclic and separating then the Tomita involution is
just the extension of to ##PB. 7P can be recovered also by the GNS construction with st#ef) := (i, f o) =

Jx (f*yo)ys; that the integrand is a periodic function follows froﬁjﬁ\g being aZ -bimodule, A*l(fAtllo) = fxp and
(4.19). More explicitly, one easily find? (M) = [, €™ i, (x), wherepin(X) == Yo (x— 3 6m) wg(x)e"gme“. When

o _ 1 — 1 _ 1 _ . . .
V=1 yp= T e, p(f)= fof = fp, and this reduces to the GNS construction of the Hilbert epac

completion ofZ .
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Appendix: Proof of the first equality in (4.19)

( ) LZ]/* /dnk dnhlll ( ) —Ih Xelkx ) an Cjnh‘l’( )III( )e'(k h)- X——k‘9h
= dnkfg(k)e'k'x f'e(k) — /d”h@(h)lll(k+h)e‘lzkt9h.
R" RN

In the third equality we have shifted the integration valkadnd used the antisymmetry 8f We
choose &-dependentq €]0, 1) family of functlonsx,s € . with the property thaj, (k) = 1 for
K| < £/2 andy (k) = 0 for |k| > 0. As fg € 2 is such thatf (k) = 5 mezn fm 8™ (k—m), we find

foo = Jrerd"k o (k) Xe (K),

forall € €]0,1[. Hence  fgg =limg|g fd”kfg(k) e(K) = fd”kf( K) Xe(K) = fo,
wheref (k) := fa_o(k) = [pidh@(h)P(k+h) = 5, f; 3™(k—1). This and (4.18) imply (4.19).
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