
P
o
S
(
C
N
C
F
G
2
0
1
0
)
0
1
9

Two Aspects of M-(brane) theory

Jens Hoppe∗

Sogang University
E-mail: hoppe@sogang.ac.kr

The Reconstruction Algebra of [3] is quantized, and a novel approach to Quantum M-branes
presented.

Corfu Summer Institute on Elementary Particles and Physics - Workshop on Non Commutative Field
Theory and Gravity,
September 8-12, 2010
Corfu Greece

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:hoppe@sogang.ac.kr


P
o
S
(
C
N
C
F
G
2
0
1
0
)
0
1
9

Two Aspects of M-(brane) theory Jens Hoppe

The attempt to quantize Relativistic M(em)branes (M-dimensional extended objects in D-
dimensional space-time) is intimately related to non-commutative field theory and gravity. The
fuzzy sphere was invented in this context (cp. [1]), and the hope of including gravity is reflected
from many points of view (e.g. [2]). Here I would like to report on 2 topics relevant to this en-
davour, namely

A) Quantum Reconstruction Algebras

In a recent paper [3] it was found that the reconstruction [4] of the coordinate which disappears in
the light cone description of relativistic extended objects,

ζ (ϕ) = ζ0 +
1
η

∫
G(ϕ, ϕ̃)∇̃a(

−→p
ρ

∇̃a
−→x )(ϕ̃)ρ(ϕ̃)dM

ϕ̃ (1)∫
G(ϕ, ϕ̃)ρ(ϕ)dM

ϕ = 0, 4̃G(ϕ, ϕ̃) =
δ (ϕ, ϕ̃)

ρ
−1,

leads to higher-dimensional generalisations of the Witt-Virasoro algebra, when considering the
(classical or quantum) commutation relations of the field ζ at different points ϕ of the parameter
manifold ΣM (modulo volume-preserving diffeomorphisms);

Namely

[Lα ,Lα ′ ] = e[α,α ′]εLε (2)

where

eαβγ :=
µβ −µγ

µα

∫
ΣM

YαYβYγρdM
ϕ =:

µβ −µγ

µα

dαβγ (3)

with Yα , resp. −µα (α = 1,2, . . .), being the (non-constant) eigenfunctions, resp (negative) eigen-
values of the Laplacian on ΣM,4= 1

ρ
∂aρhab∂b,

√
dethab = ρ.

In [3] it was shown that (modulo volume-preserving diffeomorphisms)

ηζα := η

∫
Yαζ (ϕ)ρdM

ϕ, α = 1,2, . . . (4)

form a representation of (2), with [ , ] being the classical Poisson bracket. Rewriting (1) as

ζ = ζ0 +
1

2η
(
−→p
ρ

−→x −
∫
−→p−→x )+

1
2η

∫
G(ϕ, ϕ̃)(

−→p
ρ
4−→x −−→x 4

−→p
ρ

)(ϕ̃)ρ(ϕ̃)dM
ϕ (5)

ζ̃α := 2ηζα −2−→P−→x α (6)

one finds that

[ζ̃α , ζ̃α ′ ] = 2e[α,α]ε ζ̃ε = (eαα ′ε − eα ′αε)ζ̃ε (7)
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and that ζ̃α can be written as

ζ̃α = D̃α + Ẽα := (dαβγ + eαβγ)−→x β
−→p γ (8)

Promoting the classical variables, x jβ and pkγ , to quantum operators satisfying

[x jβ , pkγ ] = iδ jkδβγ , (9)

it is not difficult to see that

ζ̂α :=
i
2
(Dα +Eα), 2Dα = dαβγ(−→xβ

−→p γ +−→pγ
−→x β ), Eα = eαβγ

−→xβ
−→p γ (10)

will form a representation of (7), with [ , ] the ordinary commutator of operators. Rather than lifting
the derivation given in [3] to one involving quantummechanical operators one can also formally
verify (7) by showing that

[Dα ,Dα ′ ] = i(−→x α
−→p α ′−−→x α ′−→p α) (11)

[Dα ,Eα ′ ]+ [Eα ,Dα ′ ] = 2ie[α,α ′]εDε (12)

[Eα ,Eα ′ ]≈ 2ie[α,α ′]εEε − i(−→xα
−→p α ′−−→xα ′−→p α). (13)

To obtain (11) one simply notes that

dαεγdα ′βε −dαβεdα ′εγ =−δαγδα ′β +δαβ δα ′γ (14)

due to the completeness-relation

∞

∑
α=1

Yα(ϕ)Yα(ϕ̃) =
δ (ϕ, ϕ̃)

ρ(ϕ)
−1. (15)

To obtain (12) one first obtains

2[Dα ,Eα ′ ] = i(dαεγeα ′βε −dαβεeα ′εγ)(−→x β
−→p γ +−→p γ

−→x β )

and then proves that

eαεβ dα ′εγ + eαεγdα ′εβ − eα ′εβ dαεγ − eα ′εγdαεβ (16)

= (eαα ′ε − eα ′αε)dεβγ ,

using

eαβγ =
1

µα

∫
Yα(Yβ4Yγ −Yγ4Yβ )ρdM

ϕ (17)

and (15).
The calculation leading to (2) in [3] then implies that ( modulo volume-preserving diffeomor-

phisms/topological terms)

eαεβ eα ′εγ − eα ′εβ eαεγ +δαβ δα ′γ −δαγδα ′β ≈ (eαα ′ε − eα ′αε)eεβγ (18)
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which proves (13).
For M = 2, an identity related to (18) has been derived in [5], using a completeness relation

that allows to write problematic terms involving

∑
ε

1
µε

∂aYε(ϕ)∂̃bYε(ϕ̃) (19)

(appearing also on the r.h.s. of (18)) in terms of harmonic vectorfields, and εaa′∂
a′Yεεbb′∂

b′Yε

(leading to terms proportional to the areapreserving diffeomorphism constraints), and δ (ϕ, ϕ̃).
Otherwise, the ‘trick’ is again to use (17) and (15), resp. to write

(eαεβ eα ′εγ − eα ′εβ eαεγ)µα µα ′

= (µ
2
ε + µβ µγ −µε(µβ + µγ))dαεβ dα ′εγ − (α ↔ α

′) (20)

=
∫

Yα4YεYβ

∫
Yα ′4YεYγ +

∫
YαYε4Yβ

∫
Yα ′Yε4Yγ

−
∫

Yα4YεYβ

∫
Yα ′Yε4Yγ −

∫
YαYε4Yβ

∫
Yα ′4YεYγ − (α ↔ α

′)

and use (15), after integrating by parts in order to have no derivative acting on Yε . Note that∫
(∇Yα∇Yβ )(∇Yα ′∇Yγ)− (α ↔ α ′) is equal to

∫
{Yα ,Yα ′}{Yβ ,Yγ} when M = 2, which has also

been observed in [5] (and probably in [6] as well).

B) Codimension 2 Quantum M-branes:

M-branes are known to have special descriptions and properties when the world volume swept out
has codimension 1 (cp. [7-12]). Here I would like to propose a route to quantizing M-branes when
the codimension is 2.

The internal (Mass)2 of membranes in D-dimensional Minkowski-space is known [1,13] to be,
in orthonormal light-cone gauge, equal to

M2 =
D−2

∑
i=1

∞

∑
α=1

piα piα +
1
2

gαβγgαβ ′γ ′~xβ ·~xβ ′~xγ ·~xγ ′ (21)

where

gαβγ :=
∫

Yα

(
∂Yβ

∂ϕ1

∂Yγ

∂ϕ2 −
∂Yβ

∂ϕ2

∂Yγ

∂ϕ1

)
d2

ϕ

are totally antisymmetric structure constants of the Lie-algebra of "area-preserving" (i.e. unit Ja-
cobian) diffeomorphisms. When D = 5, (21) can be written as

M2 =
∞

∑
α=1

~a†
α~aα (22)

where
a jα = ip jα +

1
2

gαβγε jklxkβ xlγ (23)

Motivated in parts by some classical structures observed in [7], Moncrief [8] (though for the codi-
mension one case) argued that (22) may be a good take-off for quantization.
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Note that, at least formally,

[ζ̂α ,a jβ ] = i(dαβγ + eαβγ)a jγ (24)

holds, and that
Ψ0(x) := e−

1
3 ε jklgαβγ x jα xkβ xlγ (25)

is (formally) annihilated by the quantization of (23) as well as ζ̂α . While the exponent in (25) for
the corresponding Matrix-theory is conventionally considered to take all real values - as pointed out
by V. Moncrief (years ago, in a discussion at the Albert Einstein Institute) - it is, with the geometric
interpretation of enclosed volume at hand, in the continuum theory extremely natural [8] to restrict
to strictly negative exponents by choosing a definite orientation.

Leaving for the moment unanswered the very interesting question whether (25) (resp. its
supersymmetric analogue) may actually be Lorentz-invariant, in particular annihilated by the cru-
cial mixed generator Mk− (cp. [14]), let me note that by diagonalizing the real-symmetric matrix
S(= RΛRT ) appearing in

[a jα ,a†
j′α ′ ] = 2ε j j′kgαα ′γxkγ =: 2S jα, j′α ′ , (26)

aJ = ∂J +
1
2

SJLxL,

one has
AK := RT

KJaJ = RT
KJ∂J +

1
2

λKRT
KJxJ (27)

For M = 1 (string in 4 Dimensions), S (hence R) are independent of x, so that

AJ = ∂̃J +λJ x̃J,

and J can be taken as ( j,n) while j = 1,2, n ∈ Z−{0}. The explicit formulae for D = 4 (M = 1)
are:

a j = ip j + ε jkx′k (28)

â jα :=
∫

Yα(ϕ)â j = ∂ jα + ε jkrαβ xkβ (29)

with

rαβ =
∫ 2π

0
YαY ′

β
dϕ (30)

[a jα ,a†
j′α ′ ] = 2ε j j′rαα ′ =: S jα, j′α ′ (31)

M2 = a†
JaJ

and a jαΨ0 = 0 would give
Ψ0 ∼ e−

1
2 ε j j′ rαα ′x jα x j′α ′ (32)

where the exponent, −1
2 xJSJJ′xJ′ =−1

2 x̃JλJ x̃J , is proportional to the area enclosed by the curve.
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