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1. Introduction

The theoretical description of semi-leptonic decays of heavy hadrons is in a very mature state.
The major tool for reliable calculations is the Heavy Quark Expansion (HQE) and Heavy Quark
Effective Theory (HQET) together with the Heavy Quark Symmetries (HQS) appearing in the
heavy mass limit.

The determination of Vcb can be performed from exclusive as well as from inclusive decays.
While the inclusive determination makes use of the HQE, the exclusive determination uses HQS,
which constrain the form factors at the non-recoil point, where the four-velocities of the initial and
final state hadrons are the same.

The theory for the inclusive determination based on HQE has reached the status of a precision
calculation. It is based on the computation of the total rate, which in HQE is given as a combined
series in αs(mb)

n, (ΛQCD/mb)
m, and (ΛQCD/mc)

k(ΛQCD/mb)
l+3 [1]. Currently the leading term

m = k = 0 is known to order α2
s [2, 3], the first sub-leading corrections are partially known to order

α2
s × (ΛQCD/mb)

2 [4], while the tree level terms are known to order (ΛQCD/mb)
m [5], and the term

involving inverse powers of mc (ΛQCD/mc)
2(ΛQCD/mb)

3 [6]. Overall, this calculation has reached
a theoretical uncertainty at the level of one percent.

Exclusive determinations of Vcb rely on the decays B→ D(∗)`ν̄ . The normalization of the
from factors is known from HQS, but a precise determination of Vcb requires to take into account
corrections to the HQS normalizations. This can be done either by QCD lattice calculations [7]
or by exploiting QCD sum rules at the non-recoil point [8]. While the intrinsic uncertainties of
the QCD sum rule calculations limit this method to uncertainties at the level of five percent, QCD
lattice calculations can in principle achieve a better accuracy. However, the current uncertainty is
comparable and at the level of four percent. Overall the resulting value for Vcb is compatible with
the one extracted from inclusive decays, although the exclusive value extracted from the lattice
calculations is close to two standard deviations smaller.

The determination of Vub can also be performed from exclusive as well as from inclusive
decays. However, in the application of HQE as well as the determination of the form factors is more
complicated. Over the past year there has not been any significant progress in the inclusive method,
which requires in general the input of non-pertubative functions, the so-called shape functions. This
renders the discussion of sub-leading terms in the HQE as well as the calculation of QCD radiative
corrections complicated.

Exclusive determinations of Vub require the knowledge of form factors. Focussing on B→
π`n̄u, the relevant form factor can be estimated either from lattice QCD or from QCD light cone
sum rules. Both methods are complementary, since lattice QCD is restricted to large values of the
leptonic momentum transfer q2, while QCD sum rules work best at low q2. Extrapolating both
methods yields a consistent picture for the form factor, giving us sme confidence that we know the
form factor at a level of five to ten percent.

Extracting Vub independently from inclusive and exclusive (B→ π`ν̄) decays yields values
which are only marginally consistent, the tension between the two values is at the level of 2.5 σ ’s.
Including the recently measured value for the purely leptonic decay B→ τν̄ using the lattice value
for fB confuses the situation further, and hence we cannot claim to know Vub better than at a level
of ten to fifteen percent, although the individual methods claim to be more precise than that.
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In the following I shall focus on two recent subjects related to the determination of Vcb and Vub.
I will first discuss new methods for the estimation of the matrix elements appearing in the HQE at
higher orders, which eventually may lead to a further reduction of the uncertainty in the inclusive
determination of Vcb. As a second topic I shall present an update of the QCD light cone sum rule
calculation of B→ π`ν̄ and comment on the role of B→ τν̄ in the determination on Vub.

2. New methods in the calculation of hadronic matrix elements in the HQE

Within HQE, the total semileptonic rate as well as the differential distributions are represented
in terms of an expansion of the form

dΓ = dΓ0 +

(
ΛQCD

mb

)2

dΓ2 +

(
ΛQCD

mb

)3

dΓ3 +

(
ΛQCD

mb

)4

dΓ4 (2.1)

+dΓ5

(
a0

(
ΛQCD

mb

)5

+a2

(
ΛQCD

mb

)3(
ΛQCD

mc

)2
)
+ ...+dΓ7

(
ΛQCD

mb

)3(
ΛQCD

mc

)4

The coefficients dΓi are themselves functions of mc/mb which are – up to logarithms of mc –
regular in the limit mc→ 0, and which have an expansion in αs(mb). Furthermore, the dΓi depend
on non-perturbative parameters corresponding to matrix elements of increasing dimension.

The relevant hadronic matrix elements are

2MH µ
2
π = −〈H(v)|Q̄v(iD)2Qv|H(v)〉 : Kinetic Energy (2.2)

2MH µ
2
G = 〈H(v)|Q̄vσµν(iDµ)(iDν)Qv|H(v)〉 : Chromomagnetic Moment (2.3)

for dΓ2 and

2MHρ
3
D = −〈H(v)|Q̄v(iDµ)(ivD)(iDµ)Qv|H(v)〉 : Darwin Term (2.4)

2MHρ
3
LS = 〈H(v)|Q̄vσµν(iDµ)(ivD)(iDν)Qv|H(v)〉 : Spin-Orbit Term (2.5)

for dΓ3.
Going to higher orders one faces a proliferation of the number of independent matrix elements.

At order 1/m4
b we have already nine matrix elements, at order 1/m5

b this increases to 18, and at 1/m6
b

there will be already 72 independent non-perturbative parameters.
Obviously these parameters cannot be determined from experiment any more, and hence we

have to find a way to estimate them theoretically. To this end, we define a simple way for such an
estimate based on a simple asumption which, however, can be systematically refined.

The higher order matrix elements can all be expressed in the form

〈B|b̄ iDµ1 iDµ2 · · · iDµn Γb(0)|B〉, (2.6)

where Γ denotes an arbitrary Dirac matrix. The representation is obtained by splitting the full chain
iDµ1 iDµ2 · · · iDµn into A= iDµ1 iDµ2 · · · iDµk and C= iDµk+1 iDµk+2 · · · iDµn .

In order to discuss the idea of the method we shall first assume that the derivatives in A and C
are all spatial derivatives. In the following we show the intermediate state represenation

〈B|b̄ AC Γb(0)|B〉= 1
2MB

∑
n
〈B|b̄Ab(0)|n〉 · 〈n|b̄ C Γb(0)|B〉, (2.7)

3
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where we have assumed the B mesons to be static and at rest, |B〉 = |B(p=(MB,~0))〉, and |n〉 are
the single-b hadronic states with vanishing spatial momentum.

Eq. (2.7) can be proven based on the operator product expansion. We introduce a ficticious
heavy quark Q which will be treated as static, and consider a correlator at vanishing spatial mo-
mentum transfer~q

TAC(q0) =
∫

d4x eiq0x0〈B|iT
{

b̄AQ(x) Q̄CΓb(0)
}
|B〉. (2.8)

We shall use the static limit for both b and Q, and hence introduce the ‘rephased’ fields Q̃(x)=
eimQq0x0Q(x) and likewise for b, and omit tilde in them in what follows. The form of the resulting
exponent suggests to define ω = q0−mb+mQ as the natural variable for TAC, and 1

2MB
TAC(ω) is

assumed to have a heavy mass limit.
With large mQ we can perform the OPE for TAC(ω) at |ω|�ΛQCD still assuming that |ω|�mQ

and neglecting thereby all powers of 1/mQ. In this case the propagator of Q becomes static,

iT{Q(x)Q̄(0)}= 1+ γ0

2
δ

3(~x)θ(x0)P exp
(

i
∫ x0

0
A0 dx0

)
, (2.9)

and yields

TAC(ω) = 〈B|b̄A
1

−ω−π0−i0
C 1+γ0

2 Γb|B〉 , (2.10)

where π0 = iD0 is the time component of the covariant derivative. This representation allows im-
mediate expansion of TAC(ω) in a series in 1/ω at large |ω|:

TAC(ω) =−
∞

∑
k=0
〈B|b̄A

(−π0)
k

ωk+1 C 1+γ0
2 Γb|B〉 . (2.11)

Alternatively, the scattering amplitude can be written through its dispersion relation

TAC(ω) =
1

2πi

∫
∞

0
dε

1
ε−ω+i0

discTAC(ε) , (2.12)

where we have used the fact that in the static theory the scattering amplitude has only one, ‘physi-
cal’ cut corresponding to positive ω . The discontinuity is given by

i
∫

d4x eiεx0〈B|b̄AQ(x) Q̄CΓb(0)|B〉 (2.13)

and amounts to

discTAC(ε) = ∑
nQ

i
∫

d4x e−i~pn~x ei(ε−En)x0〈B|b̄AQ(0)|nQ〉〈nQ|Q̄CΓb(0)|B〉, (2.14)

where the sum runs over the complete set of the intermediate states |nQ〉; their overall spatial
momentum is denoted by ~pn and energy by En.

The spatial integration over d3x and integration over time dx0 in Eq. (2.14) yield (2π)3δ 3(~pn)

and 2π δ (En−ε), respectively. Therefore only the states with vanishing spatial momentum are
projected out, and we denote them as |n〉:

discTAC(ε) = ∑
n

2πiδ (ε−En) 〈B|b̄AQ(0)|n〉〈n|Q̄CΓb(0)|B〉. (2.15)

4
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Inserting the optical theorem relation (2.15) into the dispersion integral (2.12) we get

TAC(ω) = ∑
n

〈B|b̄AQ(0)|n〉〈n|Q̄CΓb(0)|B〉
En−ω+i0

, (2.16)

and the large-ω expansion takes the form

TAC(ω) =−
∞

∑
k=0

1
ωk+1 ∑

n
Ek

n 〈B|b̄AQ(0)|n〉〈n|Q̄CΓb(0)|B〉 . (2.17)

Equating the leading terms in 1/ω of TAC(ω) in Eq. (2.11) and in Eq. (2.17) we arrive at the
relation

〈B|b̄ AC 1+γ0
2 Γb(0)|B〉= ∑

n
〈B|b̄AQ(0)|n〉 · 〈n|Q̄ C Γb(0)|B〉 (2.18)

which is the intermediate state representation (2.7). Note that the projector (1+γ0)/2 in the left
hand side can be omitted since the b̄ field satisfies b̄= b̄(1+γ0)/2 in the static limit.

Operators involving time derivatives can be obtained by considering higher values of k in
Eqs. (2.11) and (2.17) which describe the subleading in 1/ω terms in the asymptotics of TAC(ω).
We readily generalize the saturation relation (2.7):

〈B|b̄ Aπ
k
0 C 1+γ0

2 Γ
1+γ0

2 b(0)|B〉= ∑
n
(EB−En)

k 〈B|b̄AQ(0)|n〉 · 〈n|Q̄ C 1+γ0
2 Γ

1+γ0
2 b(0)|B〉 . (2.19)

Thus, each insertion of operator (−π0) inside a composite operator acts as a factor of the interme-
diate state excitation energy. This is expected, for equation of motion of the static quark field Q
allows to equate

i∂0 Q̄Cb(x) = Q̄π0Cb(x)

for any color-singlet operator Q̄Cb(x). At the same time we have

i∂0 〈n|Q̄Cb(x)|B〉=−(En−MB)〈n|Q̄Cb(x)|B〉.

The intermediate state representation (2.7) still does not assume any approximation aside from
the static limit for the b quark, yet it may be used to apply a dynamic QCD approximation. The one
we employ here uses as an input the B-meson heavy quark expectation values (2.6) of dimension 5
and 6, which are expressed through µ2

π , µ2
G, ρ3

D and ρ3
LS.

All operators with four and more derivatives must have an even number of spatial deriva-
tives due to rotational invariance. Thus the operators with four derivatives have either four spatial
derivatives, or two time and two spatial derivatives.

We shall discuss the D=7 operators with four spatial derivatives, and apply (2.18):

〈B|b̄ iD jiDkiDliDmΓb|B〉=∑
n
〈B|b̄iD jiDkb|n〉〈n|b̄ iDliDmΓb|B〉. (2.20)

The intermediate states |n〉 in the sum are either the ground-state multiplet B,B∗, or excited states
with the suitable parity of light degrees of freedom. The ground-state factorization approximation
assumes that the sum in (2.20) is to a large extent saturated by the ground state spin-symmetry
doublet. Hence we retain only the contribution of the ground state and discard the contribution of

5
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higher excitations. In the case of dimension seven operators the result is expressed in terms of the
expectation values with two derivatives, i.e. µ2

π and µ2
G; matrix elements involving B∗ are related

to them by spin symmetry.
Applying this we obtain for spin-singlet and spin-triplet B expectation values of D=7 involv-

ing spatial derivatives only:

1
2MB
〈B|b̄ iD jiDkiDliDm b|B〉=(µ2

π)
2

9
δ jkδlm +

(µ2
G)

2

36
(
δ jmδkl−δ jlδkm

)
(2.21)

1
2MB
〈B|b̄ iD jiDkiDliDm σab b|B〉=−

µ2
π µ2

G
18

(
δ jkδlaδmb−δ jkδlbδma +δlmδ jaδkb−δlmδ jbδka

)
+

(µ2
G)

2

36
[
δ jm(δlbδka−δlaδkb)−δ jl(δkaδmb−δkbδma)+

δkl(δ jaδmb−δ jbδma)−δkm(δ jaδlb−δ jbδla)
]
. (2.22)

Finally, we need to consider the expectation values of the form 〈B|b̄ iD jiDk
0iDl [σ ] b|B〉 for

k= 2,3 which evidently belong to the tower of µ2
π,G and ρ3

D,LS. Likewise, their values could be
considered as the input describing strong dynamics, along with the latter; yet they have not been
constrained experimentally. The intermediate states saturating such expectation values have op-
posite parity to the ground state (P-wave states) regardless of number of time derivatives. The
counterpart of the ground-state saturation approximation here is retaining the contribution of the
lowest P-wave resonance in the sum; then each power of time derivative amounts to the extra power
of −ε̄ , where ε̄ =MP−MB≈0.4GeV.

In fact, there are two families of the P-wave excitations of B mesons corresponding to spin
of light degrees of freedom 3

2 or 1
2 . The combinations µ2

π−µ2
G, ρ3

D+ρ3
LS, ... receive contributions

only from the 1
2 -family, whereas the 3

2 -family gives rise to µ2
π+2µ2

G
3 , ρ3

D−2ρ3
LS

3 , etc. [9] (the transition
amplitude into the lowest 1

2 P-state appears to be suppressed). Therefore, it makes sense to consider
these two structures separately and approximate

〈B|b̄ iD j(−iD0)
k+1iDl b|B〉=

(
ε̄

k
3/2

2ρ3
D−ρ3

LS
9

+ ε̄
k
1/2

ρ3
D+ρ3

LS
9

)
δ jl (2.23)

〈B|b̄ iD j(−iD0)
k+1iDlσ jl b|B〉=−ε̄

k
3/2

2ρ3
D−ρ3

LS
3

+ ε̄
k
1/2

2ρ3
D+2ρ3

LS
3

. (2.24)

Note that assuming ε̄1/2 = ε̄3/2 = ε̄ implies ρ3
D' ε̄µ2

π and −ρ3
LS' ε̄µ2

G; the first relation seems to
be satisfied by the preliminary values of µ2

π and ρ3
D extracted from experiment.

This ground state saturation method can be extended also to higher dimensional operators in an
obvious way. Furthermore, there is also the possibility for a refinement of the method by including
more states aside from the ground state. In this way a systematic approach can be constructed to
obtain reliable estimates for the higher order matrix elements.

As expected, the effect on the total rate and hence on Vcb is small. However, the moments of
differential distributions are more strongly affected; this is currently under consideration.

3. Update on the exclusive determination of Vub

Currently, B→ πlν` is the most reliable exclusive channel to extract |Vub| [10]. There is a
steady progress in measuring the branching fraction and q2-distribution for l = µ,e (see [11, 12, 13]

6
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for the latest results). The hadronic vector form factor f+Bπ
(q2) and its scalar counterpart f 0

Bπ
(q2)

relevant for this decay are defined as

〈π+(p)|ūγµb|B̄0(p+q)〉 = f+Bπ
(q2)

[
2pµ +

(
1− m2

B−m2
π

q2

)
qµ

]
+ f 0

Bπ(q
2)

m2
B−m2

π

q2 qµ , (3.1)

where f+Bπ
(0) = f 0

Bπ
(0). The most recent lattice QCD computations with three dynamical flavours

[14, 15] predict these form factors at q2 ≥ 16 GeV2, in the upper part of the semileptonic region
0 ≤ q2 ≤ (mB−mπ)

2 ' 26.4GeV2, with an accuracy reaching 10%. There are also recent results
available [16] in the quenched approximation on a fine lattice. QCD light-cone sum rules (LCSR)
with pion distribution amplitudes (DA’s) allow one to calculate the B→ π form factors [17, 18, 19,
20, 21] at small and intermediate momentum transfers, 0 ≤ q2 ≤ q2

max, where the choice of q2
max

varies between 12 and 16 GeV2.
The QCD light cone sum rule calculation has been updated for the prediction the integral:

∆ζ (0,q2
max)≡

G2
F

24π3

q2
max∫

0

dq2 p3
π | f+Bπ

(q2)|2 = 1
|Vub|2τB0

q2
max∫

0

dq2 dB(B→ π`ν`)

dq2 , (3.2)

where pπ =
√
(m2

B +m2
π −q2)2/4m2

B−m2
π is the pion 3-momentum in the B-meson rest frame, and

the above equation is valid for `= e,µ in the limit ml = 0. As in [21], the value q2
max = 12.0 GeV2

is adopted. The predicted ∆ζ (0,12GeV2) is used to extract |Vub| from the most recent BABAR-
collaboration results [11, 12] for the measured partial branching fraction integrated over the same
q2-region. Furthermore, we predict the form factors in the whole semileptonic region by fitting the
LCSR results at q2 ≤ q2

max to the z-series parameterization in the form suggested in [22].
The details of the calculation can be found in [10]; our predictions for f+Bπ

are, within errors, in
a reasonable agreement with the lattice QCD results obtained by HPQCD [14] and Fermilab/MILC
[15] collaborations. We also observe an agreement with the normalization and shape of the form
factors obtained by the QCDSF collaboration [16], in particular, they predict f+Bπ

(0) = 0.27±
0.07±0.05.

Furthermore, we estimate the total width of B→ π`ν` in units of 1/|Vub|2 and the integral (3.2)
for the large q2-region:

1
|Vub|2

Γ(B→ π`ν`) = ∆ζ (0,26.4GeV2) = 7.71+1.71
−1.61 ps−1 ,

∆ζ (16GeV2,26.4GeV2) = 1.88+0.53
−0.59 ps−1 . (3.3)

Using the most recent data from BaBar we update our value for Vub from the LCSR calculation
to be

|Vub|= (3.50+0.38
−0.33

∣∣
th.±0.11

∣∣
exp.)×10−3 . (3.4)

4. The role of B→ τν̄ in the determination of Vub.

The measurement of the leptonic width B→ τντ can also be used to extract Vub, once the value
of the B meson decay constant fB is known. Currently, the central value for the leptonic width

7
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B→ τντ measured by both BABAR and Belle collaborations is larger than the SM prediction:

B(B−→ τν̄τ) =
G2

F

8π
|Vub|2m2

τmB

(
1− m2

τ

m2
B

)2

f 2
BτB− , (4.1)

if one employs fB predicted from lattice QCD or QCD sum rules, together with |Vub| extracted from
B→ π`ν`.

The recent discussions on this situation are mostly concentrated on the value of |Vub|. Indeed,
the tension decreases, if one uses in (4.1) the somewhat larger value of |Vub| extracted from the
inclusive b→ u decays. On the other hand, the CKM fits [23, 24] yield a smaller |Vub|, consistent
with the determinations from B→ π`ν`.

Let us emphasize that, independent of the actual |Vub| value, there exists a tension between the
ratio of semileptonic and leptonic B widths and the QCD predictions for the two relevant hadronic
matrix elements f+Bπ

(q2) and fB. To demonstrate that, we define the following observable:

Rs/l(q
2
1,q

2
2)≡

∆BB→π`ν`(q
2
1,q

2
2)

B(B→ τντ)

(
τB−

τB0

)
=

∆ζ (q2
1,q

2
2)

(G2
F/8π)m2

τmB(1−m2
τ/m2

B)
2 f 2

B
, (4.2)

where the partial branching fraction ∆B and the integral ∆ζ defined as in (3.2), are taken over the
same region q2

1 ≤ q2 ≤ q2
2 of the momentum transfer.

Exp. ∆B(10−4) [Ref.] B(B→ τντ)(10−4) [Ref.] Rs/l

BABAR 0.32±0.03 [11] 1.76±0.49 [25, 26] 0.20+0.08
−0.05

0.33±0.03±0.03 [12]

Belle 0.398±0.03 [13] 1.54+0.38
−0.37

+0.29
−0.31 [27] 0.28+0.13

−0.07

QCD ∆ζ (ps−1) [Ref.] fB(MeV) [Ref.] Rs/l

HPQCD 2.02±0.55 [14] 190±13 [28] 0.52±0.16

FNAL/MILC 2.21+0.47
−0.42 [15] 212±9 [29] 0.46±0.10

Table 1: The ratio Rs/l for the region 16GeV2 < q2 < 26.4GeV2, measured and calculated from (4.2) using
the lattice QCD results. The weighted average over the two BABAR measurements is taken and all errors
are added in quadrature.

The above equation for the ratio Rs/l follows solely from the V − A structure of the weak
currents in SM and Vub cancels out in the ratio. The form factor f+Bπ

and decay constant fB entering
r.h.s. are obtained by one and the same QCD method: lattice QCD or the combination of LCSR and
QCD sum rule. In Tables 1 and 2 we collect the inputs for this equation, obtained from different
measurements and QCD calculations. The disagreement between the calculated and measured

8
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Exp. ∆B(10−4) [Ref.] B(B→ τντ)(10−4) [Ref.] Rs/l

BABAR 0.88±0.06 [11] 1.76±0.49 [25, 26] 0.52+0.20
−0.12

0.84±0.03±0.04 [12]

QCD ∆ζ [Ref.] fB(MeV) [Ref.] Rs/l

LCSR/QCDSR 4.59+1.00
−0.85 [10] 210±19 [30] 0.97+0.28

−0.24

Table 2: The same as in Table 1 for the region 0 ≤ q2 ≤ 12.0GeV2 where the QCD sum rule results are
used.

ratio Rs/l goes beyond the theoretical and experimental errors, especially in the case of the lattice
calculations which have smaller uncertainties.

Decreasing further the theoretical and experimental errors in (4.2), especially in the B→ τντ

width, becomes therefore a very important task. Possible effects beyond the SM in B→ τντ are
already being discussed in the literature, and, in particular, B→ Dτντ is proposed as a channel
which has common new physics contributions with the leptonic B decay (see e.g. [31] and refer-
ences therein).

5. Summary

The current situation concerning the determination of Vcb from exclusive and inclusive decays
is satisfctory. The inclusive determination has currently an uncertainty at the level of 1.5% and
yields a value ov Vcb that is compatible with the one determined from exclusive decays. With the
2010 update of the lattice value for the form factors the exclusive value for Vcb went up and became
more compatible with the inclusive one.

The situation with Vub is less satisfactory. The inclusive determinations yield values which
tend to be higher than the exclusive ones. Due to the phase space cuts the HQE is much less precise
than in the case of Vcb, and due to our ignorance of the shape functions it is very difficult to improve
the precision. The theoretical control over the exclusive channels such as B→ π`ν̄ has improved
due to more precise sum rule calculations and better lattice simulations. The uncertainties of both
approaches are at the level of ten percent, where the inclusive method is believed to be slightly
better. However, the exclusive value of Vub is approximately 2.5 σ ’s smaller than the inclusive one.
Both methods have been scrutinized in detail to find a possible source for the tension. However,
until today no contributions have been found which were omitted and which could account for the
tension.
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