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QFT on QST

1. Introduction

At the time of the beautiful conference in Corfu, an extensive reviewesethnd related topics
had already been completed, which now is publishedfas [1]. | will then takepthortunity of the
present conference proceedings to complement that review with anieglécription of some
applications to quantum field theofy [2, [3,[#, 5] on DFR quantum spaceffn&li2 presentation
is however self contained and addresses a possibly different aadiEine second chapter partially
overlaps with [IL], but contains more explicit equations. The third chamtetains a much more
detailed description of results about quantum field theory tfan [1]. Fasake of dissemination,
I will give explicit formulas in the Dirac notation, still favoured by many physis. The reader
interested in mathematical rigour is referred to the original papers.

In this first introductory chapter, we will very briefly recall some basiosw local quantum
field theory on the flat Minkowski spacetime in physical (i.e. 4) dimensioeti@[L]l). Then we
will discuss motivations for introducing non commutative coordinates, anditiierpretation: in
particular we will stress that they are NOT observables (seftipn 1.2).

As for the comparison with other approaches to covariance, the interestéer may find a
detailed discussion if][1].

1.1 A minimal account of local quantum field theory

Relativistic quantum field theory results from merging the quantum theoryseroables with
the principle of locality: it is formulated in terms of operator field&x), which can be regarded
(up to idealisations) as sets of pointwise localised observables, labeled &yahtz at which they
are localised; equivalently as more or less generalised “function®™* of

Einstein causality amounts to require the commutativity of any two observablefield B(-)
at spacelike distances, naméi/(x + a), B(x)] = 0 for everya spacelike.

There is a representati@n(A, a) of the Poincaré group. Then a (scalar) operator fild is
said covariant i/ (A, a) A(x)U(A,a)~! = A(Az + a). Covariance is required so that every ob-
servable which is at rest in given frame can be described by any ajbhima¢ent observer (passive
point of view); and also so that the measuring device can be displadattd@nd boosted so to
be brought at rest with respect to any other equivalent obserstivggoint of view). A covariant
field, then, essentially describe a single device in all possible Lorentz rame

For general reasons (spin-statistics theorem), possibly unobsefigltke also must be al-
lowed for, which either commute or anticommute at spacelike distances; fer dnesrelated rea-
sons, covariance has to be generalised to multiplets of such fields. Heesdrone will confine
ourselves with a theory generated by a single covariant Bosonic field.

The pairwise commuting generataP¥ of translations, defined by (1, a) = ¢, fulfil the
spectrum condition:?° > 0 and P> — |P|2 > 0. In particularH = P is the generator of
time translations=time evolution, and is called the Hamiltonian (with respect to the borentz
frame).

The vacuum statff) is defined as the unique translation invariant state (if symmetries are not
spontaneously broken), thus fulfilling*|()) = 0. If the theory is defined by a single field(z),
any statéW) can be approximated by linear combinations of states of the form) - - - A(z)|0)
(anyk).
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By analogy with the Fock construction in the case of free fields, partickesismally told
to be “carried” by fields: the statistics of particles (Bose/Fermi) is usuallye@lwith the kind
of commutation rule at spacelike distance. Indeed a much deeper andiggatifyderstanding
of statistics as a property of charged sectors (instead of particlesrugfiglds) is available (see
the review [B]); however we will not need such a theoretical deployrherg, since we only will
be concerned with toy models involving the simplest case (neutral Kleingadreée theory and
perturbations).

Unfortunately, the free fields are the only known examples (in dimension #heofies ful-
filling the above general requirements, and they only can describe adiigtdgerse made of non
interacting particles.

A perturbative approach has been developed, where the interactiagiilys is compared with
the free dynamics, as an attempt to describe scattering experiments: incartiofpp which are
free in the far past and far away from the interaction region interachig fiimes, and produce
outgoing particles which are free and far away in the far future. Then@ unitary operator
S which interpolates between the incoming and outgoing (asymptotic) free stataieid theS
matrix. The perturbation series in powers of the coupling parameter is cadiddlygon series.

This perturbative approach also is plagued by terrible problems; the ferquations defining
the matrix elements af are affected by all kinds of divergences, and even conceptuaLictisns
to its existence (“Haag theorem”) can be devised. Notwithstanding that,ex skestegy (driven by
physical interpretation) for covariantly removing the most severe cladivefgences (ultraviolet
divergences) has been devised, called renormalisation. A theory idgl callermalisable if the
perturbation series fo§ can be made to converge, at the cost of introducing infinite recursive
subtractions depending from at most a small set of phenomenologieahpters. Unfortunately
the only known renormalisable model for which some indications about thedican be obtained
seems to give&y = I, namely to converge to...a free theory.

Quite surprisingly, however, lowest order corrections in the pertunbatieory of a physical
theory (quantum electrodynamics) give experimentally verified predictbmredible accuracy.

The interested reader will find more details on any standard textbook [f#.gtHe first two
chapters of Haag's monogragdh [8] also provide a nice conceptuatiinttion, while the rest of the
book is devoted to a mathematically advanced introduction to local quanturitgphys

1.2 Why should we quantise the coordinates?

Notwithstanding the lack of non trivial well defined models, even pertureati would be
way too much to dismiss the theory as a failure. The successful experimpeadidtions should
instead be regarded as a strong indication that the illness of the theory tis some conceptual
ingredient which is still missing.

The ultraviolet divergences ultimately are a consequence of a too ssiatasion about lo-
cality: the divergent expressions arise from interaction terms whichayagmials in the fields
under the pointwise product. String theory arose as an attempt to repliate with less singular
geometric objects. However this solution remains in the realm of classical ggpared did not
result as effective as it was hoped, so far.

The concept itself of space as a collection of infinitely small points datestb&akclid and has
never been challenged. Indeed, even Einstein observed that, asa tmyisequence of accepting
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guantum physics, a quantum description of geometry would be concepteakgsary. Apart from
this, if we take the Compton wavelength (m) as the characteristic parameter driving the quantum
behaviour of a point particle of mass and the Schwarzschild radiug:(m) as characteristic of

a pointwise source of gravitational field of mass the condition\g(m) ~ Ac(m) has solution

m ~ mp, the Planck mass, ants(mp) ~ Ac(mp) ~ Ap, whereAp ~ 10~33cm is the Planck
length. This is a strong indication that quantum phenomena and gravitationtodnterplay at
the Planck scale, where the concept of point particle should be exgedieshk down.

As afirst attempt in the direction of concrete physical models, it was penfiog2] to provide
a set of non commuting coordinatgsfor the flat Minkowski spacetime, covariant under a unitary
representation of the Poincaré group, in order to replace the usulsddican of quantum fields.
The hope was to describe an intermediate model where the energy involgatjie processes
is sufficiently high to sense the quantum texture of spacetime; yet the defipityaesses is too
small to produce curvature. Here we only will describe the solution, whilesfes to the original
paper or the less technicd] [9] for a derivation of the uncertainty anthaatation relations. Earlier
attempts are shortly discussed i [1].

Precisely as the components of the labelx of A(x) are not observables, we are not going to
interpret the selfadjoint operatag8 as observables. To fix the interpretation, let us first describe a
bit more precisely what happens in usual quantum field theory.

A localisation state on the classical spacetime may be described by a défsityz with
[ f(z)dz = 1, so that the average of the observable fi¢(d) over the density gives the smeared
field A(f) = [ f(z)A(z) dz. A sharp localisatiohis obtained by a delta: #,(z)dz = §(z —
a)dz, thenA(d,) is the sharp localisation of the field(x) ata. We are led to think of: as of a
set of coordinate functions, gfas a localisation state, and of the pairds of a particular kind of
localisation states.

In the case of quantum coordinatgs localisation states will be described by density matrices
p, giving the expectatiory”), = Tr(pg"). Vector states are a special cases whegeof the form
|€)(¢]. To avoid confusion, we anticipate that there will not be a direct coomdgnce between
classical sharp localisation states and quantum vector states.

Let A(x) be a quantum field on classical spacetime, taking values in the operatoosnen s
Hilbert spacef; its DFR quantisation is the replacement of the classical coordinate funatifons
with the quantum coordinate operatgtson the Hilbert space&, using a natural covariant gener-
alisation of the Weyl prescription. i(z) = [ dk A(k)e’** , then

R4

Aq) = [ dk A(k) @ e
/

as operators oth ® &, wherekx = k,z" andkq = k,q". States on the second tensor factor
of H ® K describe a choice of the “localisation” of the field; then for any such ehaie get an
observable, whose physical states live in the first tensor factor. br etbrds, the expectation
functional(-) ,, acting on the second tensor factor only, plays the same role as the d&nsity::

Iwe will not concern ourselves here with the underlying technicalities (fighdsild be treated as generalised
functions), since they are not relevant here.
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by analogy with the case of classical spacetime, we may introduce the nafetion) for the
partial expectatioA (q)),; then by linearity

A((),) = /dk A(k) (™), = A(f,), (1.1a)
R4
where
£ () = (2m) / dk e~k (gikay (1.1b)

It seems that the only effect of DFR quantisation is to select a certain sshafleest functions
[, for the usual quantum fields. Indeed, the effect of quantisation mésiteslf when products
of fields are considered, as

(AB)(q) # A(9)B(q)-

Hence, interaction Lagrangians—which are usually defined in terms df potgnomials in the
fields—have non trivial generalisations to DFR quantum spacetime.

It has to be stressed that, as far as the time comparienitclassical localisation in quantum
field theory has no interpretation as a time observable, so is for its quanturtecpari;’.

2. Covariant Quantum Geometry

2.1 The DFR guantum coordinates

Consider the operato®; = —id;, Q; = s;- on L2(R%), j = 1,2, 3,4, which fulfil P,Qj —
QrP; = —idjr. We then introduce the notatioms’ = P, X! = P, X? = Q1,X® = Q..
Finally, we set

R=L*Z,dA) ® L*(R?,ds dsyds3dsy),

wheredA is the Haar measure of the Lorentz gro#p As usual, we associate to it a complete set
of generalised kets
|A>|§>7 A€$7§:(81>52783754) €R47

with bracket
{{ALs]H|A)]s) = (A|A) (s]s) = 5(A7A)6W (s, — s)),

where integrals are taken with the measdrkls and 6(A)dA is the purely atomic normalised
measure oz, concentrated om.
We define the operatorg by their actions on the ketsl)|¢):

¢"|A)|E) = Ap[A){A", XT[E)}. (2.1)
We may easily check that the operat@%” defined by
[a", ") = iIxpQ™
are simultaneously diagonalised by the Ketgs):

Q| A)|s) = o (N[ A)]s),
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where
00-10
00 0 —1
I) = 2.2a
‘M=1100 ol (2.22)
010 O
and
o (A = Ay A o (TP (2.2b)
Moreover, by construction
[¢", Q"] = 0. (2.3)

We have a unitary representatidit-, 0) of the Lorentz group
U(A,0)[M)]s) = [AM)]s);
it fulfils

U(A,0)7 11U (A,0) = A*,¢",
U(A,0)71QM U (A,0) = A* AR, QMY

Note that, since (4) ,,0(A)" = o(I),,0(1)" = 0isaLorentz invariant, we hav@"” Q.. [4)|¢) =
0 identically and thus
Que" = 0. (2.4a)
Analogously,
Quu(xQ)" = +4 (2.4b)

where(*Q)* = (1/2)eH' Q..
We finally make use of the remaining Schrédinger operators to construaphesentation of
translations. We first define

M=Q1+Qs, M'=-Q2—Qy, T*=P P II°=P P,
which fulfil [IT#,11*] = 0 and
T, X] = ig™".
Then we define
P{MIE} = [A{ A1)}
which fulfil
", p"] =0, [p', q"] =ig"".

It follows that
U(A,a) = e"PU(A,0)

fulfils
U(I,0)=1, U(Aa)U(M,b)=U(AM,a+ Ad)



QFT on QST

and

U(A,0)7'¢"U (A, a) = AM,q" +a”, (2.5)
U(A,a) "' QMU (A a) = Ay Ay QM (2.6)

Neither the coordinateg* nor the generators of translatiops have an interpretation as ob-
servables here. We are not aiming at a “more non commutative” quantum meghlaut at a
noncommutative localisation framework for quantum fields.

2.2 States, uncertainties and optimal localisation

The operatorg* on & generate all possible localisations through the choice of localisation
states, namely expectation functionals of the fgryp = Tr(p-) for some positive operatgrwith
Tr(p) = 1 (a density matrix). Such a state describes fuzzy localisation around thieapaiiR*
given bya” = (g"),, with varianceA ,(¢")? = ((¢* — (¢"),)?),-

By Heisenberg—like arguments, it can be proved that the uncertaixsigs ) fulfil the bounds$

Ap(a")(Dp(g") + Ap(@®) + Ap(d®) = AP, (2.7)
Ap(a)Dp(@®) + Bp(a*)Ap(@®) + Bp(a))Ap(gh) = Np. (2.8)

The proof can be found if][2].

In the classical case, localisation states arise as probability denfitigsr onRR*. Points cor-
respond to sharp densiti&s(z) = §(z—a)dz. Sincef’s may be rewritten ag(-) = [ da f(a)dq(-),
they can be thought of as convex linear combinations,sf(up to taking limits of integral sums).
Hence probability densities are the classical analogues of statistical migtulesharp densities
are the analogues of pure states.

Since however the set of operatatsis not irreducible (by Schur’'s lemma: the commutators
[¢*, ¢"] are not multiples of the identity), the usual identification of statistical mixtures vath n
trivial density matrices, and of pure states with vector states, breaks dogne are indeed vector
states which are not pure! The pure states are those described byp#Hrtsalar vector states,
which are of the formA)|£), namely they must in particular be eigenkets of the commutators
", q"].

In view of the large scale limit, one would like to have a notion of states with theplossible
localisation properties; then these states could be used to define interadgtiotise smallest pos-
sible deviations from usual locality. Indeed, an important condition is thaigbal local quantum
theory should appear as a limiting case of the new theory (large scale limit).

A moment’s though, however, shows that this is impossible, at least in sueh teams.
Because of the uncertainty relations, states are extended objects in swsaea®l as such they
always can be delocalised at wish by suitable Lorentz boosts. No stiom as a covariant class
of states with optimal localisation can be devised. This is the fundamentahredwyoall more or
less trivial generalisations of local interactions have led to break Lomaviariance so far. It can
be regarded as an indication that the noncommutative notion which shoaltbgality in the large
scale limit is non trivial and still missing.

>There is no reason to expect such bounds to be form—covariant: dinbdeeuncertainty , is not linear in its
argument, so thah ,(A*,¢") # A*,A,(¢")) in general.
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The best one can do is to define well localised states with respect to soiwe oha class
of reference frames which are pairwise related by a Galilei transform@imhorentz boosts). A
suitable criterion, then, is to select those statediich minimise)  , A,(g")?. Itis clear that these
states are essentially given in terms of the coherent states of the Sclerdoliggators\# used in
the construction of the coordinate operators.

Consider first a state of the forf)|n) where|n) is the normalised ground state of the har-
monic oscillator for the Schrodinger operafgrhen the sum of the squares of the corresponding
uncertainties attains the minimum

STA@E? =22 YT AX)? = A5 (A(Q1)? + A(Q2)? + A(P)? + A(P?)?) = A2,
Ju J

a state with these properties is said an optimal localisation state. Note that in tisedststebed
here above, the coordinates have expectatio thatA (¢#) equals the expectation @f2 in such
states.

Next, we consider the stat®&)|n) whereR € O(3) C .Z. For such a state, the coordinates
still have expectation in the origin, and

{{R[(nol} 32, (@")*{|R) no) }
{(B (ol HIR)|mo) ¥

= Np(nol D B*, X2 |no) = Ap(nol D X*2[no) = Ap;
n

I

we used thaf? is orthogonal and thaf> , X** = 2H, whereHy = (P} + P5 + QF + Q3). So
we still find the ground state of the harmonic oscillator. It follows tt##3t/n,) also is an optimal
localisation state, with expectation in the origin.
Finally for everya € R* and anyR € O(3) C . we define|n,) by setting|R)|n,) =
U(I,a)|R)|no); by unitarity,| R)|n,) is an optimal localisation state, but nagws expected at.
Indeed, it can be shown (sdé [2]) that the states described abovlesansliperpositions (with
sameun) are precisely all the possible optimal localisation states. We have

{(Rl(nal}e™{|R) o)} = e 20 Tulk)?, (2.9)

2.3 Independent localisation events

The standard way of constructing the coordinalgésf independent events is via tensor prod-
ucts, taking
=19 - ®Ie¢"el®---®I (¢"inthe;" position)

so that the commutation relations are of the form
4}, q) = 10:APQ1" . (2.10)
If we take the usual definition of tensor product, we get

QY =I® -@Q"e oI (Q"inthe;j™M position)

3Actually, we should add a degeneration lakeind write|no, x); since however this degeneracy is only an artefact
of the amplification which is used to implement translations, we shall omit ted A&ab
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However, again due to the reducibility of the det'} of operators, a different construction
which also deserves the name of tensor product is possible, for whiclothutators fulfil

and thej dependence ap* in (2.10) can be droppedl|[3]. The idea is to define the direct product
of kets “pointwise inA”;

{IDEDHIAE2)} - - - {1A)[€n) } = [4)|€1)1€2) - - €n)

These kets span the Hilbert spdcd.¥) ® L?(R*) @ - - - @ L?(R*) (usual direct product). On such
kets, we define the operator

Fy|A)[&0)[&2) - - |€n) = [ IEE2) - - - 1§—1)1Ej41) -+ - [€n)
which exchangeg;) with |£;). Finally, accordingly with the new definition of direct product,
A [ AEDIE) -+ 1€n) = {"[DIE) DIE2) -+ €n), (2.12)
q; = Fiq"Fy, (2.13)

which are easily checked to have the desired properties.
Both choices of® give covariant coordinates. In particular for the construction desdrib
above—which we will adopt from now on—the representation of the Poéngiup is

U(A, 0)[M)|€1)[§2) -+ - [&n) = [AM)[E1)|€2) - - - |€n),

and
U(A,a) ' qfU(A,a) = A", q¥ + a'. (2.14)

2.4 How close can independent events come to?

One reason why the direct product “taken pointwise ot&is preferable when constructing
the coordinates of many independent events is that it leads to a natueshtigation of the classical
concept of localising independent events at the same gaint [3]. Thibearsed for example

when a functionf (z1, z9, ..., x,) of n events is evaluated on the diagonal set, giving a function
g(z) = f(x,z,...,z) of one event only.
Define the operator
_ 1
7" = %(Qf + ot gh).

As a consequence df (2]11),
[qﬂ,qu’ - qg} - 07
namelyg* is statistically independent from the differences of any two events (thisdwni be the

case if the ordinary construction of the direct product were taken idistea
Note then that every; can be written as a linear combinationggfand the differenceg’ —q;,:

1 _ 1
Qy = ﬁq“ + EZ(C];L — )
k
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The above remarks suggest to consider a different realisation of e ammutation rela-
tions, using one more tensor factor.
We define

- 1 1
q;:ﬁqli@[@...@[+gZ[®(q;—qg)_ (2.15)

as operators oOR ® - - - ® K (direct products taken “pointwise iN”). It is clear by construction
——

n factors k

n + 1 factors
that

@, qr) = iNpoRQ™,

wherel ® Q" is identified withQ** according to [[2.31). Moreover the average coordinate is

12*— ¢ ele ol
n : QJ— \/ﬁq 9
J n factors

which commutes with thé}"s.
The unitary representation

UAa)=U(Aa)® - @U(A a)

n + 1 factors

fulfils
U(A,a) 7 U (A, a) = ¥, + .

We now want to set all differenag — ¢, to thei minimum value at once, compatibly with the
uncertainty relations.

Before giving the general construction, we first discuss an easssrgleneral construction,
which allows to highlight the main point.

We choose a statfdr)|n,) with optimal localisation, as discussed in secfiof 2.3; Hieis an
element ofO(3) C . andn, is a coherent state.

Observe now that the direct prodydt) of n copies of this state gives, with our particular
definition of direct product,

‘\D> = {‘R>’na>} T {|R>|na>} = |R> |77a>’77a> T ‘na> :

n factors n factors

We can use it to define a partial expectation on therlasnsor factor.
The components of the separation

between two independent events still fulfil the same relations as the camslthamselves:
[05kG", 0j1q"] = IAPQM™.

10
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Moreover, the partial expectation over the stdte (acting on the last tensor factors) gives
(W]6;kq" V) =0,
D AGKG) =D (W56’ T) = Ap,
I

I
and the latter is precisely the property selecting the states with optimal localisatitnthat, as
expected, the choice afis irrelevant. Hence we may say that this partial expectation has the effect
of setting the differencesj;;, as close to zero as possible, compatibly with the uncertainty relations.
We regard this as a quantum generalisation of the classical operatiottirng sg = x5 = .. ..

This is almost what we want; the only problem is that there is no need to reéstagtarticular
joint eigenspace of th@""’s, namely the one corresponding to the projection Bn It is suf-
ficient to restrict to the sum of all joint eigenspaces of ¢h&’s which correspond to orthogonal
transformations.

To do this, we split the above operation in two steps. We first define thegamiad projection
E which sendg4)|¢1)[&2) - - - [€,) to O if A contains a Lorentz boost, and leaves it unchanged
otherwise. We have

4}, B,
[U(R,a),E] =0, ReO(3),acR.

In other words E is the biggest possible projection which commutes Witrqéélﬁ and is stable
under orthogonal transformations. We then restrict our coordi@g‘[m operators acting on the
rangeL?(0(3)) ® L*(R*"*+1) of E, and afterwards we take the partial expectation on the state
Ina) - - - |na) (n factors) acting on the last direct factors. The resulting mdphas its range in the
operators or.?(0(3)) ® L?(R*), and has the following properties:

E[§;x¢"] =0, (2.16)
E[ethndind"] = e bz Luk)? (2.17)
as multiples of the identity operator.
Moreover » » \
g+ -+ an P "
E|—||R)¢) = —=|R){R', X ,
[ imie = ZEime,xi9)
which defines new operators
i =E [M] (2.18)
n

on L?(0(3)) ® L*(R*) with the nice property that the corresponding commutators

o[ AP 2 S

[¢",¢"] =1 (\/ﬁ) Q

induce the same uncertainty relations of the initial coordinates, but with thelPlamgth scaled

by v/n. This is precisely what one would expect of the statistical behaviour ofanméinde-
pendent stochastic variables. In the largkmit, the average coordinate of many events becomes
deterministic.

11
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Note that the coordinateg’ are covariant under orthogonal transformations and translations:
U(R,a)'"U(R,a) = R*,¢" +a", Re€O(3)C.Z,acR (2.19a)

where the representatiéi( R, a) is obtained by restricting each unitary operdtgiz, a) to L2(0(3))®
L2(RY).
Finally, the magE is covariant in the sense that

U(R,a) 'E[-|U(R,a) = E[U(R,a)"! - U(R,a)], ReO@B3)C.Z,acR*®  (2.19b)

We will use this map to define a quantum generalisation of the Wick producttios.}p,
where we will need the explicit form d[e’ 23 ¥39/] which we will now compute.

We first mape’ 2 K39 (which acts on kets of the forat)|¢;) - - - |€,)), into e 25 ¥1% (which
acts on kets of the forim)|€)|&1) - - - [€n))-

We observe that

;/@jqj(\er)q@MJrI@Z( Zkl)q,>.

n factors l

acting on|R)|[€)[&1) - - - |&n) - It follows that
et 20 kil — (e\;ﬁ(zj kﬂ')q> ® (eizj(’f.i—%Zz kl)‘11> )

where the direct product is taken “pontwise/ih

Now we restrict to the range of the projecti@h We do that simply by restricting ourselves
from now on to ketgR) with R € O(3) C .Z.

We take the partial expectation SP=i kil (restricted to the range @) over the lash factors,
using a statén) - - - no) whereny is the ground state of the harmonic oscillator: this gives

E[eizj kidi] = et Ridf | - - 770|}Z (k - — Zh) QZ{|770 mo)} =

n factors n factors

— P35 kP2 ks ’fz) ¢t 2; kid (2.20)

whereh - k = 32°_k"h, [k[> = vk -k, and we recall thag* is the restriction of /\/n to
L*(0(3)) ® L*(RY).

2.5 Distance, area and volume operators

In the framework of the universal differential calculus pf][10], we ndafine the differential
of coordinates as
dg =¢" @I —1® g¢". (2.21)

This provides another reason why the constructiom efhich we used in sectign 2.3 is preferable:
if it is used in the definition ofl, thend@*” = 0, which is compatible with the interpretation of
Q" as an independent background.

12
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If the universal calculus is used alone, the realisation of the commutatigdionsldy operators
on the Hilbert space plays little role. An interesting way of making the differeaéiculus to
interplay with operator products is to use the operator product insteae térisor product when
multiplying differentials with each othef TIL1], e.g.

dg"-d¢" = (¢" @I -1®¢") - (¢"@1-1®q") =
=¢"R¢ QI —¢"RIR¢ —IR¢"¢" I +1T®¢"Rq".

So the product of two differentials is a combination of products of opetaiog on the 3-fold
tensor product of the one—event state space; which is consistent withtéhgretation ofiq as a
“segment” with two extreme events, the product of two differentials desgrithia “join” of two
such “segments” at the same event.

In particular, a very simple generalisation of the usual definitions of ard&aand 4-volume
operators can be givep J11]. For example, the 4-volume operator isededs

V = €upedq” - dg” - dg” - dq°, (2.22)

which lives in the 5-fold tensor product, and indeed one needs fivdet@give a hypercube in
four dimensions.

The resulting operator is not selfadjoint, as a consequence of the comrawtaioh show up
when exchanging the order of the “vertexes”. Quite unexpectédig normal, namely/V* =
V*V. The phase operator appearing in the polar decomposition of the 4-volpenator can be
regarded as a quantum generalisation of the sign describing the orientation

The 4-volume operator is very complicated; yet its spectrum can be comguded found to
be{(nv5 £ 2 +ia)\} : n € Z,a € R}. In particular the absolute value of the 4-volume operator
is bounded below byy/5 — 2)A% ~ .23)\%. We refer to the original papefr J11] for the details of
the computation.

2.6 Thex-product

Let
Y={o(A): Ae &L}, (2.23)

according to the notatiof (2.2).
Provided that the integrals exist, we may associate to each complex fuyi¢tion) of 3 x R*
the operator

P11} = 14){ [ drfotas e @xg | -
=|4) { / dkf(o(A); k)e“PXW’“H@} : (2.24)
where the Fourier transformation acts pfw; -) for everyo fixed. Note that, iff does not depend

explicitly on o, the above is simply dk f(k)e'*?; if, otherwise, f does not depend explicitly on
x, the above is the usual functigi{@) of the sixteen pairwise commuting operat@rs”.
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Now we consider the product of two such operators

F(Q:0)g(Q; ){IN)E)} =
= |4) { / dh dk f(o(A); h)g(o(A); k)e”PX“‘lmei*PX(”)\§>} (2.25)
By definition the operators(# (defined at the beginning of sectipn]2.1) fulfil the commutation
relations| X*, X*] = o(I)", whereo(I) is given by [2.3a). The BCH formula implies

eIAPhX GiApkX _ 6—%A§,a([)“”hukuei(h+k)X,

)

substituting this in[(2.25), we get

F(Qs 9(Q: ) {116} = ) { [ anar(i%a) (o k)e“l”“x)ﬂ} . (226)

where
(fxg) (o k) = / dh f(A\bo; h)G(Npas k — h)e™ 3Xbo" ko (2.27)

and antisymmetry of has been used.
Defining now

(f % g)(o:2) = / dk(F %) (o k)™, (2.28)

we get

[(@Q:9)9(Q:q) = (f x9)(Q;9). (2.29)

Note that, even in the case whgrmndg do not explicitly depend on, theirx-product does.

For the explicit expression of and its (complicate) relationship with the Moyal expansion,
see [IL]. Thex-product here only plays an ancillary role. Its only use in this paper isoff@fing.
To everyf(Q; q) andt € R we can associate the operator

| #st@o)
0=t
on L?(.#) whose action is
[ #zs@olt = [ dape@iola,
0=t 0=t

This map is positive, in the sense that it mafi&); ¢)* f(Q; ¢) (which is a positive operator) to
another positive operator (sef¢ [2, Sec. 5] for the proof). We onlyneiiid thex-product in the
case of operators of the forify(Q; q) - - - fn(Q;q) = (f1 * - * fn)(Q; q), which the above map
sends intof o_,(f1 % - * fn)(Q; ).

14
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3. Quantum Field Theory on Quantum Spacetime

3.1 The Klein—Gordon field on classical spacetime

To fix the notations, we briefly recall the standard definition of the massdaedcalar spin 0
field (see any standard textbook, e[g. [7]).

We establish a Dirac bracket notation which defines the (Fock) Hilbecespal he complete
system of kets

‘®>a n:O,
k1, ..., k), n=1,2,..., kjeR3

fulfils the normalisation condition

<51752 _)m|Elal_€’2a"'7E >:

Za )63 (hy = kiry) -+ 6@ (B — kir,,), (3.1)
where the sum runs over all permutationsof (1,...,n), and thed®)’s are defined with re-
spect to the usual translation invariant meast#e on R3. In particular for any such we have
k1, ... kp) = |kmy, . .., kx,). The ket|@) is called the vacuum state.

The creation and annihilation operators
at(B)|ky, ... kn) = Vn+ 1k, ki, ... kn), (3.2a)
a(k)|k, ...k \[Za?ﬁ k—k)ky, o ki1, ki, k) (3.2b)

fulfil

al(k) = a(k)*, (3.3a)
[a(h), o' (k)] = 6@ (h — k), (3.3b)
[a(h), a(k)] = [al (R), a (k)] = 0, (3.3¢)
a(k)|0) = 0. (3.3d)

The scalar Klein-Gordon field is defined as

o(x) = / d*k o(k)etk® (3.4a)
R4
where

PO, F) = | L0(02 — ) {0(-)a(B) + 0k () (3.4)

Note that to each 3-vectarthere is a unique 4-vectarbelonging to the upper mass shell (namely
fulfiling £° > 0 andk? = k% — |E|2 = m?). Explicitly, & = (wn(k), k), wherew,, (k) =

\/m2 + k|2,
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Sincee** = —k2etk* (whered = 9,,0%), we have
(O+m*p=0 (3.5)

There is a representationr (A, a) of the restricted Poincaré grou@l (where only Lorentz
transformations preserving the arrow of time and the orientation of spacdlawed) by unitary
operators omy: its action is

% (A, a)|0) = 10), (3.6a)
o 5 . m —_— —= —
U (A, a)lky,. .. kp) =MD ARy Ak, ..., Aky). (3.6b)

The notation is a bit involved, let us describe what happens: we stareEf@vectork, we construct
the corresponding on-shell é‘i(;:‘ctb,rwe apply to it the Lorentz transformatiof giving the 4-

vector Ak, whose space part i$k . Note that, sincel preserves the time arrowt is in the upper
mass shell, too.
By construction,

N — —
U (A, a)at (B)% (A, )"t = ARy (Ak)
It follows thatt

U (A, a)~t = eURagAL), (3.7a)
U (A, a)p(x)% (A, a)t = p(Az + a)), (3.7b)
(3.7¢)

where(A, a) € 9’1
The spectrum condition holds, namely the general¥rsf translations defined by (1, a) =
e fulfil P,P* > 0andP® > 0. In particular we havé**|()) = 0 and

PM’E177EH>:ZI~§5’EI77ER>7 (38)
J

note that any finite su@j lNc;L is contained in the convex hull of the upper mass shell of mass
It is noteworthy for our purposes that the Hamiltonfdn = P° of the free field takes the form

Hy = / Bz A (x), (3.9a)
where )
Hiw) =5 [ @)@ - @) a)o(a) (3.9b)
20=0

and the double dots indicate normal (Wick) ordering of annihilations aratiores.

“To check these computations the matrix notation for Lorentz matrices casefial: the Lorentzian produéz =
k,.a* may be written ag(* G A, whereK, A are column vectors,is matrix transposition, an@ = diag(1, —1, —1, —1)
is the metric. Then conservation of the metrici€ A* = G. From this and3? = I follows A~! = GA*G, which in
turn gives (back to usual notationsjAa) = (A~ k)a.

16



QFT on QST

3.2 DFR quantisation of the Klein—Gordon field

According to the discussion of the introduction,

ola) = [ dkg(h) o e (3.10)

as an operator of) ® £, wheres) is the Fock space and the coordinajésare operators of. In
particular, forlky, ..., k,) € $Hand|A)[£) € §,

P(D{Ik, - kn)[A)]E)} = /dk{sb(k)\kh---7kn>}{€ikq|/1>|€>}- (3.11)

By abuse of notations, we still denote 8y, U the representations of Poincaré transformations
acting non trivially on the first and second tensor factafyeb R, respectively.
We find

U (A, a)p(q)%(Aa) " = /dk (% (A, a)p(k)% (A, a)" ") @ e* =

dk "Rz Ak) @ et =

/ ® 6zh(/lq—i—a) _
UA

U(A,a)” 1eith(A,a)) =

Yo(q )U(/l @).

Hence the DFR quantisation of a free quantum field is covariant. Note thabtwe result can be
given the simpler form
U(Aa)p(@)% (A, a)™ = p(Ag + a). (3.12)

Since translations are unitarily implemented, we also have derivatives; avéhfihthe DFR
guantisation commutes with taking derivatives:

lim $ (o0 + Ac¥) = (8,0)(0) (3.13)

whereet is the!" canonical basis vector &
Hence, the DFR quantised free field fulfils the Klein—-Gordon equation:

(O4+m?)p(q) = 0. (3.14)

The partial expectation ap(q) over a state with optimal localisation arounds R* gives,
according to[(1]1), the free field operator on the Fock sgaameared with a Gaussian:

= {{Rl(na}p(){|R)na) } = /dlw (R (a] Y™ {| R)|na)} =

_Jz—a)?
= (271_[_)2/611‘ olx)e 2P | (3.15)
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where|z — a|* = Y (a# — a*)?. It follows that

A — L (|17 —x%)? — L (|&|+x°)2
(ForFase] 75 < mp e g ’) (3.16)
X

which falls off as a Gaussian in spacelike dimensions (as a functiaf), &nd converges to the
usual commutator function in the large scale limit.

3.3 The DFR perturbative setup

The basic idea of the DFR perturbative setup is to construeffactive non local quantum
field theory on the classical spacetintbe underlying idea is the following: there are incoming and
outgoing free fields on the classical spacetime, describing free partiahes they do not interact,
they “do not know” that the spacetime is quantum. When interaction takes, gleeguantum
texture of spacetime enters in the game, and this is taken into account by aaladformation
of the interaction Lagrangian.

A key remark is that

HoQ) = [ doia) = Hoo 1 (3.17)

20=t

namely the free Hamiltonian is left essentially unchanged by the Weyl quantisatiart from the
®1 which reminds that, whilé{, is an operator on the Fock spa@eits quantisation is an operator
onH ® L£2(L).

Since@*” is unaffected by time translations, we have

e Ho@p (g0 g g2, ¢)e @ = (¢° +t,¢", 6%, ¢*). (3.18)

Free fields are essentially unaffected by the DFR quantisation.

This remark led the authors df [2] to continue this analogy, and definelacageneralisation
of the interaction Lagrangiamp(x)™: as:p(q)":, which can be written equivalently 8 - - - x ¢
(Q; q). Then, by the remarks at the end of secfioh 2.6, it makes sense to consider

Hio(Qit) = [ doslor o) Qo) (3.19)

z0=t

again as a (formal) operator on® £2(A), and we add the subscrigto keep track of the choice
of the noncommutative Wick product.

At a certain point, we will have to take a partial expectation so to obtain actiefenteraction
term Hlefi(t) as an operator on the Fock spagein other words, we have to integrate out Qe
dependence. This is necessary to obtain a scattering matrix which integpiblatemcoming and
outgoing free fields, which live on the Fock spagalone; indeed, physical intuition suggests that
the noncommutativity gets averaged out over large distances without imesadHowever, let us
leave this apart for a while.
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Mimicking usual QFT, we formally define the lim8, (Q) = U.(Q; oo, —o0) of the unitary
evolution semigrouf/, (Q; t, s), which fulfils
U.(Qst,t) =1,
U.(Q;s,)U(Qst,u) = Un(Q; s,u),
U.(Q;s,1)"  =UL(Q;t,s),
and solves the evolution equation

U (Q:t,5) = iH1 (@)U (Qst. ) (3:20)

Its formal solution is given by the Dyson series

o0 .N
S, (Q)=1+ Z % /dtl ceedty T[HL*(tl), .. .,HI,*(tN)], (3.21)
N=1"""

whereT" means that the product of thié; . (¢;)’s is taken in the order of decreasing times, namely

T[H[’*(tl), ce. ,H[’*(t]\[)] =
= Z O(tr; — trs)0(ry — try) -+ O,y — twn)HI,*(tm)HI,*(tﬂz) T HI,*(tTrn)

(3.22)

whered is Heaviside’s step function and the sum runs over the permutatiqis.of , n).

Note that the time ordered product is taken with respect to the labelswhich the space
integral is taken.

The matrix elements 0§, (as an operator on the Fock space, tilhé6%)) are of the form

{(h1y - han (A ks - - k) [ MY} = 8(AT M) (ha, . . . B Sx(a(A)) K, . . . ) (3.23)

where S, (o) is a non local, non causal scattering matrix on the usual Fock space. Nbotheh
dependence olp is hidden in the product. Indeed, for every € ¥ we have the formal limit

Si(0) Aﬁo Slocs (3.24)

whereSiqc, is the local, causal scattering matrix of the (non renormaliggdheory on the classical
Minkowski spacetime.

The situation is much alike that of a bundle of non local theories &ieio integrate out
this dependence, one would like to take a partial expectation on the secwud factor with
some Lorentz invariant state fi¥ (.#). Unfortunately, no such state exists, essentially because the
Lorentz group is not amenaBleThe most symmetric choice is to take the rotation invariant state
described by the characteristic function of the @¢8) C .#, which is square summable since
0(3) is compact. The partial expectation8f on such state defines an effective scattering matrix

seff — / do S, (o) (3.25)
»(1)

5This means that there is no left-invariant mean of the function® oDf course there is the Haar measdre but
a mean should send, by definition, the constant function 1 to 1, whilé 1 = co.

19



QFT on QST

on the Fock spac®, whereX) = {#(R) : R € O(3) C .Z} anddo is the invariant measure on
3} induced by the Haar measureﬁf, normalised so that!) has measure 1. This gives a theory
covariant under rotations, but not under Lorentz bdbsts

If we perform a shameless exchanfido >, = > [ do in the Dyson series, the above
would be the same as starting from the beginning with a non local effectivadtiten term

/da /d% Wk xgr (03) (3.26)

»(1) T

on the Fock spacs.

Since all these developments are formal, there is room for experimentatantak order of
summation and integrations. Choosing to integrate outtlependence separately at each vertex
after having performed Wick reduction, the effective scattering matrixfaasd ultraviolet finite
in the ¢} theory [12].

It is clear that, even if the effective theory is regular, its large scale limit wroduce the
non renormalised theory. Hence finite renormalisation would anyway lessaxy, where the finite
subtractions should diverge in the large scale limit so to reproduce the irdititeactions of usual
renormalisation.

3.4 Unitarity and Feynman diagrams

Since the Hamiltonian is formally selfadjoint, the scattering matrix is formally unitarg, a
no violations of unitarity should be expected. The violations discussed in thatlite may be
regarded as a consequence of an inconsistent prescription for thertereng (as pointed out in

[E3D).

Indeed, for a local theory, the second order contribution to the Dysioessis

Sloca = ;// ds dt T[H°%(s), HI°°(t)].

Since the time ordering does nothing to a pointwise produetf@ids, namely'[¢(z), ..., p(z)] =
©(z)"™, the above can be written as

Sloc,2 = // ds dt / A3z / By Tl wpo(y)™] =

20=s

=3 / d'z / dy Tle(z)"™, p(y)"™],

®Some authors claim to obtain a fully covariant interacting theory by meamnkafentz invariant measui& (6)do
whered@ is the invariant measure on the spateof real second rank antisymmetric tensors. Unfortunately, such a
Lorentz invariant measure must be of the fof(0)d0 = w(0*" 0 ..., (6" (%) ..,)*)d6 for somew(a, b). Hence

oo}

/W Ydo (6 /da/oodbw /deabf( )s

- u.,b

whereTo, = {0 : 0"0,, = a, (0" (x0),4.)*> = b)} anddb,, is the measure induced k) on 7., ;. For everya, b,
fTa.b df.,, = oo, hence this measure, though Lorentz invariant, does not define a Miearsituation is similar to the
absence of a translation invariant normalised measure on the line:stinersuch thing as the expected position of a
particle equally distributed on the line.
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where the time ordering is with respect to the timésy®. In other words, the time ordering can
be brought inside integrals.

For the non local theory described by the interaction téfﬁ‘i(t), this cannot be done, since
the latter is of the form

H?fi = /dal codag w(ay, ..., anst) p(ar) - o(an): (3.27)

for some totally symmetric kerned, depending on the time parametefand implicitly on\p).
The time ordering is taken with respect to such time parameters, not to the timelwntrm? of
the integration variables.
Indeed, using the proper integral formsofthere’s no such object as @t (z1) - - -xp(zp)]"
But if instead onédllegally uses the Moyal expansion ef then he/her is misled to think that the
noncommutative product is defined pointwise, since the twist only contamatiees; in which
case one would findT[p(x) x - -+ x p(z)] = p(z) * -+ * p(x)” (false) and again could safely
bring the time ordering inside the integral (false). This is one possible mischada obtain the
violations of unitarity. For a general discussion of the drawbacks of thgalVexpansion, seg][1].
Upon inserting the Dyson series in the Gell-Mann&Low formula, the usualrammatic
expansion may be used, with minor modifications to the rules. To every vedsaciate a factor
w(ai,...,an;t)day - - - day; to every line originating from that vertex and labelediyyick a factor
(A4 (z—a;)0(z°—t)+ Ay (a;—2)0(t—20); between any line connecting the vertex with another
vertexw(by, . .., by; s)dby - - - dby, pick a factors (A (by — a;)0(s — t) + Ay (a — ng)0(t — s);
and for any two external lines labeled byy, pick a usual Stueckelberg-Feynman propagator
Asp(aj — by). See[b] for a detailed discussion.

3.5 Quantum Wick Products and ultraviolet regularity

Itis peculiar of the process of generalisation that equivalent proesdnay have inequivalent

generalisations. Considerfunctionsf;(x;) of independent variables, and defifiery, ..., z,) =
fi(x1) -+ fu(zy). The evaluation of" at coincident points may be described either as 1) setting
1 =20 = ... =z, = 1z, OF 2) evaluate the pointwise product of functiofis - - f,, atz. The

equivalence of these two procedures is summarised by

fil@) - ful@) = (fr--- fo)(2),

which is so natural that on first sight we do not even notice the point.
The non commutative generalisation of the “product strategy” is to replagadintwise prod-
uct with the product of quantised functions, or equivalently with the stadywst, so that one obtains

(fix-x fa) (@i )

This was used in the definition of non local Wick produgtx - - - x ¢: discussed in the preceding
section.

A non commutative generalisation of the “bring independent events to thepdaoas strategy
instead may be given in terms of the nfapliscussed in sectidn .4, and gives a different result. It
was used in[[14] 3] to obtain a different generalisation of Wick product.
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The idea is to define the quantum wick product as

p(0)"e = Elp(qr) - p(gn )], (3.28)

where it is understood thét acts on the localisation part.
Since

splan) ol = [ dlh ety splln) - (b meln o
- / d'ky - Ak xp(n) - k) @€' 20,
we get by linearity and(2.20)
Blp(a) - @(ank] = [ dh - dth spln) - plb ) SE[ 0] =
= /d4k1 i, e PR (S Rk k) sy (k) e (R
Standard Fourier theory now gives

El:p(q1) - p(gn):] =t o -+ x p:0(q)

n factors
where
tpx ok pig(T) =
N———
n factors
n2 —% Zj laj|? 1
- e . e . @ | - .
~ (2n)8(n—D) /d‘“ dan wp(x +a1) - p(z+an)e *F g nAp zj:a]
(3.29)
With this definition, we obtain an interaction term of the form
Hy(t)=Hi(t)® 1 (3.30)

as an operator ofy ® L2(O(3)), where

Hle;;(t) = / Br pxxpgT) =
20=0

n2

== DN Y 3 “ e . PR -
~ (2m)8(n=D) / d x/ day -+ - dan 3p(r +a1) - p(x + an):

0=t
—5r 2 lasl? 1
e 2F =Y s(4) (n)\PZaj), (3.31)
J

Here covariance under Lorentz boosts is broken by the Fhaphe resulting effective inter-
action termH?fﬁﬁ(t) does not depend explicitly an e (1), Hence the average over the invariant
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measure gives preciseﬂyff!f(t) which defines a non local, non causal scattering matrix on the
Fock space).

Note that the only effect of noncommutativity here is to naturally reprodueetecplar recipe
for the so called “point-split regularisation” in terms o¥aussian kernel. The resultirig?f; (t)is
completely free of ultraviolet divergences. However, the same remagKg here about the need
of finite renormalisation, as in the end of sectjor 3.3.
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