

J/ψ and B_c^{\pm} production at LHCb

Jibo HE**

Laboratoire de l'Accélérateur Linéaire, Université Paris-Sud 11, CNRS/IN2P3 (UMR 8607), 91400 Orsay, France E-mail: he@lal.in2p3.fr

Measurements of the J/ψ and B_c^+ production cross-sections at $\sqrt{s} = 7$ TeV with the LHCb detector are presented.

The analysis of J/ψ production is based on an integrated luminosity of 5.2 pb⁻¹ of data. The double differential cross-section of both prompt J/ψ and J/ψ from *b* is measured, as a function of the J/ψ transverse momentum $p_{\rm T}$ and of the rapidity *y* in the fiducial region $p_{\rm T} \in [0, 14]$ GeV/*c* and $y \in [2.0, 4.5]$. The integrated cross-section for prompt J/ψ production in this fiducial region is measured to be σ (prompt J/ψ , $p_{\rm T} < 14$ GeV/*c*, 2.0 < y < 4.5) = 10.52 ± 0.04 (stat.) ± 1.40 (syst.) $^{+1.64}_{-2.20}$ (polarisation) µb. The integrated cross-section for the production of J/ψ from *b* in the same fiducial region is measured to be σ (J/ψ from *b*, $p_{\rm T} < 14$ GeV/*c*, 2.0 < y < 4.5) = 1.14 ± 0.01 (stat.) ± 0.16 (syst.)µb.

The B_c^+ production measurement is based on an integrated luminosity of 32 pb⁻¹. We present a preliminary measurement of the ratio of production cross-section times branching ratio for $B_c^+ \rightarrow J/\psi\pi^+$ relative to that of $B^+ \rightarrow J/\psi K^+$, $\frac{\sigma(B_c^+) \times BR(B_c^+ \rightarrow J/\psi\pi^+)}{\sigma(B^+) \times BR(B^+ \rightarrow J/\psi K^+)} = (2.2 \pm 0.8(\text{stat.}) \pm 0.2(\text{syst.}))\%$.

PoS(BEAUTY 2011)026

The 13th International Conference on B-Physics at Hadron Machines April 4-8 2011 Amsterdam, The Netherlands

*Speaker.

[†]On behalf of the LHCb collaboration.

1. Introduction

The LHCb detector, as described in Ref. [1], is a single-arm forward spectrometer dedicated to precise measurements of CP violation and rare decays at the LHC. It has a unique geometrical acceptance, $1.9 < \eta < 4.9$ and excellent trigger, tracking and particle identification performances, which make it an ideal experiment to perform precise measurements of hadroproduction of particles.

This paper presents the measurements of J/ψ and B_c^+ production (charge conjugates are implied throughout this paper) in pp collisions at $\sqrt{s} = 7$ TeV with the data taken by the LHCb detector in 2010.

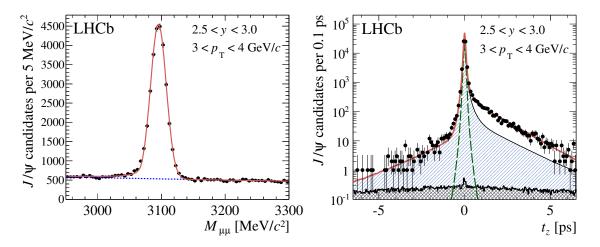
2. Measurement of J/ψ production

The double differential cross-section of prompt J/ψ and of J/ψ from *b* has been measured with 5.2 pb⁻¹ of data [2], as a function of the J/ψ transverse momentum p_T and of the rapidity *y* in the fiducial region $p_T \in [0, 14]$ GeV/*c* and $y \in [2.0, 4.5]$. The prompt J/ψ includes directly produced J/ψ , and J/ψ from feed-down from directly produced heavier charmonium states. The double differential cross-section in a given (p_T, y) bin is defined as

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}y \mathrm{d}p_{\mathrm{T}}} = \frac{N \left(J/\psi \to \mu^+ \mu^- \right)}{\mathscr{L} \times \varepsilon_{\mathrm{tot}} \times \mathscr{B} \left(J/\psi \to \mu^+ \mu^- \right) \times \Delta y \times \Delta p_{\mathrm{T}}},\tag{2.1}$$

where $N(J/\psi \to \mu^+\mu^-)$ is the number of observed $J/\psi \to \mu^+\mu^-$ in bin (p_T, y) , ε_{tot} is the J/ψ total efficiency in bin (p_T, y) , including the geometrical acceptance, the trigger, detection, reconstruction and selection efficiencies, \mathscr{L} is the integrated luminosity, $\mathscr{B}(J/\psi \to \mu^+\mu^-)$ is the branching fraction of the $J/\psi \to \mu^+\mu^-$ decay ((5.93 ± 0.06) × 10⁻² [3]), and $\Delta y = 0.5$ and $\Delta p_T = 1 \text{ GeV}/c$ are the y and p_T bin sizes, respectively. The transverse momentum is defined as $p_T = \sqrt{p_x^2 + p_y^2}$ and the rapidity is defined as $y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$ where (E, \mathbf{p}) is the J/ψ four-momentum in the centre-of-mass frame of the colliding protons.

2.1 J/ψ selection


 J/ψ candidates are formed from pairs of tracks with opposite charge. Each track is required to have a good track fit quality, $p_T > 0.7$ GeV/c, and be identified as muon. The muon pair are required to originate from a common vertex with good vertex fit probability (>0.5%). J/ψ candidates triggered by lifetime-unbiased single muon or di-muon triggers are used in this analysis.

Only events with at least one reconstructed primary vertex are kept. To separate prompt J/ψ from those of b decays, we define the pseudo-proper time t_z as

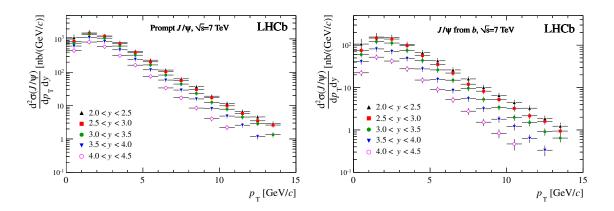
$$t_z = \frac{(z_{J/\psi} - z_{\rm PV}) \times M_{J/\psi}}{p_z},\tag{2.2}$$

where $z_{J/\psi}$ and z_{PV} are the positions along the *z*-axis (defined along the beam axis, and oriented from the VELO to the MUON) of the J/ψ decay vertex and of the primary vertex, respectively; p_z is the *z* component of the measured J/ψ momentum and $M_{J/\psi}$ is the nominal J/ψ mass.

Figure 1: Dimuon mass distribution (left) and t_z distribution (right), with fit results superimposed, for one bin ($3 < p_T < 4 \text{ GeV}/c, 2.5 < y < 3.0$). For the t_z distribution, the solid red line is the total fit function, the green dashed line is the prompt J/ψ contribution, the single-hatched area is the background component and the cross-hatched area is the tail contribution.

2.2 Extraction of signal yields

In each (p_T, y) bin, the number of J/ψ of all sources is extracted from an extended unbinned maximum likelihood fit to the J/ψ invariant mass distribution. The mass distribution of the signal component is described by a Crystal Ball function and that of the combinatorial background by an exponential function. The numbers of prompt J/ψ and J/ψ from b are extracted from a fit to the t_z distribution. The t_z distribution of the prompt J/ψ is described by a delta function convolved with a resolution function (double Gaussian), and that of the J/ψ from b by an exponential function convolved with the resolution function. The shape of the t_z distribution for the background is taken from J/ψ mass sidebands. In addition, there is a long tail arising from the association of the J/ψ candidate with the wrong primary vertex, this contribution is measured using the J/ψ in the current event and the primary vertex in the next triggered event, which is uncorrelated to the first.


As an example, the J/ψ mass and t_z distributions, together with the fit results for one bin $(3 < p_T < 4 \text{ GeV}/c, 2.5 < y < 3.0)$ are shown in Fig. 1. A total signal yield of 565000 events is obtained by summing over all (p_T, y) bins.

2.3 Efficiency

The total efficiency ε_{tot} is estimated using a simulated sample of inclusive, unpolarised J/ψ mesons and checked with data. Since neither the trigger nor the offline selection makes use of the lifetime information, the efficiencies of prompt J/ψ and J/ψ from *b* in a given (p_T, y) bin are assumed to be equal. This assumption has been confirmed with Monte-Carlo studies.

2.4 Systematics

From Eq. 2.1, one can see that the J/ψ production measurement is affected by the systematic uncertainties on the determination of signal yields, the efficiencies, branching fraction (1%) and luminosity (10%). The uncertainty of the signal yield arises from the fit functions (1.0% for mass

Figure 2: Differential production cross-section for prompt J/ψ (left) and J/ψ from *b* (right), as a function of p_T in bins of *y*, assuming that prompt J/ψ are produced unpolarised. The errors are the quadratic sums of the statistical and systematic uncertainties.

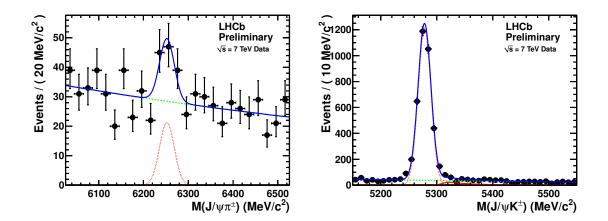
fits, and 3.6% for t_z fits). The uncertainties on the efficiencies arise from the trigger (1.7-4.5%), muon identification (1.1%), tracking (8.0%), vertex fit (0.8%), final states radiation (1.0%), and J/ψ polarisation (3-30%). In the extrapolation to obtain the $b\bar{b}$ cross section in the full polar angle, an uncertainty of 2% is assigned, due to the dependence of the branching fraction of inclusive $b \rightarrow J/\psi X$ on the *b* hadronisation fractions, which is measured to be different at LEP [4] and Tevatron [5, 6].

2.5 Results

Fig. 2 shows the measured double-differential cross-sections for prompt J/ψ and J/ψ from b in the various (p_T, y) bins, after all corrections and assuming J/ψ is not polarised.

The integrated cross-section for prompt J/ψ production in the defined fiducial region, summing over all (p_T, y) bins, is

$$\sigma (\text{prompt } J/\psi, p_{\text{T}} < 14 \text{ GeV}/c, 2.0 < y < 4.5) = 10.52 \pm 0.04(\text{stat.}) \pm 1.40(\text{syst.})^{+1.64}_{-2.20}(\text{polarisation}) \ \mu\text{b}.$$
(2.3)


The integrated cross-section for the production of J/ψ from b in the same fiducial region is

$$\sigma(J/\psi \text{ from } b, p_{\rm T} < 14 \, {\rm GeV}/c, 2.0 < y < 4.5) = 1.14 \pm 0.01({\rm stat.}) \pm 0.16({\rm syst.})\,\mu\text{b}. \tag{2.4}$$

Using the LHCb Monte Carlo simulation based on PYTHIA 6.4 [7] and EvtGen [8], and the average branching fraction of inclusive *b*-hadron decays to J/ψ measured at LEP [4] $\mathscr{B}(b \rightarrow J/\psi X) = (1.16 \pm 0.10)\%$, the result quoted in Eq. 2.4 is extrapolated to the full polar angle range:

$$\sigma(pp \to bbX) = 288 \pm 4(\text{stat.}) \pm 48(\text{syst.})\,\mu\text{b},\tag{2.5}$$

where the systematic uncertainty includes the uncertainties on the *b* fractions (2%) and on $\mathscr{B}(b \to J/\psi X)$ (9%). No uncertainty on the extrapolation factor is included in this result. This result is in agreement with the previous LHCb measurement using $b \to D^0 \mu v X$ decays [9], $\sigma(pp \to b\overline{b}X) = 284 \pm 20$ (stat.) ± 49 (syst.) µb.

Figure 3: Invariant mass distribution for $B_c^+ \to J/\psi \pi^+$ (left) and $B^+ \to J/\psi K^+$ (right) candidates.

3. Measurement of B_c^+ production

The ratio R_{c+} of production cross-section times branching ratio for $B_c^+ \to J/\psi\pi^+$ relative to that of $B^+ \to J/\psi K^+$, for $p_T(B) > 4$ GeV/*c* and $\eta \in [2.5, 4.5]$ has been measured with 32 pb⁻¹ of data [10]. The ratio R_{c+} is defined as

$$\mathscr{R}_{c+} = \frac{\sigma(B_c^+) \times BR(B_c^+ \to J/\psi\pi^+)}{\sigma(B^+) \times BR(B^+ \to J/\psi K^+)} = \varepsilon_{\rm rel} \times \frac{N(B_c^+)}{N(B^+)},\tag{3.1}$$

where $N(B_c^+)$ and $N(B^+)$ are the numbers of B_c^+ and B^+ signal events respectively, ε_{rel} is the relative total efficiency.

The $B^+ \to J/\psi K^+$ and $B_c^+ \to J/\psi \pi^+$ are selected with as similar requirements as possible. J/ψ candidates are selected in the same way as described in Section 2.1, except that the $p_T(\mu)$ minimum value requirement is increased to 900 MeV/*c*, and the vertex fit quality requirement tightened to $\chi^2/\text{ndf} < 9$ to get a purer J/ψ sample. J/ψ candidates with an invariant mass in [3.04, 3.14] GeV/ c^2 and a p_T above 1.5 GeV/*c* are combined with a charged track with a p_T above 1.5 GeV/*c* and a good track fit quality to form B_c^+ and B^+ candidates. No particle identification requirement is imposed on the π^+ and K^+ . A J/ψ mass constrained vertex fit is applied to improve the reconstructed *B* mass resolution, and only the *B* candidates with a vertex fit quality ($\chi^2/\text{ndf} <$ 9) are kept. *B* candidates with a p_T larger than 4 GeV/*c*, a proper time larger than 0.3 ps and 2.5 < $\eta < 4.5$ are used in the production rate measurement. This fiducial region is chosen to be sufficiently far away from the detector acceptance limits, in order to have a large efficiency over the full acceptance. Fig. 3 shows the invariant mass distributions of the $B_c^+ \to J/\psi \pi^+$ and $B^+ \to J/\psi K^+$ candidates obtained with the selection described above.

The numbers of B_c^+ and B^+ signal events are extracted from an extended unbinned maximum likelihood fit to the B_c^+ and B^+ invariant mass distributions respectively. The mass distribution of signal is described by a Gaussian function and the combinatorial background by an exponential function. For the B^+ , the contamination from Cabibbo-suppressed $B^+ \rightarrow J/\psi \pi^+$ is also considered. This background contribution is modeled from the invariant mass shape observed on a $B^+ \rightarrow J/\psi \pi^+$ simulated sample, reconstructed as $B^+ \rightarrow J/\psi K^+$. The fit yields 43 ± 13 and 3476 ± 62 signal candidates in the case of the B_c^+ and B^+ respectively. The relative total efficiencies are obtained using $B^+ \rightarrow J/\psi K^+$ and $B_c^+ \rightarrow J/\psi \pi^+$ simulation samples and checked with data.

Since the two decay modes have a similar topology, most of the systematic uncertainties cancel in the ratio R_{c+} . The main uncertainty is due to the selection requirement on the proper time of the *B* meson (t(B) > 0.3 ps) because the B_c^+ lifetime is only known to a precision of 10%, $\tau(B_c^+) = 0.453 \pm 0.041$ ps [3]. The uncertainty will be reduced by performing a more precise measurement of the B_c^+ lifetime.

The preliminary measurement of ratio R_{c+} is:

$$\mathscr{R}_{c+} = \frac{\sigma(B_c^+) \times BR(B_c^+ \to J/\psi\pi^+)}{\sigma(B^+) \times BR(B^+ \to J/\psi K^+)} = (2.2 \pm 0.8(\text{stat.}) \pm 0.2(\text{syst.})) \%.$$

4. Summary

The measurement of the double differential cross-section of prompt J/ψ and J/ψ from *b* is presented. The main systematics due to J/ψ polarisation will be largely reduced after a J/ψ polarisation measurement. A preliminary measurement of the ratio of production cross-section times branching ratio for $B_c^+ \rightarrow J/\psi\pi^+$ relative to that of $B^+ \rightarrow J/\psi K^+$ is also discussed.

References

- [1] The LHCb Collaboration, A. A. Alves et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.
- [2] The LHCb Collaboration, R. Aaij *et al.*, *Measurement of J/\psi production in pp collisions at \sqrt{s} = 7 TeV, Eur. Phys. J. C* **71** (2011) 1645 [arXiv:1103.04237 [hep-ex]].
- [3] The Particle Data Group, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021.
- [4] The DELPHI Collaboration, P. Abreu et al., J/ψ production in the hadronic decays of the Z, Phys. Lett. B 341 (1994) 109; The L3 Collaboration, O. Adriani et al., χ_c production in hadronic Z decays, Phys. Lett. B 317 (1993) 467; The ALEPH Collaboration, D. Buskulic et al., Measurements of mean lifetime and branching fractions of b hadrons decaying to J/ψ, Phys. Lett. B 295 (1992) 396.
- [5] The CDF Collaboration, T. Aaltonen *et al.*, *Measurement of ratios of fragmentation fractions for bottom hadrons in pp̄ collisions at √s = 1.96 TeV*, *Phys. Rev. D* 77 (2008) 072003 [arXiv:0801.4375 [hep-ex]].
- [6] The Heavy Flavour Averaging Group (HFAG), D. Asner *et al.*, Averages of b-hadron, c-hadron, and τ-lepton properties, arXiv:1010.1589 [hep-ex].
- [7] T. Sjöstrand, S. Mrenna and P. Z. Skands, PYTHIA 6.4 physics and manual, version 6.422, J. High Energy Phys. 0605 (2006) 026 [arXiv:hep-ph/0603175].
- [8] D. J. Lange, *The EvtGen particle decay simulation package*, *Nucl. Instrum. Methods A* 462 (2001) 152.
- [9] The LHCb Collaboration, R. Aaij *et al.*, *Measurement of* $\sigma(pp \rightarrow b\bar{b}X)$ *at* $\sqrt{s} = 7$ TeV *in the forward region, Phys. Lett. B* **694** (2010) 209 [arXiv:1009.2731 [hep-ex]].
- [10] The LHCb Collaboration, Measurement of the B_c^+ to B^+ production cross-section ratios at $\sqrt{s} = 7$ TeV in LHCb, CERN-LHCb-CONF-2011-017.