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Extrapolation for IR Divergent Integrals Elise de Doncker

1. Introduction

For infrared (IR) divergent loop integrals, the integrand functions have non-integrable singularities
through vanishing denominators. Based on dimensional regularization, the integral is expanded as
a function of a parameter that approaches zero [9].

In this paper we report numerical results for the leading coefficients obtained by convergence
acceleration (extrapolation) of a sequence of integral approximations. The methods are explained
in detail in [4], where also results are given using double precision arithmetic. In the present paper
we give extensive results using quadruple precision and show that in many cases the accuracy can
be improved to near the relative machine accuracy.

According to the asymptotic behavior of the integral, we can explore linear or nonlinear ex-
trapolation techniques. The asymptotic expansion gives rise to linear systems of the form

S` =
n−1

∑
k=0

ak ϕk(ε`), 1≤ `≤ n, (1.1)

where S` is generally a scaled version of the integral I(ε), approximated numerically. A linear
system solver or a linear extrapolation method can be used if the ϕk are known functions of ε`.

Otherwise, a nonlinear extrapolation may be suitable, depending on the nature of the ϕk functions.
For (small) ε > 0, the numerical integral approximation may be affected by singular integrand

behavior which occurs at the boundaries and/or in the interior of the integration domain. The sam-
ple integrals in this paper pertain to classes of one-loop vertex integrals which are two-dimensional,
over the unit triangle {(x,y) | 0 ≤ y ≤ 1− x ≤ 1}. An iterated or repeated numerical integration
can be performed efficiently with the general adaptive integration programs DQAGS/DQAG from
QUADPACK [14].

The expansions derived symbolically in [9] generally involve hypergeometric functions. We
calculate the hypergeometric function numerically in Section 3, using an extrapolation to handle
the singularity in the integration interval. In Section 4 we present results for the case of one off-
shell (p2

3 6= 0) and two on-shell (p2
1 = p2

2 = 0) particles. The coefficients of the divergent terms
in the integral expansion are calculated with an extrapolation as the parameter ε introduced by
dimensional regularization goes to zero. The integrals in the sequence have integrand singularities
on the boundaries of the integration region.

Section 5 addresses IR divergent integrals with one on-shell and two off-shell particles, where
integrand singularities may occur in the interior as well as on the boundaries of the integration
domain. In this case, the integrals in the extrapolation sequence with respect to ε involves an
extrapolation to deal with the interior singularity.

2. Extrapolation

For a sequence {S(ε`)}, which converges to the limit S = limε`→0 S(ε`), an extrapolation may be
performed with the goal of creating sequences which convergence faster than the given sequence,
based on its asymptotic expansion

S(ε)∼S +A1ϕ1(ε)+A2ϕ2(ε)+ . . . . (2.1)
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τ00

0 τ01
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0 τ11 . . .
. . . . . .
. . . . . .

0 τκ−1,1 . . .
τκ0 τκ−1,2

0 τκ1

τκ+1,0

τκ,−1 = 0

τκ,0 = Sκ

τκ,λ+1 = τκ+1,λ+1 +
1

τκ+1,λ − τκλ

Table 1: ε-algorithm table

as ε → 0. In the context of series convergence we consider the limit of its partial sums. Some
extrapolation methods allow summing divergent series to a value referred to as anti-limit.

A linear extrapolation yields solutions to linear systems of the form

S(ε`) = a0 +a1ϕ1(ε`)+ . . .aνϕν(ε`), ` = 0, . . . ,ν , (2.2)

of order (ν +1) × (ν +1) for increasing values of ν [12, 2]. The sequence of ε` may be geometric
or another type of sequence that decreases to 0. As an example, Romberg integration relies on
the Euler-Maclaurin expansion of the integral as a function of the step size ε = h. Then (2.1) is
assumed to be an expansion in even powers of h, for the composite trapezoidal rule values S(h) with
h = 2−`, `≥ 0. Values for a0 ≈S are obtained for successive ν by solving the (ν +1) × (ν +1)
systems of (2.2) implicitly using the Neville algorithm.

More general sequences of ε include the sequence by Bulirsch, of the form 1/b` with b` =
2,3,4,6,8,12, . . . . (consisting of powers of 2, alternating with 1.5× the preceding power of 2).
The type of sequence selected influences the stability of the process, which was found more stable
with the geometric sequence than with the harmonic sequence (with the Bulirsch seuence in be-
tween) [12]. On the other hand there is a trade-off with the computational expense of S(ε), which
may become prohibitive for fast decreasing ε. For the computations in subsequent sections we use
scaled versions of b`, e.g., b`/16.

If the functions of ε in the asymptotic expansion (2.1) are not known, a nonlinear extrapola-
tion or convergence acceleration may be suitable [17, 16, 11, 8]. As an example of a nonlinear
extrapolation method, the ε-algorithm [17] implements the sequence-to-sequence transformation
by [15] recursively; and can be applied when the ϕ functions are of the form ϕk(ε) = εβk logνk(ε),
under some conditions on νk and βk and if a geometric sequence is used for ε. The actual form of
the underlying ε-dependency does not need to be specified.

Table 1 gives the recurrence of the ε algorithm for a sequence Sκ , κ = 0,1, . . . and depicts the
layout of the computations in a triangular table.
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PARAMETERS REAL/ EXTRAPOLATED ESTIM. REL. TOTAL INT.
l m n IMAG. RESULT S (ν) ERR. E(ν)

r
ν TIME (S)

1 1 1 REAL -1.4533220287861469626056457257e-02 7.09e-29 22 7.58e-02
IMAG. -1.5079644737231007544620688243e-01 2.34e-28 22 9.70e-02

1 2 3 REAL 8.4177671687810393005426755543e-02 2.85e-28 22 1.26e-01
IMAG. -2.2902210444669592708392670265e-01 1.61e-29 22 1.20e-01

2 1 1 REAL 1.08766468837090905178932142e-02 7.26e-26 21 1.08e-01
IMAG. 2.63893782901542632030862046e-02 1.66e-27 22 1.30e-01

2 3 4 REAL -2.89056808231506117361219566e-02 2.38e-26 22 1.47e-01
IMAG. 5.57897846432151278376445447e-02 1.44e-27 22 1.42e-01

3 1 2 REAL -1.02672179830170273331993276e-02 2.94e-27 21 2.42e-01
IMAG. -5.65486677646162782923279e-02 4.29e-24 21 2.70e-01

3 4 5 REAL 8.12135882438810010895282e-03 2.58e-24 21 1.79e-01
IMAG. -1.27463626362435298394122e-02 3.92e-25 23 2.13e-01

Table 2: Integration and extrapolation results for 2F1(l +1, l +m, l +m+n+1,z+ i0) for relative integration
error tolerance of 10−25 and the Bulirsch sequence for extrapolation

3. Hypergeometric function

A representation of the hypergeometric function is given by the Gauss series

F(a,b,c;z) =
∞

∑
k=0

Γ(a+ k) Γ(b+ k)
Γ(c+ k)

zk

k!

which has |z |= 1 as its circle of convergence and has an analytic continuation defined by the Euler
integral [1],

2F1 (a,b,c;z) =
Γ(c)

Γ(b)Γ(c−b)

∫ 1

0

t b−1(1− t)c−b−1

(1− t z)a dt, (3.1)

Rec > Reb > 0, which denotes a one-valued analytic function in the complex plane cut along the
real axis from 1 to ∞.

For a numerical computation where z ∈ R, we replace z by z + iδ and evaluate the limit of

2F1 (a,b,c;z + iδ ) as δ → 0 by solving linear systems of the form (2.2) with ϕk(δ`) = δ k
` , k =

1, . . . ,ν and S(δ`) = 2F1 (a,b,c;z+ iδ`), ` = 0, . . . ,ν .

Table 2 lists results for a problem set from [10] where a = l +1, b = l +m, c = l +m+n+1
at z = 10 (real). The relative error tolerances for the outer and inner integration are set at 10−25 and
10−26, respectively. Since b and c are positive integer, the numerator in the integrand is polynomial,
so there are no end-point singularities. We use the general adaptive integrator DQAG of QUADPACK

for the iterated integrations, with the 7-point Gauss and 15-point Kronrod rules applied on each
subinterval in its adaptive partitioning strategy.

Note that the weights and abscissae of the integration rules in DQAG are given to 33 digits
and the relative machine accuracy in quadruple precision is of about the same order. Table 2 gives
quadruple precision results, extending the (10-digit) accuracy of the double precision calculations
reported in [4]. As compiler we use the intel Fortran Composer XE with the -r16 flag. The cal-
culations are run on a Macbook-Pro laptop with 3.06 GHz Intel Core 2 Duo processor and 8 GB
memory (Mac OS X Version 10.6.4).

According to (2.2) we obtain S (ν)≈ a0 for the systems of order (ν +1)×(ν +1), ν = 1,2, . . ..
The difference of successive results in E(ν)

a = |S (ν)−S (ν−1)| gives a measure of convergence.
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Table 2 lists l, m, n followed by the result S (ν), the relative measure of convergence E(ν)
r =

E(ν)
a / |S (ν)|, the value of ν and the time taken (in seconds) for the integrals S(δ`), ` = 0, . . . ,ν ,

needed to obtain the result. The other times in the program are not taken into account, including the
system solving time which was measured and found negligible compared to the integration times.

While we could have listed the result obtained after the error falls below 10−25, we instead
listed the result with the smallest estimated relative error. As expected, better accuracy is obtained
for the smaller values of l, m, n.

4. Asymptotics for one off-shell, two on-shell particles

We first address the IR divergent integral J3 (p2
1, p2

2, p2
3;nx,ny) from [9] with one off-shell (p2

3 6=
0) and two on-shell particles (p2

1 = p2
2 = 0), which we denote here by J3 (p2

1, p2
2, p2

3;nx,ny;ε) =
1

(4π)2 Inx,ny
3 (ε), with

Inx,ny
3 (ε) =

ε Γ(−ε)
(4πµ2

R)ε

∫ 1

0
dx
∫ 1−x

0
dy

xnxyny

(−p2
3xy− i0)1−ε

(4.1)

= ε Γ(−ε)
(
−p̃3

2

4πµ2
R

)ε 1
−p2

3

B(nx + ε,ny + ε)
nx +ny +2ε

.

where p̃3
2 = p2

3 +i0 and µ2
R is a renormalization constant (which we will replace by µ2

R← eγE /(4π),
γE is Euler’s constant). The introduction of the parameter ε pertains to the dimension regularization
technique [13].

When nx = η 6= 0 or ny 6= 0, we have

I η ,0
3 (ε)∼ 1

p2
3

(
C−1

ε
+C0 +O(ε)

)
with (4.2)

C−1 =
1
η

, C0 =− 2
η2 +

1
η

(
ln(−p2

3)−
η−1

∑
j=1

1
j

)
.

A linear extrapolation can be formulated using systems of the form (2.2) with S`(ε`) = ε`Î(ε`)
where Î(ε`)≈ I η ,0

3 (ε) and ϕk(ε`) = εk
` .

Table 3 displays results for the real parts of the coefficients C−1 and C0 in the expansion, for
nx = η = 2 and ny = 0. In view of the integrand singularity along y = 0 through the factor yε−1

where the exponent approaches -1, and a second derivative singularity along x = 0 through the fac-
tor x1+ε in (4.1), we perform the calculation of Î(ε`) with the program DQAGS of QUADPACK [14],
which is equipped to deal with these end-point singularities. DQAGS uses the 7-point Gauss and
15-point Kronrod rule on each subinterval created in its adaptive subdivision strategy.

We set the requested relative accuracies to 5× 10−24 for the outer and 10−25 for the inner
integral. Table 3 lists the sequence of extrapolation results and shows how much accuracy can be
reached. (After that, the accuracy no longer improves; i.e., stagnates for a few steps and decreases).
The difference between successive results provides a good estimate of the convergence. For this
problem it usually gives a somewhat conservative bound for the actual error, in the sense that the
difference with the result of the previous step is in fact a measure of the error in the previous step.
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INTEGRATION EXTRAPOLATION RESULTS
ν # EVALS TIME C−1 C0

(s)

1 1125075 1.10 0.8707294126792779500928011356924 -0.5511174754172542062710316596
2 1349535 1.34 0.3457684478555631741492957488633 3.1236092783487492253335060482
3 1348875 1.33 0.5262024637357823738306365020734 0.7779670719058996294760762565
4 134 9355 1.33 0.4976817315764365660976698223580 1.3769024472521615918683765304
5 1324125 1.30 0.5001453140694736901417736134445 1.3030216329875385877494858112
6 1274625 1.26 0.5000001921131322347567104032762 1.3025651116288535549087530061
7 127 4625 1.25 0.4999999959467322713652940448364 1.3025850791321435704903401609
8 1225125 1.21 0.4999999999993260163866288358759 1.3025850932043285642085160900
9 1200375 1.18 0.5000000000000053069685193174512 1.3025850929940632251166716065

10 1175625 1.16 0.4999999999999999722450728860463 1.3025850929940632251166716065
11 1101375 1.08 0.5000000000000000001089023336541 1.3025850929940455873126312708
12 1076625 1.06 0.4999999999999999999997158886319 1.3025850929940456843793808956
13 1037475 1.02 0.5000000000000000000000005564493 1.3025850929940456840169987640
14 1037475 1.00 0.4999999999999999999999999992988 1.3025850929940456840179932776
15 952425 0.90 0.4999999999999999999999999999980 1.3025850929940456840179914927

Total time : 20.31 Exact : 0.5 1.3025850929940456840179914547

Table 3: Integration performance (DQAGS)2, for rel. integration error tolerances 5× 10−24 (outer), 10−25

(inner); nx = η = 2, ny = 0 and p2
3 = 100. Extrapolated real values.

The final accuracy reached for C−1 is about 2× 10−30 (absolute error), 4× 10−30 (relative error).
The accuacy in C0 lags behind and reaches about 4×10−26 (absolute) or 3×10−26 (relative error).

When nx = ny = 0 we have

I 0,0
3 (ε)∼ 1

p2
3

(
C−2

ε2 +
C−1

ε
+C0 +O(ε)

)
with

C−2 = 1, C−1 = ln(−p2
3), C0 =−π2

12
+

1
2

ln2(−p2
3). (4.3)

With relative tolerances of 10−26 for the outer and 5× 10−27 for the inner integrations, we obtain
the best relative accuracies for C−2, C−1 and C0 at ν = 15, of 7.88e-25, 4.33e-22 and 4.0e-19,
respectively. Note that the best accuracies for this problem obtained in double precision with
integration tolerances of 10−13 (outer), 5×10−14 (inner) are reported in [4] as 3.06e-12, 1.44e-10
and 7.99e-09 at ν = 11. The latter can also be compared with our 10−26, 5× 10−27 quadruple
precision result at ν = 11, which yields 3.18e-14, 3.04e-12 and 5.24e-10, respectively.

5. Asymptotics for one on-shell, two off-shell particles

In the case of one on-shell (p2
1 = 0) and two off-shell (p2

2 6= 0, p2
3 6= 0) particles, the IR diver-

gent integral is

J3 (0, p2
2, p2

3;nx,ny;ε) =
1

(4π)2 J3 (0,0, p2
3;nx,ny;ε) 2F1 (1,1− ε,2+nx;

p2
3− p2

2

p̃3
2 )

nx + ε

nx +1
(5.1)

=
1

(4π)2
ε Γ(−ε)
(4πµ2

R)ε

∫ 1

0
dx
∫ 1−x

0
dy

xnxyny

(−(p2
3− p2

2)xy− p2
2y(1− y)− i0)1−ε

.

(5.2)

6
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For nx = ny = 0 we use the expansion

J3 (0, p2
2, p2

3;nx,ny;ε)∼ C̃−1

ε
+C̃0 +O(ε) (5.3)

with

C̃−1 =− 1
(4π)2 p2

3

ln(1− z)
z

C̃0 =− 1
(4π)2 p2

3

(
C−1

ln(1− z)
z

+
ln2(1− z)

2z

)

with z = p2
3−p2

2
p̃3

2 and the C−1 coefficient of (4.3). In the subsections below we will give results for

two methods for the computation of J3 (0, p2
2, p2

3;nx,ny;ε), the first based on (5.1) and the second
on (5.2).

5.1 Computation of J3 (0, p2
2, p2

3;nx,ny) with hypergeometric function

We intend to perform an extrapolation with respect to the parameter ε for dimensional regu-
larization. According to (5.1), each term in the extrapolation sequence consists of a double integral
multiplied with a hypergeometric function, both dependent on ε. We calculate the hypergeometric
function numerically using the δ extrapolation of Section 3, to alleviate the characteristic non-
integrable singularity on the real axis when it occurs inside the integration interval.

Here z = p2
3−p2

2
p̃3

2 in the fourth argument of 2F1 in (5.1) is replaced by z+ iδ . Thus in this process
we need to evaluate sequences of hypergeometric functions of the form

2F1 (1,1− ε`, 2+nx;
p2

3− p2
2

p̃3
2 + iδκ ), κ = 1,2, . . .

for ε = 1,2, . . . . The number of κ-values needed depends on the convergence for each (fixed) ε.

As the exponents b−1 =−ε` and c−b−1 = nx +ε` in the integrand numerator tb−1(1− t)c−b−1

of the Euler integral (3.1) are non-integer, we use the QUADPACK program DQAGS to treat the
integrand behavior at the end-points.

Extrapolated (real part) results for C̃−1 and C̃0 in (5.3) and actual absolute errors are listed in
Table 4. By setting p2

2 = 40, p2
3 = −100, for the purpose of a numerical example, we have that

Re(z) = 1.4, so that the hypergeometric function has an integrand singularity at t = 1/1.4 in the
interior of the integration interval (0,1).

The relative error tolerances for DQAGS were 10−26 for the outer integration and 5×10−27 for
the inner integrals. The maximum number of subdivisions was set to 150 for J3 in both directions
and to 300 for 2F1. For the dimensional regularization extrapolation, the Bulirsch sequence was
used starting at 3, i.e., 3,4,6,. . . .

For p2
3 = −100, the integral in (4.1) is real and is multiplied with the (complex) value of

the hypergeometric function. The real and imaginary parts of the latter are currently computed
separately which, for the real part, took between about 0.44 and 0.55 seconds, and for the imaginary
part between 0.33 and 0.41 seconds. Thus the time for the hypergeometric function computation
for each equation in the linear system is under a second and is dominated by the times for the

7
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TIME EXTRAPOLATION RESULTS
ν INT.(S) C̃−1 |ERROR| C̃0 |ERROR|
4 3.47 -4.2192812666950192419664334e-05 7.47e-07 -3.7121279333017303070237e-04 2.39e-05
5 3.47 -4.1395889404540049511801909e-05 5.04e-08 -3.9751126098970774666184e-04 2.42e-06
6 3.41 -4.1448485840565542759037853e-05 2.21e-09 -3.9493403562445857754728e-04 1.59e-07
7 3.39 -4.1446205836959577424975383e-05 7.16e-11 -3.9510047588769404693383e-04 7.45e-09
8 3.33 -4.1446278988182334267440660e-05 1.53e-12 -3.9509279500930457847498e-04 2.32e-10
9 3.30 -4.1446277437326639980970560e-05 2.43e-14 -3.9509303229022580430491e-04 5.25e-12
10 3.53 -4.1446277461859729880198253e-05 2.56e-16 -3.9509302696654529617250e-04 7.97e-14
11 3.86 -4.1446277461602157717453434e-05 2.01e-18 -3.9509302704716538311163e-04 8.86e-16
12 3.75 -4.1446277461604182432081146e-05 1.05e-20 -3.9509302704627248396080e-04 6.66e-18
13 3.81 -4.1446277461604171849957952e-05 4.14e-23 -3.9509302704627918244479e-04 3.67e-20
14 3.77 -4.1446277461604171891430927e-05 1.08e-25 -3.9509302704627914557531e-04 1.37e-22
15 3.81 -4.1446277461604171891322514e-05 3.19e-28 -3.9509302704627914571332e-04 5.44e-25
16 3.76 -4.1446277461604171891322881e-05 4.87e-29 -3.9509302704627914571267e-04 1.12e-25
17 3.82 -4.1446277461604171891322692e-05 1.39e-28 -3.9509302704627914571315e-04 3.69e-25
18 3.78 -4.1446277461604171891323096e-05 2.63e-28 -3.9509302704627914571171e-04 1.07e-24
19 3.82 -4.1446277461604171891322859e-05 2.63e-29 -3.9509302704627914571292e-04 1.40e-25

Ex : -4.1446277461604171891322832e-05 -3.9509302704627914571278e-04

Table 4: Integration performance (DQAGS)2, for rel. integration error tolerances 10−26 (outer), 5× 10−27

(inner); vertex with one on-shell, two off-shell particles, nx = ny = 0 and p2
2 = 40, p2

3 =−100. Extrapolated
real values and corresponding actual absolute errors.

integrations of J3 in (4.1) (given in Table 4). The total time spent in the double integration is 68.3
seconds (including that of the first three steps, which are not shown).

A sample diagram for the vertex correction with one on-shell and two off-shell particles is
depicted in Figure 1 for the in qq → qqg interaction. Here the vertical gluon propagator carries p2

3
and the u-quark emitting a gluon carries p2

2. Note that the vertical gluon propagator can be virtual
so that the square of its momentum becomes negative.

5.2 Computation of J3 (0, p2
2, p2

3;nx,ny) using direct integration

In this section we calculate the integral in (5.2) directly, which becomes highly singular at
y = 0 as ε → 0 and non-integrable for ε = 0, in view of the factor yε−1 in the integrand yε−1

(−D)1−ε . It

can be seen that (p2
3− p2

2)x + p2
2(1− y) = 0 along a line that goes through ( p2

2 /(p2
2− p2

3) ,0) and
(0,1). Thus for p2

2 = 40, p2
3 =−100, this line runs through the integration domain, where it causes

a singularity that becomes non-integrable as ε → 0.

ν C−1 |ERROR| C0 |ERROR|
4 -4.2192812666986e-05 7.47e-07 -3.712127933292e-04 2.39e-05
5 -4.1395889404493e-05 5.04e-08 -3.975112609915e-04 2.42e-06
6 -4.1448485840595e-05 2.21e-09 -3.949340356225e-04 1.59e-07
7 -4.1446205836943e-05 7.16e-11 -3.951004758891e-04 7.45e-09
8 -4.1446278988175e-05 1.53e-12 -3.950927950097e-04 2.23e-10
9 -4.1446277437321e-05 2.43e-14 -3.950930322905e-04 5.24e-12
10 -4.1446277461827e-05 2.23e-16 -3.950930269725e-04 7.38e-14
11 -4.1446277461600e-05 3.96e-18 -3.950930270436e-04 2.69e-16
Ex: -4.1446277461604e-05 -3.950930270463e-04

Table 5: Integration performance (DQAGS)2, for rel. integration error tolerances 10−15 (outer), 10−16

(inner); Vertex with one on-shell, two off-shell particles, nx = ny = 0 and p2
2 = 40, p2

3 =−100. Extrapolated
real parts and actual absolute errors.
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Figure 1: qq → qqg diagram. The vertical gluon propagator carries p2
3 and the u-quark emitting a gluon

carries p2
2.

According with previous work (e.g., [6, 7, 5, 18, 3]), we will replace i0 by iδ in the integrand
denominator of (5.2). This leads to integrals of the form

I3 (ε,δ ) =
1

(4π)2
ε Γ(−ε)
(4πµ2

R)ε

∫ 1

0
dx
∫ 1−x

0
dy

xnxyny

(−(p2
3− p2

2)xy− p2
2y(1− y)− iδ )1−ε

∼
˜̃C−1(δ )

ε
+ ˜̃C0(δ )+O(ε) (5.4)

to be computed in an extrapolation as δ → 0, for each (fixed) value of the dimensional regular-
ization parameter ε. The expansion (5.3) or (5.4) with respect to ε justifies a linear extrapolation.
However, a linear extrapolation as δ → 0 is not suited, as it cannot be assumed that the underlying
expansion is in integer powers of δ .

ν C−1 |ERROR| C0 |ERROR|
1 0.758010428109e-04 6.63e-05 9.62356140022e-04 4.38e-04
2 1.464854199104e-04 4.38e-06 4.67565500325e-04 5.66e-05
3 1.420636477897e-04 3.90e-08 5.25048537895e-04 4.91e-07
4 1.421000460091e-04 2.58e-09 5.24284175287e-04 8.47e-08
5 1.421026578481e-04 3.01e-11 5.24197984601e-04 1.48e-09
6 1.421026279735e-04 2.13e-13 5.24199448458e-04 1.55e-11
7 1.421026277585e-04 2.16e-15 5.24199464154e-04 2.32e-13
8 1.421026277612e-04 5.84e-16 5.24199463865e-04 5.64e-14

Ex: 1.421026277606e-05 5.24199463922e-04

Table 6: Integration performance (DQAGS)2, for rel. integration error tolerances 10−15 (outer), 10−16

(inner); Vertex with one on-shell, two off-shell particles, nx = ny = 0 and p2
2 = 40, p2

3 =−100. Extrapolated
imaginary parts and actual absolute errors.
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Preliminary results are shown in Tables 5-6 for the real and the imaginary parts, respectively.
We employ a sequence of δκ = 2−8−κ , κ = 0,1, . . . in an extrapolation using the ε-algorithm of
Wynn [15, 17]. The current implementation incorporates a simple strategy with an extrapolation
sequence of fixed length (= 18), which should be improved with a termination criterion based on
the estimated errors. Geometric sequences of δ with a smaller ratio should also be tested. For the
extrapolation with respect to ε the Bulirsch sequence 3,4,6, . . . is used.

The requested accuracies for DQAGS are 10−15 for the outer and 10−16 for the inner integra-
tions. The real and imaginary parts are calculated separately as the QUADPACK programs currently
do not handle complex functions. The imaginary parts converge more quickly than the real parts
for this problem. We list the steps 1 to 8; the last for a 9× 9 system. The results do not improve
after that. Note that it is not necessary to solve the previous systems, but the integrals need to be
calculated to set up the system. Successive systems can be solved to provide an estimate of the
error.

Conclusions

We use 1D integration programs from QUADPACK for the iterated integrations underlying the ex-
trapolation processes for IR divergent vertex integrals. We give preliminary results in quadruple
precision which demonstrate that the calculations result in high accuracy. For the vertex computa-
tion with one on-shell and two off-shell particles we devise a double extrapolation, since problems
are introduced with integrand singularities in the interior of the domain as well as on the bound-
aries. Many integrals result, which makes the computation a good candidate for parallelization,
especially when applied to more complicated diagrams and possibly in higher precision.

More work is needed for improvements and extensions of these strategies, and for the anal-
ysis of the numerical methods and results. This computation is a step toward a more automatic
numerical handling of various types of loop integrals, thereby circumventing the need for a precise
knowledge of the location and structure of the singularities.
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