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QFT on QST

1. Introduction

At the time of the beautiful conference in Corfu, an extensive review on these and related topics
had already been completed, which now is published as [1]. I will then take the opportunity of the
present conference proceedings to complement that review with an explicit description of some
applications to quantum field theory [2, 3, 4, 5] on DFR quantum spacetime [2]. The presentation
is however self contained and addresses a possibly different audience. The second chapter partially
overlaps with [1], but contains more explicit equations. The third chapter contains a much more
detailed description of results about quantum field theory than [1]. For thesake of dissemination,
I will give explicit formulas in the Dirac notation, still favoured by many physicists. The reader
interested in mathematical rigour is referred to the original papers.

In this first introductory chapter, we will very briefly recall some basics about local quantum
field theory on the flat Minkowski spacetime in physical (i.e. 4) dimensions (section 1.1). Then we
will discuss motivations for introducing non commutative coordinates, and their interpretation: in
particular we will stress that they are NOT observables (section 1.2).

As for the comparison with other approaches to covariance, the interestedreader may find a
detailed discussion in [1].

1.1 A minimal account of local quantum field theory

Relativistic quantum field theory results from merging the quantum theory of observables with
the principle of locality: it is formulated in terms of operator fieldsA(x), which can be regarded
(up to idealisations) as sets of pointwise localised observables, labeled by the eventx at which they
are localised; equivalently as more or less generalised “functions” ofR

4.
Einstein causality amounts to require the commutativity of any two observable fieldsA(·), B(·)

at spacelike distances, namely[A(x+ a), B(x)] = 0 for everya spacelike.
There is a representationU(Λ, a) of the Poincaré group. Then a (scalar) operator fieldA(·) is

said covariant ifU(Λ, a)A(x)U(Λ, a)−1 = A(Λx + a). Covariance is required so that every ob-
servable which is at rest in given frame can be described by any other equivalent observer (passive
point of view); and also so that the measuring device can be displaced, rotated and boosted so to
be brought at rest with respect to any other equivalent observer (active point of view). A covariant
field, then, essentially describe a single device in all possible Lorentz frames.

For general reasons (spin-statistics theorem), possibly unobservablefields also must be al-
lowed for, which either commute or anticommute at spacelike distances; for these and related rea-
sons, covariance has to be generalised to multiplets of such fields. Here however we will confine
ourselves with a theory generated by a single covariant Bosonic field.

The pairwise commuting generatorsPµ of translations, defined byU(I, a) = eiaP , fulfil the
spectrum condition:P 0 > 0 andP 02 − |~P |2 > 0. In particularH = P 0 is the generator of
time translations=time evolution, and is called the Hamiltonian (with respect to the given Lorentz
frame).

The vacuum state|∅〉 is defined as the unique translation invariant state (if symmetries are not
spontaneously broken), thus fulfillingPµ|∅〉 = 0. If the theory is defined by a single fieldA(x),
any state|Ψ〉 can be approximated by linear combinations of states of the formA(x1) · · ·A(xk)|∅〉
(anyk).
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QFT on QST

By analogy with the Fock construction in the case of free fields, particles are usually told
to be “carried” by fields: the statistics of particles (Bose/Fermi) is usually related with the kind
of commutation rule at spacelike distance. Indeed a much deeper and gratifying understanding
of statistics as a property of charged sectors (instead of particle-carrying fields) is available (see
the review [6]); however we will not need such a theoretical deploymenthere, since we only will
be concerned with toy models involving the simplest case (neutral Klein-Gordon free theory and
perturbations).

Unfortunately, the free fields are the only known examples (in dimension 4) oftheories ful-
filling the above general requirements, and they only can describe a lifeless universe made of non
interacting particles.

A perturbative approach has been developed, where the interacting dynamics is compared with
the free dynamics, as an attempt to describe scattering experiments: incoming particles which are
free in the far past and far away from the interaction region interact at finite times, and produce
outgoing particles which are free and far away in the far future. The (formal) unitary operator
S which interpolates between the incoming and outgoing (asymptotic) free states iscalled theS
matrix. The perturbation series in powers of the coupling parameter is called the Dyson series.

This perturbative approach also is plagued by terrible problems; the formal equations defining
the matrix elements ofS are affected by all kinds of divergences, and even conceptual obstructions
to its existence (“Haag theorem”) can be devised. Notwithstanding that, a clever strategy (driven by
physical interpretation) for covariantly removing the most severe class ofdivergences (ultraviolet
divergences) has been devised, called renormalisation. A theory is called renormalisable if the
perturbation series forS can be made to converge, at the cost of introducing infinite recursive
subtractions depending from at most a small set of phenomenological parameters. Unfortunately
the only known renormalisable model for which some indications about the limitS can be obtained
seems to giveS = I, namely to converge to. . . a free theory.

Quite surprisingly, however, lowest order corrections in the perturbation theory of a physical
theory (quantum electrodynamics) give experimentally verified predictionsof incredible accuracy.

The interested reader will find more details on any standard textbook (e.g. [7]); the first two
chapters of Haag’s monograph [8] also provide a nice conceptual introduction, while the rest of the
book is devoted to a mathematically advanced introduction to local quantum physics.

1.2 Why should we quantise the coordinates?

Notwithstanding the lack of non trivial well defined models, even perturbative, it would be
way too much to dismiss the theory as a failure. The successful experimentalpredictions should
instead be regarded as a strong indication that the illness of the theory is dueto some conceptual
ingredient which is still missing.

The ultraviolet divergences ultimately are a consequence of a too strict assumption about lo-
cality: the divergent expressions arise from interaction terms which are polynomials in the fields
under the pointwise product. String theory arose as an attempt to replace points with less singular
geometric objects. However this solution remains in the realm of classical geometry, and did not
result as effective as it was hoped, so far.

The concept itself of space as a collection of infinitely small points dates backto Euclid and has
never been challenged. Indeed, even Einstein observed that, as a logical consequence of accepting
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quantum physics, a quantum description of geometry would be conceptuallynecessary. Apart from
this, if we take the Compton wavelengthλC(m) as the characteristic parameter driving the quantum
behaviour of a point particle of massm and the Schwarzschild radiusλC(m) as characteristic of
a pointwise source of gravitational field of massm, the conditionλS(m) ∼ λC(m) has solution
m ∼ mP , the Planck mass, andλS(mP ) ∼ λC(mP ) ∼ λP , whereλP ∼ 10−33cm is the Planck
length. This is a strong indication that quantum phenomena and gravitation cometo interplay at
the Planck scale, where the concept of point particle should be expectedto break down.

As a first attempt in the direction of concrete physical models, it was proposed in [2] to provide
a set of non commuting coordinatesqµ for the flat Minkowski spacetime, covariant under a unitary
representation of the Poincaré group, in order to replace the usual localisation of quantum fields.
The hope was to describe an intermediate model where the energy involved insingle processes
is sufficiently high to sense the quantum texture of spacetime; yet the density of processes is too
small to produce curvature. Here we only will describe the solution, while werefer to the original
paper or the less technical [9] for a derivation of the uncertainty and commutation relations. Earlier
attempts are shortly discussed in [1].

Precisely as the componentsxµ of the labelx of A(x) are not observables, we are not going to
interpret the selfadjoint operatorsqµ as observables. To fix the interpretation, let us first describe a
bit more precisely what happens in usual quantum field theory.

A localisation state on the classical spacetime may be described by a densityf(x) dx with
∫
f(x) dx = 1, so that the average of the observable fieldA(x) over the density gives the smeared

field A(f) =
∫
f(x)A(x) dx. A sharp localisation1 is obtained by a delta: ifδa(x)dx = δ(x −

a)dx, thenA(δa) is the sharp localisation of the fieldA(x) at a. We are led to think ofx as of a
set of coordinate functions, off as a localisation state, and of the pointa as of a particular kind of
localisation states.

In the case of quantum coordinatesqµ, localisation states will be described by density matrices
ρ, giving the expectation〈qµ〉ρ = Tr(ρqµ). Vector states are a special cases whereρ is of the form
|ξ〉〈ξ|. To avoid confusion, we anticipate that there will not be a direct correspondence between
classical sharp localisation states and quantum vector states.

Let A(x) be a quantum field on classical spacetime, taking values in the operators on some
Hilbert spaceH; its DFR quantisation is the replacement of the classical coordinate functionsxµ

with the quantum coordinate operatorsqµ on the Hilbert spaceK, using a natural covariant gener-
alisation of the Weyl prescription. IfA(x) =

∫

R4

dk Ǎ(k)eikx , then

A(q) =

∫

R4

dk Ǎ(k)⊗ eikq

as operators onH ⊗ K, wherekx = kµx
µ andkq = kµq

µ. States on the second tensor factor
of H ⊗ K describe a choice of the “localisation” of the field; then for any such choice we get an
observable, whose physical states live in the first tensor factor. In other words, the expectation
functional〈·〉ρ, acting on the second tensor factor only, plays the same role as the densityf(x) dx:

1We will not concern ourselves here with the underlying technicalities (fieldsshould be treated as generalised
functions), since they are not relevant here.
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by analogy with the case of classical spacetime, we may introduce the notationA(〈·〉ρ) for the
partial expectation〈A(q)〉ρ; then by linearity

A(〈·〉ρ) =
∫

R4

dk Ǎ(k)〈eikq〉ρ = A(fρ), (1.1a)

where

fρ(x) = (2π)−4

∫

dk e−ikx〈eikq〉ρ. (1.1b)

It seems that the only effect of DFR quantisation is to select a certain subclass of test functions
fρ for the usual quantum fields. Indeed, the effect of quantisation manifests itself when products
of fields are considered, as

(AB)(q) 6= A(q)B(q).

Hence, interaction Lagrangians—which are usually defined in terms of local polynomials in the
fields—have non trivial generalisations to DFR quantum spacetime.

It has to be stressed that, as far as the time componentx0 of classical localisation in quantum
field theory has no interpretation as a time observable, so is for its quantum counterpartq0.

2. Covariant Quantum Geometry

2.1 The DFR quantum coordinates

Consider the operatorsPj = −i∂j , Qj = sj · onL2(R4), j = 1, 2, 3, 4, which fulfil PjQk −
QkPj = −iδjk. We then introduce the notationsX0 = P1, X

1 = P2, X
2 = Q1, X

3 = Q2.
Finally, we set

K = L2(L , dΛ)⊗ L2(R2, ds1ds2ds3ds4),

wheredΛ is the Haar measure of the Lorentz groupL . As usual, we associate to it a complete set
of generalised kets

|Λ〉|s〉, Λ ∈ L , s = (s1, s2, s3, s4) ∈ R
4,

with bracket

{〈Λ|〈s|}{|Λ′〉|s′〉} = 〈Λ|Λ′〉〈s|s′〉 = δ(Λ−1Λ′)δ(4)(s1 − s′1),

where integrals are taken with the measuredΛds and δ(Λ)dΛ is the purely atomic normalised
measure onL , concentrated onI.

We define the operatorsqµ by their actions on the kets|Λ〉|ξ〉:

qµ|Λ〉|ξ〉 = λP |Λ〉{Λµ
νX

ν |ξ〉}. (2.1)

We may easily check that the operatorsQµν defined by

[qµ, qν ] = iλ2
PQ

µν

are simultaneously diagonalised by the kets|Λ〉|s〉:

Qµν |Λ〉|s〉 = σ(Λ)µν |Λ〉|s〉,

5
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where

σ(I) =








0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0








, (2.2a)

and

σ(Λ)µν = Λµ
µ′Λν

ν′σ(I)
µ′ν′ . (2.2b)

Moreover, by construction

[qµ, Qµν ] = 0. (2.3)

We have a unitary representationU(·, 0) of the Lorentz group

U(Λ, 0)|M〉|s〉 = |ΛM〉|s〉;

it fulfils

U(Λ, 0)−1qµU(Λ, 0) = Λµ
νq

ν ,

U(Λ, 0)−1QµνU(Λ, 0) = Λµ
µ′Λµ

µ′Qµ′ν′ .

Note that, sinceσ(Λ)µνσ(Λ)
µν = σ(I)µνσ(I)

µν = 0 is a Lorentz invariant, we haveQµνQµν |Λ〉|ξ〉 =
0 identically and thus

QµνQ
µν = 0. (2.4a)

Analogously,

Qµν(∗Q)µν = ±4 (2.4b)

where(∗Q)µν = (1/2)ǫµνµ
′ν′Qµ′ν′ .

We finally make use of the remaining Schrödinger operators to construct therepresentation of
translations. We first define

Π0 = Q1 +Q3, Π1 = −Q2 −Q4, Π2 = P1 − P3, Π3 = P2 − P4,

which fulfil [Πµ,Πν ] = 0 and

[Πµ, Xν ] = igµν .

Then we define

pµ{|Λ〉|ξ〉} = |Λ〉{Λµ
νΠ

ν |ξ〉}

which fulfil

[pµ, pν ] = 0, [pµ, qν ] = igµν .

It follows that

U(Λ, a) = eiapU(Λ, 0)

fulfils

U(I, 0) = I, U(Λa)U(M, b) = U(ΛM, a+ Λb)

6



P
o
S
(
C
N
C
F
G
2
0
1
0
)
0
2
7

QFT on QST

and

U(Λ, a)−1qµU(Λ, a) = Λµ
νq

ν + aν , (2.5)

U(Λ, a)−1QµνU(Λ, a) = Λµ
µ′Λµ

µ′Qµ′ν′ . (2.6)

Neither the coordinatesqµ nor the generators of translationspµ have an interpretation as ob-
servables here. We are not aiming at a “more non commutative” quantum mechanics, but at a
noncommutative localisation framework for quantum fields.

2.2 States, uncertainties and optimal localisation

The operatorsqµ on K generate all possible localisations through the choice of localisation
states, namely expectation functionals of the form〈·〉ρ = Tr(ρ·) for some positive operatorρ with
Tr(ρ) = 1 (a density matrix). Such a state describes fuzzy localisation around the point a ∈ R

4

given byaµ = 〈qµ〉ρ, with variance∆ρ(q
µ)2 = 〈(qµ − 〈qµ〉ρ)2〉ρ.

By Heisenberg–like arguments, it can be proved that the uncertainties∆ρ(q
µ) fulfil the bounds2

∆ρ(q
0)(∆ρ(q

1) + ∆ρ(q
2) + ∆ρ(q

3)) > λ2
P , (2.7)

∆ρ(q
1)∆ρ(q

2) + ∆ρ(q
2)∆ρ(q

3) + ∆ρ(q
3)∆ρ(q

1) > λ2
P . (2.8)

The proof can be found in [2].
In the classical case, localisation states arise as probability densitiesf(x)dx onR4. Points cor-

respond to sharp densitiesδa(x) = δ(x−a)dx. Sincef ’s may be rewritten asf(·) =
∫
da f(a)δa(·),

they can be thought of as convex linear combinations ofδa’s (up to taking limits of integral sums).
Hence probability densities are the classical analogues of statistical mixturesand sharp densities
are the analogues of pure states.

Since however the set of operatorsqµ is not irreducible (by Schur’s lemma: the commutators
[qµ, qν ] are not multiples of the identity), the usual identification of statistical mixtures with non
trivial density matrices, and of pure states with vector states, breaks down: there are indeed vector
states which are not pure! The pure states are those described by thoseparticular vector states,
which are of the form|Λ〉|ξ〉, namely they must in particular be eigenkets of the commutators
[qµ, qν ].

In view of the large scale limit, one would like to have a notion of states with the bestpossible
localisation properties; then these states could be used to define interactionswith the smallest pos-
sible deviations from usual locality. Indeed, an important condition is that theusual local quantum
theory should appear as a limiting case of the new theory (large scale limit).

A moment’s though, however, shows that this is impossible, at least in such naive terms.
Because of the uncertainty relations, states are extended objects in some sense, and as such they
always can be delocalised at wish by suitable Lorentz boosts. No such notion as a covariant class
of states with optimal localisation can be devised. This is the fundamental reason why all more or
less trivial generalisations of local interactions have led to break Lorentzcovariance so far. It can
be regarded as an indication that the noncommutative notion which should give locality in the large
scale limit is non trivial and still missing.

2There is no reason to expect such bounds to be form–covariant: indeed the uncertainty∆ρ is not linear in its
argument, so that∆ρ(Λ

µ
νq

ν) 6= Λµ
ν∆ρ(q

ν)) in general.

7
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The best one can do is to define well localised states with respect to some choice of a class
of reference frames which are pairwise related by a Galilei transformation(no Lorentz boosts). A
suitable criterion, then, is to select those statesρ which minimise

∑

µ∆ρ(q
µ)2. It is clear that these

states are essentially given in terms of the coherent states of the Schrödinger operatorsXµ used in
the construction of the coordinate operators.

Consider first a state of the form|I〉|η0〉 where|η0〉 is the normalised ground state of the har-
monic oscillator for the Schrödinger operators3; then the sum of the squares of the corresponding
uncertainties attains the minimum

∑

µ

∆(qµ)2 = λ2
P

∑

µ

∆(Xµ)2 = λ2
P

(
∆(Q1)

2 +∆(Q2)
2 +∆(P1)

2 +∆(P 2)2
)
= λ2

P ;

a state with these properties is said an optimal localisation state. Note that in the states described
here above, the coordinates have expectation0, so that∆(qµ) equals the expectation ofqµ2 in such
states.

Next, we consider the state|R〉|η0〉 whereR ∈ O(3) ⊂ L . For such a state, the coordinates
still have expectation in the origin, and

{〈R|〈η0|}
∑

µ(q
µ)2{|R〉|η0〉}

{〈R|〈η0|}{|R〉|η0〉}
= λ2

P 〈η0|
∑

µ

Rµ
νX

ν2|η0〉 = λ2
P 〈η0|

∑

µ

Xµ2|η0〉 = λ2
P ;

we used thatR is orthogonal and that
∑

µX
µ2 = 2H0 whereH0 = 1

2(P
2
1 + P 2

2 +Q2
1 +Q2

2). So
we still find the ground state of the harmonic oscillator. It follows that|R〉|ηa〉 also is an optimal
localisation state, with expectation in the origin.

Finally for everya ∈ R
4 and anyR ∈ O(3) ⊂ L we define|ηa〉 by setting|R〉|ηa〉 =

U(I, a)|R〉|η0〉; by unitarity,|R〉|ηa〉 is an optimal localisation state, but nowq is expected ata.
Indeed, it can be shown (see [2]) that the states described above andtheir superpositions (with

samea) are precisely all the possible optimal localisation states. We have

{〈R|〈ηa|}eikq{|R〉|ηa〉} = eikae−
1
2
λ2
P

∑
µ(k

µ)2 . (2.9)

2.3 Independent localisation events

The standard way of constructing the coordinatesqµj of independent events is via tensor prod-
ucts, taking

qµj = I ⊗ · · · ⊗ I ⊗ qµ ⊗ I ⊗ · · · ⊗ I (qµ in thejth position),

so that the commutation relations are of the form

[qµj , q
ν
k ] = iδjkλ

2
PQ

µν
j . (2.10)

If we take the usual definition of tensor product, we get

Qµν
j = I ⊗ · · · ⊗Qµν ⊗ · · · ⊗ I (Qµν in thejth position).

3Actually, we should add a degeneration labelκ and write|η0, κ〉; since however this degeneracy is only an artefact
of the amplification which is used to implement translations, we shall omit the label κ.
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However, again due to the reducibility of the set{qµ} of operators, a different construction
which also deserves the name of tensor product is possible, for which thecommutators fulfil

Qµν
1 = Qµν

2 = · · · (2.11)

and thej dependence ofQµν in (2.10) can be dropped [3]. The idea is to define the direct product
of kets “pointwise inΛ”:

{|Λ〉|ξ1〉}{|Λ〉|ξ2〉} · · · {|Λ〉|ξn〉} = |Λ〉|ξ1〉|ξ2〉 · · · |ξn〉

These kets span the Hilbert spaceL2(L )⊗L2(R4)⊗· · ·⊗L2(R4) (usual direct product). On such
kets, we define the operator

Fj |Λ〉|ξ1〉|ξ2〉 · · · |ξn〉 = |Λ〉|ξj〉|ξ1〉|ξ2〉 · · · |ξj−1〉|ξj+1〉 · · · |ξn〉,

which exchange|ξ1〉 with |ξj〉. Finally, accordingly with the new definition of direct product,

qµ1 |Λ〉|ξ1〉|ξ2〉 · · · |ξn〉 = {qµ|Λ〉|ξ1〉}〉|ξ2〉 · · · |ξn〉, (2.12)

qµj = Fjq
µFj , (2.13)

which are easily checked to have the desired properties.
Both choices of⊗ give covariant coordinates. In particular for the construction described

above—which we will adopt from now on—the representation of the Poincaré group is

U(Λ, 0)|M〉|ξ1〉|ξ2〉 · · · |ξn〉 = |ΛM〉|ξ1〉|ξ2〉 · · · |ξn〉,

and
U(Λ, a)−1qµj U(Λ, a) = Λµ

νq
ν
j + aµ. (2.14)

2.4 How close can independent events come to?

One reason why the direct product “taken pointwise overΛ” is preferable when constructing
the coordinates of many independent events is that it leads to a natural generalisation of the classical
concept of localising independent events at the same point [3]. This canbe used for example
when a functionf(x1, x2, . . . , xn) of n events is evaluated on the diagonal set, giving a function
g(x) = f(x, x, . . . , x) of one event only.

Define the operator

q̄µ =
1√
n
(qµ1 + · · ·+ qµn).

As a consequence of (2.11),
[q̄µ, qνj − qνk ] = 0,

namelyq̄µ is statistically independent from the differences of any two events (this would not be the
case if the ordinary construction of the direct product were taken instead).

Note then that everyqµj can be written as a linear combination ofq̄µ and the differencesqµj −qµk :

qµj =
1√
n
q̄µ +

1

n

∑

k

(qµj − qµk ).

9
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The above remarks suggest to consider a different realisation of the same commutation rela-
tions, using one more tensor factor.

We define

q̃µj =
1√
n
qµ ⊗ I ⊗ · · · ⊗ I

︸ ︷︷ ︸

n factors

+
1

n

∑

k

I ⊗ (qµj − qµk ). (2.15)

as operators onK⊗ · · · ⊗ K
︸ ︷︷ ︸

n+ 1 factors

(direct products taken “pointwise inΛ”). It is clear by construction

that

[q̃µj , q̃
ν
k ] = iλ2

P δjkQ
µν ,

whereI ⊗Qµν is identified withQµν according to (2.11). Moreover the average coordinate is

1

n

∑

j

q̃j =
1√
n
qµ ⊗ I ⊗ · · · ⊗ I

︸ ︷︷ ︸

n factors

,

which commutes with thẽqµj ’s.

The unitary representation

Ũ(Λ, a) = U(Λ, a)⊗ · · · ⊗ U(Λ, a)
︸ ︷︷ ︸

n+ 1 factors

fulfils

Ũ(Λ, a)−1q̃µj Ũ(Λ, a) = Λµ
ν q̃

ν
j + aµ.

We now want to set all differencẽqj − q̃k to thei minimum value at once, compatibly with the
uncertainty relations.

Before giving the general construction, we first discuss an easier, less general construction,
which allows to highlight the main point.

We choose a state|R〉|ηa〉 with optimal localisation, as discussed in section 2.3; hereR is an
element ofO(3) ⊂ L andηa is a coherent state.

Observe now that the direct product|Ψ〉 of n copies of this state gives, with our particular
definition of direct product,

|Ψ〉 = {|R〉|ηa〉} · · · {|R〉|ηa〉}
︸ ︷︷ ︸

n factors

= |R〉 |ηa〉|ηa〉 · · · |ηa〉
︸ ︷︷ ︸

n factors

.

We can use it to define a partial expectation on the lastn tensor factor.

The components of the separation

δjkq̃
µ =

q̃µj − q̃µk√
2

between two independent events still fulfil the same relations as the coordinates themselves:

[δjkq̃
µ, δjkq̃

ν ] = iλ2
PQ

µν .

10
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Moreover, the partial expectation over the state|Ψ〉 (acting on the lastn tensor factors) gives

〈Ψ|δjkq̃µ|Ψ〉 = 0,
∑

µ

∆(δjkq̃
µ)2 =

∑

µ

〈Ψ|(δjkq̃µ)2|Ψ〉 = λ2
P ,

and the latter is precisely the property selecting the states with optimal localisation;note that, as
expected, the choice ofa is irrelevant. Hence we may say that this partial expectation has the effect
of setting the differencesδq̃jk as close to zero as possible, compatibly with the uncertainty relations.
We regard this as a quantum generalisation of the classical operation of setting x1 = x2 = . . ..

This is almost what we want; the only problem is that there is no need to restrictto a particular
joint eigenspace of theQµν ’s, namely the one corresponding to the projection on|R〉. It is suf-
ficient to restrict to the sum of all joint eigenspaces of theQµν ’s which correspond to orthogonal
transformations.

To do this, we split the above operation in two steps. We first define the orthogonal projection
E which sends|Λ〉|ξ1〉|ξ2〉 · · · |ξn〉 to 0 if Λ contains a Lorentz boost, and leaves it unchanged
otherwise. We have

[q̃µj , E],

[Ũ(R, a), E] = 0, R ∈ O(3), a ∈ R
4.

In other words,E is the biggest possible projection which commutes with allqµj ’s and is stable
under orthogonal transformations. We then restrict our coordinatesq̃µj to operators acting on the
rangeL2(O(3)) ⊗ L2(R4(n+1)) of E, and afterwards we take the partial expectation on the state
|ηa〉 · · · |ηa〉 (n factors) acting on the lastn direct factors. The resulting mapE has its range in the
operators onL2(O(3))⊗ L2(R4), and has the following properties:

E[δjkq̃
µ] = 0, (2.16)

E[eikµδjk q̃
µ

] = e−λ2
P

1
2

∑
µ(k

µ)2 (2.17)

as multiples of the identity operator.
Moreover

E

[
q̃µ1 + · · ·+ q̃µn

n

]

|R〉|ξ〉 = λP√
n
|R〉{Rµ

νX
ν |ξ〉},

which defines new operators

q̇µ = E

[
q1 + · · ·+ qn

n

]

(2.18)

onL2(O(3))⊗ L2(R4) with the nice property that the corresponding commutators

[q̇µ, q̇ν ] = i

(
λP√
n

)2

Q̇µν

induce the same uncertainty relations of the initial coordinates, but with the Planck length scaled
by

√
n. This is precisely what one would expect of the statistical behaviour of a mean of inde-

pendent stochastic variables. In the largen limit, the average coordinate of many events becomes
deterministic.

11
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Note that the coordinateṡqµ are covariant under orthogonal transformations and translations:

U̇(R, a)−1q̇µU̇(R, a) = Rµ
ν q̇

ν + aµ, R ∈ O(3) ⊂ L , a ∈ R
4, (2.19a)

where the representatioṅU(R, a) is obtained by restricting each unitary operatorU(R, a) toL2(O(3))⊗
L2(R4).

Finally, the mapE is covariant in the sense that

U̇(R, a)−1
E[ · ]U̇(R, a) = E[Ũ(R, a)−1 · Ũ(R, a)], R ∈ O(3) ⊂ L , a ∈ R

4. (2.19b)

We will use this map to define a quantum generalisation of the Wick product in section 3.5,
where we will need the explicit form ofE[ei

∑
j kjqj ] which we will now compute.

We first mapei
∑

j kjqj (which acts on kets of the form|Λ〉|ξ1〉 · · · |ξn〉), into ei
∑

j kj q̃j (which
acts on kets of the form|Λ〉|ξ〉|ξ1〉 · · · |ξn〉).

We observe that

∑

j

kj q̃j =




1√
n

∑

j

kj



 q ⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

n factors

+ I ⊗
∑

j

(

kj −
1

n

∑

l

kl)ql

)

.

acting on|R〉|ξ〉|ξ1〉 · · · |ξn〉. It follows that

ei
∑

j kj q̃j =

(

e
i√
n

(∑
j kj

)
q

)

⊗
(

ei
∑

j(kj−
1
n

∑
l kl)ql

)

.

where the direct product is taken “pontwise inΛ”.
Now we restrict to the range of the projectionE. We do that simply by restricting ourselves

from now on to kets|R〉 with R ∈ O(3) ⊂ L .
We take the partial expectation ofei

∑
j kj q̃j (restricted to the range ofE) over the lastn factors,

using a state|η0〉 · · · |η0〉 whereη0 is the ground state of the harmonic oscillator: this gives

E[ei
∑

j kjqj ] = ei
∑

j kj q̇{〈η0| · · · 〈η0|
︸ ︷︷ ︸

n factors

}
∑

j

(

kj −
1

n

∑

l

kl

)

ql{|η0〉 · · · |η0〉
︸ ︷︷ ︸

n factors

} =

= e−λ2
P

1
2(

∑
j |kj |

2−
∑

jl kj ·kl)ei
∑

j kj q̇ (2.20)

whereh · k =
∑3

µ=0 k
µhµ, |k|2 =

√
k · k, and we recall thaṫqµ is the restriction ofqµ/

√
n to

L2(O(3))⊗ L2(R4).

2.5 Distance, area and volume operators

In the framework of the universal differential calculus of [10], we maydefine the differential
of coordinates as

dqµ = qµ ⊗ I − I ⊗ qµ. (2.21)

This provides another reason why the construction of⊗ which we used in section 2.3 is preferable:
if it is used in the definition ofd, thendQµν = 0, which is compatible with the interpretation of
Qµν as an independent background.

12
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If the universal calculus is used alone, the realisation of the commutation relations by operators
on the Hilbert space plays little role. An interesting way of making the differential calculus to
interplay with operator products is to use the operator product instead of the tensor product when
multiplying differentials with each other [11], e.g.

dqµ · dqν = (qµ ⊗ I − I ⊗ qµ) · (qν ⊗ I − I ⊗ qν) =

= qµ ⊗ qν ⊗ I − qµ ⊗ I ⊗ qν − I ⊗ qµqν ⊗ I + I ⊗ qµ ⊗ qν .

So the product of two differentials is a combination of products of operatorliving on the 3-fold
tensor product of the one–event state space; which is consistent with theinterpretation ofdq as a
“segment” with two extreme events, the product of two differentials describing the “join” of two
such “segments” at the same event.

In particular, a very simple generalisation of the usual definitions of area and 3- and 4-volume
operators can be given [11]. For example, the 4-volume operator is defined as

V = ǫµνρσdq
µ · dqν · dqρ · dqσ, (2.22)

which lives in the 5-fold tensor product, and indeed one needs five events to give a hypercube in
four dimensions.

The resulting operator is not selfadjoint, as a consequence of the commutators which show up
when exchanging the order of the “vertexes”. Quite unexpectedly,V is normal, namelyV V ∗ =

V ∗V . The phase operator appearing in the polar decomposition of the 4-volume operator can be
regarded as a quantum generalisation of the sign describing the orientation.

The 4-volume operator is very complicated; yet its spectrum can be computedand is found to
be{(n

√
5± 2 + ia)λ4

P : n ∈ Z, a ∈ R}. In particular the absolute value of the 4-volume operator
is bounded below by(

√
5 − 2)λ4

P ≈ .23λ4
P . We refer to the original paper [11] for the details of

the computation.

2.6 The⋆-product

Let

Σ = {σ(Λ) : Λ ∈ L }, (2.23)

according to the notation (2.2).

Provided that the integrals exist, we may associate to each complex functionf(σ;x) of Σ×R
4

the operator

f(Q; q){|Λ〉|ξ〉} = |Λ〉
{∫

dkf̌(σ(Λ); k)eiλP (ΛX)k|ξ〉
}

=

= |Λ〉
{∫

dkf̌(σ(Λ); k)eiλPX(Λ−1k)|ξ〉
}

, (2.24)

where the Fourier transformation acts onf(σ; ·) for everyσ fixed. Note that, iff does not depend
explicitly on σ, the above is simply

∫
dk f̌(k)eikq; if, otherwise,f does not depend explicitly on

x, the above is the usual functionf(Q) of the sixteen pairwise commuting operatorsQµν .

13



P
o
S
(
C
N
C
F
G
2
0
1
0
)
0
2
7

QFT on QST

Now we consider the product of two such operators

f(Q; q)g(Q; q){|Λ〉|ξ〉} =

= |Λ〉
{∫

dh dkf̌(σ(Λ);h)ǧ(σ(Λ); k)eiλPX(Λ−1h)eiλPX(Λ−1k)|ξ〉
}

(2.25)

By definition the operatorsXµ (defined at the beginning of section 2.1) fulfil the commutation
relations[Xµ, Xν ] = σ(I)µν , whereσ(I) is given by (2.2a). The BCH formula implies

eiλP hXeiλP kX = e−
i
2
λ2
P σ(I)µνhνkνei(h+k)X ;

substituting this in (2.25), we get

f(Q; q)g(Q; q){|Λ〉|ξ〉} = |Λ〉
{∫

dh dk(f̌×̃ǧ)(σ(Λ); k)eiλP kX)|ξ〉
}

, (2.26)

where

(f̌×̃ǧ)(σ; k) =

∫

dhf̌(λ2
Pσ;h)ǧ(λ

2
Pσ; k − h)e−

i
2
λ2
P σµνhνkν , (2.27)

and antisymmetry ofσ has been used.

Defining now

(f ⋆ g)(σ;x) =

∫

dk(f̌×̃ǧ)(σ; k)eikx, (2.28)

we get

f(Q; q)g(Q; q) = (f ⋆ g)(Q; q). (2.29)

Note that, even in the case whenf andg do not explicitly depend onσ, their⋆-product does.

For the explicit expression of⋆ and its (complicate) relationship with the Moyal expansion,
see [1]. The⋆-product here only plays an ancillary role. Its only use in this paper is the following.
To everyf(Q; q) andt ∈ R we can associate the operator

∫

x0=t

d3x f(Q;x)

onL2(L ) whose action is

∫

x0=t

d3x f(Q;x)|Λ〉 =
∫

x0=t

d3x f(σ(Λ);x)|Λ〉.

This map is positive, in the sense that it mapsf(Q; q)∗f(Q; q) (which is a positive operator) to
another positive operator (see [2, Sec. 5] for the proof). We only willneed the⋆-product in the
case of operators of the formf1(Q; q) · · · fn(Q; q) = (f1 ⋆ · · · ⋆ fn)(Q; q), which the above map
sends into

∫

x0=t
(f1 ⋆ · · · ⋆ fn)(Q;x).

14
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3. Quantum Field Theory on Quantum Spacetime

3.1 The Klein–Gordon field on classical spacetime

To fix the notations, we briefly recall the standard definition of the massive free scalar spin 0
field (see any standard textbook, e.g. [7]).

We establish a Dirac bracket notation which defines the (Fock) Hilbert spaceH. The complete
system of kets

|∅〉, n = 0,

|~k1, . . . ,~kn〉, n = 1, 2, . . . , ~kj ∈ R
3

fulfils the normalisation condition

〈~h1,~h2 . . . ,~hm|~k1,~k2, . . . ,~kn〉 =

=
δnm
n!

∑

π

δ(3)(~h1 − ~kπ1)δ
(3)(~h2 − ~kπ2) · · · δ(3)(~hn − ~kπn), (3.1)

where the sum runs over all permutationsπ of (1, . . . , n), and theδ(3)’s are defined with re-
spect to the usual translation invariant measured3k on R

3. In particular for any suchπ we have
|~k1, . . . ,~kn〉 = |~kπ1 , . . . ,

~kπn〉. The ket|∅〉 is called the vacuum state.
The creation and annihilation operators

a†(~k)|~k1, . . . ,~kn〉 =
√
n+ 1|~k,~k1, . . . ,~kn〉, (3.2a)

a(~k)|~k1, . . . ,~kn〉 =
√

1

n

∑

j

δ(3)(k − kj)|~k1, . . . ,~kj−1,~kj+1, . . . ,~kn〉 (3.2b)

fulfil

a†(k) = a(k)∗, (3.3a)

[a(~h), a†(~k)] = δ(3)(~h− ~k), (3.3b)

[a(~h), a(~k)] = [a†(~h), a†(~k)] = 0, (3.3c)

a(~k)|∅〉 = 0. (3.3d)

The scalar Klein-Gordon field is defined as

ϕ(x) =

∫

R4

d4k ϕ̌(k)eikx (3.4a)

where

ϕ̌(k0,~k) =

√

2|k0|
(2π)3

δ(k2 −m2){θ(−k0)a(−~k) + θ(k0)a†(~k)}. (3.4b)

Note that to each 3-vector~k there is a unique 4-vector̃k belonging to the upper mass shell (namely
fulfilling k0 > 0 andk2 = k0

2 − |~k|2 = m2). Explicitly, k̃ = (ωm(~k),~k), whereωm(~k) =
√

m2 + |~k|2.
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Since�eikx = −k2eikx (where� = ∂µ∂
µ), we have

(�+m2)ϕ = 0 (3.5)

There is a representationU (Λ, a) of the restricted Poincaré groupP↑
+ (where only Lorentz

transformations preserving the arrow of time and the orientation of space are allowed) by unitary
operators onH: its action is

U (Λ, a)|∅〉 = |∅〉, (3.6a)

U (Λ, a)|~k1, . . . ,~kn〉 = ei(
∑

j Λk̃j)a|
−−→
Λk̃1,

−−→
Λk̃2, . . . ,

−−→
Λk̃n〉. (3.6b)

The notation is a bit involved, let us describe what happens: we start from a 3-vector~k, we construct
the corresponding on-shell 4-vectork̃, we apply to it the Lorentz transformationΛ giving the 4-

vectorΛk̃, whose space part is
−−→
Λk̃ . Note that, sinceΛ preserves the time arrow,Λk̃ is in the upper

mass shell, too.
By construction,

U (Λ, a)a†(~k)U (Λ, a)−1 = ei(Λk̃)aa†
(−→
Λk̃
)

.

It follows that4

U (Λ, a)ϕ̌(k)U (Λ, a)−1 = ei(Λk)aϕ̌(Λk), (3.7a)

U (Λ, a)ϕ(x)U (Λ, a)−1 = ϕ(Λx+ a)), (3.7b)

(3.7c)

where(Λ, a) ∈ P
↑
+.

The spectrum condition holds, namely the generatorsPµ of translations defined byU (I, a) =

eiaP fulfil PµP
µ > 0 andP 0 > 0. In particular we havePµ|∅〉 = 0 and

Pµ|~k1, . . . ,~kn〉 =
∑

j

k̃µj |~k1, . . . ,~kn〉; (3.8)

note that any finite sum
∑

j k̃
µ
j is contained in the convex hull of the upper mass shell of massm.

It is noteworthy for our purposes that the HamiltonianH0 = P 0 of the free field takes the form

H0 =

∫

x0=t

d3x H0(x), (3.9a)

where

H0(x) =
1

2

∫

x0=0

d3x :::(∂0ϕ)(x)2 − (∂0∂0ϕ)(x)ϕ(x)::: (3.9b)

and the double dots indicate normal (Wick) ordering of annihilations and creations.

4To check these computations the matrix notation for Lorentz matrices can beuseful: the Lorentzian productka =

kµa
µ may be written asKtGA, whereK,A are column vectors,t is matrix transposition, andG = diag(1,−1,−1,−1)

is the metric. Then conservation of the metric isΛGΛt = G. From this andG2 = I follows Λ−1 = GΛtG, which in
turn gives (back to usual notations)k(Λa) = (Λ−1k)a.
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3.2 DFR quantisation of the Klein–Gordon field

According to the discussion of the introduction,

ϕ(q) =

∫

dk ϕ̌(k)⊗ eikq (3.10)

as an operator onH⊗ K, whereH is the Fock space and the coordinatesqµ are operators onK. In
particular, for|k1, . . . , kn〉 ∈ H and|Λ〉|ξ〉 ∈ K,

ϕ(q){|k1, . . . , kn〉|Λ〉|ξ〉} =

∫

dk{ϕ̌(k)|k1, . . . , kn〉}{eikq|Λ〉|ξ〉}. (3.11)

By abuse of notations, we still denote byU , U the representations of Poincaré transformations
acting non trivially on the first and second tensor factor ofH⊗ K, respectively.

We find

U (Λ, a)ϕ(q)U (Λ, a)−1 =

∫

dk
(
U (Λ, a)ϕ̌(k)U (Λ, a)−1

)
⊗ eikq =

=

∫

dk ei(Λk)aϕ̌(Λk)⊗ eikq =

=

∫

dh ϕ̌(h)⊗ eih(Λq+a) =

=

∫

dh ϕ̌(h)⊗
(

U(Λ, a)−1eihqU(Λ, a)
)

=

= U(Λ, a)−1ϕ(q)U(Λ, a).

Hence the DFR quantisation of a free quantum field is covariant. Note that theabove result can be
given the simpler form

U (Λ, a)ϕ(q)U (Λ, a)−1 = ϕ(Λq + a). (3.12)

Since translations are unitarily implemented, we also have derivatives; we find that the DFR
quantisation commutes with taking derivatives:

lim
λ→0

1

λ
(ϕ(q + λeµ) = (∂µϕ)(q), (3.13)

whereeµ is theµth canonical basis vector ofR4.
Hence, the DFR quantised free field fulfils the Klein–Gordon equation:

(�+m2)ϕ(q) = 0. (3.14)

The partial expectation ofϕ(q) over a state with optimal localisation arounda ∈ R
4 gives,

according to (1.1), the free field operator on the Fock spaceH, smeared with a Gaussian:

Fa = {〈R|〈ηa|}ϕ(q){|R〉|ηa〉} =

∫

dk ϕ̌(k){〈R|〈ηa|}eikq{|R〉|ηa〉} =

=
1

(2π)2

∫

dx ϕ(x)e
−

|x−a|2
2λ2

P , (3.15)

17



P
o
S
(
C
N
C
F
G
2
0
1
0
)
0
2
7

QFT on QST

where|x− a|2 =∑µ(x
µ − aµ)2. It follows that

[Fa, Fa+x] ∝ i
λP

|~x|

(

e
− 1

8λ2
P

(|~x|−x0)2

− e
− 1

8λ2
P

(|~x|+x0)2
)

(3.16)

which falls off as a Gaussian in spacelike dimensions (as a function ofx), and converges to the
usual commutator function in the large scale limit.

3.3 The DFR perturbative setup

The basic idea of the DFR perturbative setup is to construct aneffective non local quantum
field theory on the classical spacetime: the underlying idea is the following: there are incoming and
outgoing free fields on the classical spacetime, describing free particles:since they do not interact,
they “do not know” that the spacetime is quantum. When interaction takes place, the quantum
texture of spacetime enters in the game, and this is taken into account by a nonlocal deformation
of the interaction Lagrangian.

A key remark is that

H0(Q) =

∫

x0=t

d3xH0(q) = H0 ⊗ I, (3.17)

namely the free Hamiltonian is left essentially unchanged by the Weyl quantisation, apart from the
⊗I which reminds that, whileH0 is an operator on the Fock spaceH, its quantisation is an operator
onH⊗ L2(L ).

SinceQµν is unaffected by time translations, we have

eitH0(Q)ϕ(q0, q1, q2, q3)e−itH0(Q) = ϕ(q0 + t, q1, q2, q3). (3.18)

Free fields are essentially unaffected by the DFR quantisation.

This remark led the authors of [2] to continue this analogy, and define a nonlocal generalisation
of the interaction Lagrangian:::ϕ(x)n::: as:::ϕ(q)n:::, which can be written equivalently as:::(ϕ⋆ · · · ⋆ϕ:::
(Q; q). Then, by the remarks at the end of section 2.6, it makes sense to consider

HI,⋆(Q; t) =

∫

x0=t

d3x :::(ϕ ⋆ · · · ⋆ ϕ)::: (Q, x), (3.19)

again as a (formal) operator onH⊗ L2(Λ), and we add the subscript⋆ to keep track of the choice
of the noncommutative Wick product.

At a certain point, we will have to take a partial expectation so to obtain an effective interaction
termHeff

I,⋆(t) as an operator on the Fock spaceH; in other words, we have to integrate out theQ

dependence. This is necessary to obtain a scattering matrix which interpolates the incoming and
outgoing free fields, which live on the Fock spaceH alone; indeed, physical intuition suggests that
the noncommutativity gets averaged out over large distances without interactions. However, let us
leave this apart for a while.
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Mimicking usual QFT, we formally define the limitS⋆(Q) = U⋆(Q;∞,−∞) of the unitary
evolution semigroupU⋆(Q; t, s), which fulfils

U⋆(Q; t, t) = I,

U⋆(Q; s, t)U⋆(Q; t, u) = U⋆(Q; s, u),

U⋆(Q; s, t)−1 = U⋆(Q; t, s),

and solves the evolution equation

∂U⋆

∂t
(Q; t, s) = iHI,⋆(Q; t)U⋆(Q; t, s) (3.20)

Its formal solution is given by the Dyson series

S⋆(Q) = I +
∞∑

N=1

iN

N !

∫

dt1 · · · dtN T [HI,⋆(t1), . . . ,HI,⋆(tN )], (3.21)

whereT means that the product of theHI,⋆(tj)’s is taken in the order of decreasing times, namely

T [HI,⋆(t1), . . . ,HI,⋆(tN )] =

=
∑

π

θ(tπ1 − tπ2)θ(tπ2 − tπ3) · · · θ(tπn−1 − tπn)HI,⋆(tπ1)HI,⋆(tπ2) · · ·HI,⋆(tπn)

(3.22)

whereθ is Heaviside’s step function and the sum runs over the permutations of(1, . . . , n).
Note that the time ordered product is taken with respect to the labelstj at which the space

integral is taken.
The matrix elements ofS⋆ (as an operator on the Fock space, timesL2(L )) are of the form

{〈h1, . . . , hm|〈Λ|}S⋆{|k1, . . . , kn〉|M〉} = δ(Λ−1M)〈h1, . . . , hm|S⋆(σ(Λ))|k1, . . . , kn〉 (3.23)

whereS⋆(σ) is a non local, non causal scattering matrix on the usual Fock space. Note that the
dependence onλP is hidden in the product⋆. Indeed, for everyσ ∈ Σ we have the formal limit

S⋆(σ) −→
λP→0

Sloc, (3.24)

whereSloc, is the local, causal scattering matrix of the (non renormalised)ϕn
4 theory on the classical

Minkowski spacetime.
The situation is much alike that of a bundle of non local theories overΣ. To integrate out

this dependence, one would like to take a partial expectation on the second tensor factor with
some Lorentz invariant state inL2(L ). Unfortunately, no such state exists, essentially because the
Lorentz group is not amenable5. The most symmetric choice is to take the rotation invariant state
described by the characteristic function of the setO(3) ⊂ L , which is square summable since
O(3) is compact. The partial expectation ofS⋆ on such state defines an effective scattering matrix

Seff
⋆ =

∫

Σ(1)

dσ S⋆(σ) (3.25)

5This means that there is no left-invariant mean of the functions ofL . Of course there is the Haar measuredΛ, but
a mean should send, by definition, the constant function 1 to 1, while

∫
dΛ 1 = ∞.
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on the Fock spaceH, whereΣ(1) = {σ(R) : R ∈ O(3) ⊂ L } anddσ is the invariant measure on
Σ induced by the Haar measure ofL , normalised so thatΣ(1) has measure 1. This gives a theory
covariant under rotations, but not under Lorentz boosts6.

If we perform a shameless exchange
∫
dσ
∑

N =
∑

N

∫
dσ in the Dyson series, the above

would be the same as starting from the beginning with a non local effective interaction term

Heff
I,⋆(t) =

∫

Σ(1)

dσ

∫

x0=0

d3x :::ϕ ⋆ · · · ⋆ ϕ::: (σ;x) (3.26)

on the Fock spaceH.
Since all these developments are formal, there is room for experimentation about the order of

summation and integrations. Choosing to integrate out theσ dependence separately at each vertex
after having performed Wick reduction, the effective scattering matrix wasfound ultraviolet finite
in theϕ3

4 theory [12].
It is clear that, even if the effective theory is regular, its large scale limit will reproduce the

non renormalised theory. Hence finite renormalisation would anyway be necessary, where the finite
subtractions should diverge in the large scale limit so to reproduce the infinitesubtractions of usual
renormalisation.

3.4 Unitarity and Feynman diagrams

Since the Hamiltonian is formally selfadjoint, the scattering matrix is formally unitary, and
no violations of unitarity should be expected. The violations discussed in the literature may be
regarded as a consequence of an inconsistent prescription for the time ordering (as pointed out in
[13]).

Indeed, for a local theory, the second order contribution to the Dyson series is

Sloc,2 =
1

2

∫∫

ds dt T [H loc
I (s), H loc

I (t)].

Since the time ordering does nothing to a pointwise product ofn fields, namelyT [ϕ(x), . . . , ϕ(x)] =
ϕ(x)n, the above can be written as

Sloc,2 =
1

2

∫∫

ds dt

∫

x0=s

d3x

∫

y0=t

d3y T [:::ϕ(x)n::: , :::ϕ(y)n:::] =

=
1

2

∫

d4x

∫

d4y T [:::ϕ(x)n::: , :::ϕ(y)n:::],

6Some authors claim to obtain a fully covariant interacting theory by means ofa Lorentz invariant measureW (θ)dθ,
wheredθ is the invariant measure on the spaceT of real second rank antisymmetric tensors. Unfortunately, such a
Lorentz invariant measure must be of the formW (θ)dθ = w(θµνθµν , (θ

µν(∗θ)µν)
2)dθ for somew(a, b). Hence

∫

T

W (θ)dθ f(θ) =

∞∫

−∞

da

∞∫

0

dbw(a, b)

∫

Ta,b

dθa,bf(θ),

whereTa,b = {θ : θµνθµν = a, (θµν(∗θ)µν)
2 = b)} anddθa,b is the measure induced bydθ onTa,b. For everya, b,∫

Ta,b
dθa,b = ∞, hence this measure, though Lorentz invariant, does not define a mean. The situation is similar to the

absence of a translation invariant normalised measure on the line: there’s no such thing as the expected position of a
particle equally distributed on the line.
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where the time ordering is with respect to the timesx0, y0. In other words, the time ordering can
be brought inside integrals.

For the non local theory described by the interaction termHeff
I,⋆(t), this cannot be done, since

the latter is of the form

Heff
I,⋆ =

∫

da1 · · · dan w(a1, . . . , an; t) :::ϕ(a1) · · ·ϕ(an)::: (3.27)

for some totally symmetric kernelw, depending on the time parametert (and implicitly onλP ).
The time ordering is taken with respect to such time parameters, not to the time componentsa0j of
the integration variables.

Indeed, using the proper integral form of⋆, there’s no such object as a “T [ϕ(x1)⋆· · ·⋆ϕ(xn)]”.
But if instead oneillegally uses the Moyal expansion of⋆, then he/her is misled to think that the
noncommutative product is defined pointwise, since the twist only contains derivatives; in which
case one would find “T [ϕ(x) ⋆ · · · ⋆ ϕ(x)] = ϕ(x) ⋆ · · · ⋆ ϕ(x)” (false) and again could safely
bring the time ordering inside the integral (false). This is one possible mechanism to obtain the
violations of unitarity. For a general discussion of the drawbacks of the Moyal expansion, see [1].

Upon inserting the Dyson series in the Gell-Mann&Low formula, the usual diagrammatic
expansion may be used, with minor modifications to the rules. To every vertex,associate a factor
w(a1, . . . , an; t)da1 · · · dan; to every line originating from that vertex and labeled byx pick a factor
1
i
(∆+(x−aj)θ(x

0−t)+∆+(aj−x)θ(t−x0); between any line connecting the vertex with another
vertexw(b1, . . . , bn; s)db1 · · · dbn, pick a factor1

i
(∆+(bk − al)θ(s − t) + ∆+(al − nk)θ(t − s);

and for any two external lines labeled byx, y, pick a usual Stueckelberg-Feynman propagator
∆SF (aj − bk). See [5] for a detailed discussion.

3.5 Quantum Wick Products and ultraviolet regularity

It is peculiar of the process of generalisation that equivalent procedures may have inequivalent
generalisations. Considern functionsfj(xj) of independent variables, and defineF (x1, . . . , xn) =

f1(x1) · · · fn(xn). The evaluation ofF at coincident points may be described either as 1) setting
x1 = x2 = . . . = xn = x, or 2) evaluate the pointwise product of functionsf1 · · · fn at x. The
equivalence of these two procedures is summarised by

f1(x) · · · fn(x) = (f1 · · · fn)(x),

which is so natural that on first sight we do not even notice the point.
The non commutative generalisation of the “product strategy” is to replace the pointwise prod-

uct with the product of quantised functions, or equivalently with the star product, so that one obtains

(f1 ⋆ · · · ⋆ fn)(Q; q).

This was used in the definition of non local Wick product:::ϕ ⋆ · · · ⋆ ϕ::: discussed in the preceding
section.

A non commutative generalisation of the “bring independent events to the sameplace” strategy
instead may be given in terms of the mapE discussed in section 2.4, and gives a different result. It
was used in [14, 3] to obtain a different generalisation of Wick product.
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The idea is to define the quantum wick product as

:::ϕ(q̇)n:::Q = E[:::ϕ(q1) · · ·ϕ(qn):::], (3.28)

where it is understood thatE acts on the localisation part.
Since

:::ϕ(q1) · · ·ϕ(qn)::: =
∫

d4k1 · · · d4kn :::ϕ̌(k1) · · · ϕ̌(kn)::: ⊗eik1q1 · · · eiknqn =

=

∫

d4k1 · · · d4kn :::ϕ̌(k1) · · · ϕ̌(kn)::: ⊗ei
∑

j kjqj ,

we get by linearity and (2.20)

E[:::ϕ(q1) · · ·ϕ(qn):::] =
∫

d4k1 · · · d4kn :::ϕ̌(k1) · · · ϕ̌(kn)::: ⊗E[ei
∑

j kjqj ] =

=

∫

d4k1 · · · d4kn e−λ2
P

1
2(

∑
j |kj |

2−
∑

jl kj ·kl) :::ϕ̌(k1) · · · ϕ̌(kn)::: ⊗ei(
∑

j kj)q̇.

Standard Fourier theory now gives

E[:::ϕ(q1) · · ·ϕ(qn):::] =:::ϕ ⋆ · · · ⋆ ϕ
︸ ︷︷ ︸

n factors

:::Q(q̇)

where

:::ϕ ⋆ · · · ⋆ ϕ
︸ ︷︷ ︸

n factors

:::Q(x) =

=
n2

(2π)8(n−1)

∫

da1 · · · dan :::ϕ(x+ a1) · · ·ϕ(x+ an)::: e
− 1

2λ2
P

∑
j |aj |

2

δ(4)




1

nλP

∑

j

aj





(3.29)

With this definition, we obtain an interaction term of the form

HI,G (t) = Heff
I,G (t)⊗ İ (3.30)

as an operator onH⊗ L2(O(3)), where

Heff
I,G (t) =

∫

x0=0

d3x :::ϕ ⋆ · · · ⋆ ϕ:::Q(x) =

=
n2

(2π)8(n−1)

∫

x0=t

d3x

∫

da1 · · · dan :::ϕ(x+ a1) · · ·ϕ(x+ an):::

e
− 1

2λ2
P

∑
j |aj |

2

δ(4)




1

nλP

∑

j

aj



 . (3.31)

Here covariance under Lorentz boosts is broken by the mapE. The resulting effective inter-
action termHeff

I,G (t) does not depend explicitly onσ ∈ Σ(1). Hence the average over the invariant

22



P
o
S
(
C
N
C
F
G
2
0
1
0
)
0
2
7

QFT on QST

measure gives preciselyHeff
I,G (t) which defines a non local, non causal scattering matrix on the

Fock spaceH.
Note that the only effect of noncommutativity here is to naturally reproduce a particular recipe

for the so called “point-split regularisation” in terms of aG aussian kernel. The resultingHeff
I,G (t) is

completely free of ultraviolet divergences. However, the same remarks apply here about the need
of finite renormalisation, as in the end of section 3.3.
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