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1. Introduction

Recent high-precision experiments in high energy physics require high-precision theoretical
predictions in perturbation theory for a wide variety of physical processes, and the automatisation
of theoretical calculations are indispensable. In the evaluation of Feynman amplitudes with mass-
less particles, infrared (soft and collinear) divergences can appear in each amplitude separately.
However, for suitably defined physical observables, they cancel out among virtual loop corrections
and real emission processes. One has to regulate infrared divergences at intermediate calculation
steps.

In perturbative QCD, it is common that the divergences are regulated by dimensional reg-
ularisation, and divergent parts are expressed as poles in terms ofε = (4−D)/2, whereD is the
space-time dimension. An one-dimensional example of an isolation of the divergence is as follows:∫ 1

0
dx

f (x)
x1−ε =

∫ 1

0
dx

f (0)
x1−ε +

∫ 1

0
dx

f (x)− f (0)
x1−ε

=
f (0)

ε
+

∞

∑
n=0

εn

n!

∫ 1

0
dx lnn(x)

f (x)− f (0)
x

,
(1.1)

where we have assumed thatf (x) is a finite function in the domain of integration. This integral is
divergent forε = 0 due to the factor 1/x1−ε , which produces a logarithmic divergence by integration
aroundx∼ 0. In the right-hand side, asubtraction techniquewas used to isolate a pole ofε . The
integral in the first term can be analytically performed, and the second term becomes finite for
ε → 0. This example shows that, if the singular part of the integrand is factored out as powers of
an integration variable, one can easily extract divergent part as poles in terms ofε .

The extraction of divergences from more complicated integrals withoverlapping divergences
can be performed by usingsector decomposition[1] in an algorithmic fashion [2–4]. Let us
consider the following two-dimensional example:

I =
∫ 1

0
dx

∫ 1

0
dy

f (x,y)
(x+y)2−ε , (1.2)

with a finite functionf (x,y) for the domain of integration. This integral is divergent forε = 0 due
to a singularity around bothx,y∼ 0. We divide the integration region such thatx andy are ordered
in each region (sector):

I =
∫ 1

0
dx

∫ 1

0
dy

f (x,y)
(x+y)2−ε

[
Θ(x> y)+Θ(y> x)

]
. (1.3)

In the sector withx> y, the singular behaviour is controlled by the dominant termx in the denom-
inator. We rescaley→ xy and then we factor outx from the denominator. In the sector withy> x,
on the other hand, we factor outy with a rescalingx→ xy. We then obtain

I =
∫ 1

0
dx

∫ 1

0
dy

f (x,xy)
x1−ε(1+y)2−ε +

∫ 1

0
dx

∫ 1

0
dy

f (xy,y)
y1−ε(1+x)2−ε . (1.4)

Now we can extract the poles from each integral by the subtraction technique.
For more complicated integrands, usual sector decomposition method divides the integration

region and find appropriate new variables by an iterative way, but it is not trivial whether the
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iteration always terminates or not. Actually it was found that a simple iterative method may fail
into an infinite loop. To avoid this problem,strategiesfor iterated sector decomposition which
are guaranteed to terminate mathematically have been proposed by several authors [5–7]. Since
one has to compute the integration for each sector, the sector decomposition method is desired to
produce as less number of sectors as possible. Up to now, several practical packages, in which
iterated sector decomposition is implemented, are publicly available [5, 6, 8, 9].

We propose another method of sector decomposition, which is based on a classification of
asymptotic behaviour of polynomials around the origin. We recast the problem to a set of ones
in convex geometry, which can be solved with algorithms developed in computational geometry.
These are deterministic algorithms without iterations. In this talk, based on Ref. [10], we present
our basic ideas and show results from a test implementation of this method.

2. Factorisation of overlapping singularities

Let us consider the following polynomial:

Q(x1,x2) = x1x4
2+x2

1x2
2+x4

1x2. (2.1)

The our goal is to perform sector decomposition such as∫ 1

0
d2x

[
Q(x1,x2)

]β
=

∫ 1

0
d2x(x1x4

2+x2
1x2

2+x4
1x2)

β = ∑
∫ 1

0
d2xxα1

1 xα2
2

[
1+ Q̃(x1,x2)

]β
, (2.2)

whereQ̃ is a polynomial which vanishes atx1 = x2 = 0, and then the polynomial1+Q̃ in the square
bracket has a finite value at the origin.

First, we split the integration region into three sectors such that in each sector one of the terms
in Q is dominant over other terms:

I =
∫ 1

0
d2x(x1x4

2+x2
1x2

2+x4
1x2)

β =
∫ 1

0
d2x(x1x4

2+x2
1x2

2+x4
1x2)

β

×
[
Θ(x1x4

2 > x2
1x2

2,x
4
1x2)+Θ(x2

1x2
2 > x1x4

2,x
4
1x2)+Θ(x4

1x2 > x1x4
2,x

2
1x2

2)
]
.

(2.3)

In the sector withx1x4
2 > x2

1x2
2,x

4
1x2, the singular behaviour at the origin is governed by the dominant

termx1x4
2. Thus we factor outx1x4

2, and the rest of the terms has a finite value by construction:

I1 =
∫ 1

0
d2x(x1x4

2+x2
1x2

2+x4
1x2)

β Θ(x1x4
2 > x2

1x2
2,x

4
1x2)

=
∫ 1

0
d2x(x1x4

2)
β
(

1+
x2

1x2
2

x1x4
2

+
x4

1x2

x1x4
2

)β
Θ(x1x4

2 > x2
1x2

2,x
4
1x2)

=
∫ 1

0
d2xxβ

1 x4β
2

(
1+

x1

x2
2

+
x3

1

x3
2

)β
Θ(x2

2 > x1).

(2.4)

In this form, the singular part of the integrand is factored out as powers of integration variables, but
the integration region is not a unit square and the terms in the square bracket are not monomials.
These difficulties can be removed with a rescalingx1 → x1x2

2. We then obtain

I1 =
∫ 1

0
d2xxβ

1 x6β+2
2 (1+x1+x3

1x3
2)

β . (2.5)
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One can factor out dominant terms in the other two sectors in a similar way, and rescale(x1,x2)→
(x1x2

2,x
2
1x2) andx2 → x2

1x2, respectively, to obtain

I =
∫ 1

0
d2xxβ

1 x6β+2
2 (1+x1+x3

1x3
2)

β +3
∫ 1

0
d2xx6β+2

1 x6β+2
2 (1+x3

1+x3
2)

β

+
∫ 1

0
d2xx6β+2

1 xβ
2 (1+x2+x3

1x3
2)

β .

(2.6)

Now one can easily isolate poles by the subtraction technique.
The above example shows that sector decomposition can be solved by the following two steps:

1. To determine the integration regions where each term becomes dominant and split sectors by
them. Then the dominant term can be factored out.

2. To find a new parametrisation of the integration variables such that the integration region is
restored to a unit hypercube and other terms are expressed as monomials. In general, this
may require more splitting sectors.

In the next section, we will see that these problems can be recast to ones in convex geometry.

3. Geometric approach

In order to find the dominant terms, we change the integration variablesxi = e−yi . The poly-
nomialQ becomes

Q= x1x4
2+x2

1x2
2+x4

1x2 = e−(y1+4y2)+e−(2y1+2y2)+e−(4y1+y2) ≡ e−
~P1·~y+e−

~P2·~y+e−
~P3·~y, (3.1)

with
~P1 = (1,4), ~P2 = (2,2), ~P3 = (4,1), ~y= (y1,y2). (3.2)

In this way, each monomial inQ can be mapped one-to-one to a integer vector~Pi in the two-
dimensional Euclidean space (Fig.1a). For the sector where the first term is dominant, we can
write

I1 =
∫ ∞

0
d2ye−

~1·~y
(

e−
~P1·~y+e−

~P2·~y+e−
~P3·~y

)β
Θ
(
(~P2−~P1) ·~y> 0

)
Θ
(
(~P3−~P1) ·~y> 0

)
, (3.3)

where~1= (1,1). The integration region is aconvex polyhedral cone(with the apex at the origin).
We denote the region where the first term is dominant as∆1 (Fig. 1b):

∆1 =
{
~y∈ R2

≥0

∣∣ (~P2−~P1) ·~y> 0∧ (~P3−~P1) ·~y> 0
}
, (3.4)

and factor out the dominant term to obtain

I1 =
∫ ∞

0
d2ye−(β~P1+~1)·~y

(
1+e−(~P2−~P1)·~y+e−(~P3−~P1)·~y

)β
Θ(~y∈ ∆1). (3.5)

In general, ann-variable polynomialQ corresponds to a set of points inn-dimensional Eu-
clidean spaceZ = (~P1,~P2, . . . ,~Pm) with ~Pi ∈ Zn

≥0. Then the region wherei-th term is dominant is
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y1

y2

O

P1

P2

P3

y1

y2

O

∆1

∆2

∆3

(a) (b)

Figure 1: (a) The points in two-dimensional Euclidean space corresponding to the monomials inQ and (b)
the corresponding regions where each monomial is dominant.

given as∆i =
{
~y∈Rn

≥0

∣∣ (~Pj −~Pi) ·~y> 0, ∀~Pj ∈ Z
}

. One can express this region in terms of convex
geometry. For a finite setS, aconvex polyhedral cone Cis defined by

C(S) =

{
∑
~v∈S

rv~v∈ Rn

∣∣∣∣ rv ≥ 0, ∀~v∈ S

}
. (3.6)

A dual cone C∨ of a convex polyhedral coneC is defined by

C(S)∨ =
{
~y∈ Rn

∣∣~v·~y≥ 0, ∀~v∈C(S)
}
. (3.7)

Then∆i can be expressed as

∆i =C(Zi)
∨∩Rn

≥0, with Zi = (~P1−~Pi , . . . ,~Pm−~Pi). (3.8)

If there are two or more polynomials one must consider, one should consider an intersection of dual
cones, such as∆i j =C(Zi)

∨∩C(Z′
j)
∨∩Rn

≥0.
The integration region∆1 in Eq. (3.5) is a simplicial cone, a convex polyhedral cone with

n edges inn-dimensional space. This means one can parametrise a point~y in ∆1 by barycentric
coordinate:

yi =
2

∑
j=1

(~v j)iu j , u j ∈ R≥0, (3.9)

where~vi ’s are integer vectors corresponding to edges of∆1. From Fig.1b, one can readv1 = (1,0)
andv2 = (2,1) for ∆1. We subsequently change the variable fromyi to ui then fromu j to zi = e−ui .
We finally obtain

I1 = |detV|
∫ 1

0
d2z

2

∏
i=1

z(β
~P1+~1)·~vi−1

i

[
1+

2

∏
i=1

z(
~P2−~P1)·~vi

i +
2

∏
i=1

z(
~P3−~P1)·~vi

i

]β

=
∫ 1

0
d2zzβ1 z6β+2

2 (1+z1+z3
1z3

2)
β ,

(3.10)
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Table 1: Comparison of number of sectors among different methods. The numbers in columns “A”, “B”,
“C”, “S” and “X” indicate corresponding strategy described in Refs. [5] and [6]. The numbers in column
“H” are from Ref. [14]. The numbers marked with “*” are given by [15]. “This method” indicates the
number of sectors obtained by our method. “Exponential S.D.” indicates the number of sectors before the
triangulation. As described in Ref. [6], “F” means that the sector decomposition fails and “M” means that
the memory overflow happened during the sector decomposition on a 8Gb machine.

Diagram A B C S X H This Exponential
method S.D.

Bubble 2 2 2 2∗ 2 2 2
Triangle 3 3 3 3∗ 3 3 3
Box 12 12 12 12 12 12 8
Tbubble 58 48 48 48∗ 48 48 36
Double box,p2

i = 0 775 586 586 362 293 282 266 106
Double box,p2

4 6= 0 543∗ 245∗ 245∗ 230∗ 192∗ 197 186 100
Double box,p2

i = 0 1138 698 698 441∗ 395 360 120
nonplanar

D420 8898 564 564 180 F 168 100
3 loop vertex (A8) 4617∗ 1196∗ 1196∗ 871∗ 750∗ 684 684 240
Triple box M 114256 114256 22657 10155 6568 856

whereV is a matrix constructed asV = (v1,v2). Note that(~Pi −~P1) ·~v j is a non-negative integer
since~v j ∈ ∆1.

In three or higher dimension, a convex polyhedral cone may not be a simplicial cone. In a
such case, we needtriangulation, splitting a convex polyhedral cone into simplicial cones. The
triangulation of convex polyhedral cones is not uniquely determined, and the number of sectors
will depend on the algorithm.

4. Test implementation

We have made a test implementation of this method. For a convex hull method to construct
intersections of dual cones, we adapted incremental algorithm described in Ref. [11], and modified
it for convex polyhedral cones. For the triangulation of convex polyhedral cones, we used our own
algorithm described in Ref. [10].

The procedure of constructing convex hull was checked by comparison with another package
qhull [12]. The triangulation of convex polyhedral cones was checked by computing integration
volume of resulting simplexes. As non-trivial checks, we compared integrated values of several
loop diagrams in the literature. The input to our program was given by the program package
partly described in Ref. [13], which builds expressions of loop integrals and performs primary
sector decomposition. The output was passed to the same program package, which continues the
subsequent isolation of divergences by the subtraction, expansion in terms ofε , and numerical
integration steps. It was confirmed that integrated values agree well within the statistical errors.
We show the numbers of decomposed sectors in Table1.
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5. Conclusion

We have proposed a new method of sector decomposition employing a geometric interpretation
of the problem. The original problem is converted to a set of problems in convex geometry. A test
implementation shows that the number of decomposed sectors is less than usual iterative sector
decompositions.
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