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1. Introduction

To regularize the Landau singularity in the next-to-leading order calculations for processes at
LHC and future ILC, loop diagrams with complex massive particles are interested.

In this paper, we present the progress in the development of XLOOPS-GiNaC and show the
results of Feynman scalar one-loop box integral with complex masses. The loop integration is
performed directly in parallel and orthogonal space (POS) of internal momentum following the
method by Kreimer [5]. The method possibly opens a new way to avoid the singularity of the
Gram determinant and to regularize Landau poles simultaneously.

2. Progress in development of XLOOPS-GiNaC

The aim of XLOOPS-GiNaC is to provide a C++ library to calculate one- and two-loop one,
two, three, and four-point Feynman integrals with arbitrary masses (zero, real or complex masses)
and at any tensor rank. It is based on GiNaC [6], a CAS written in C++.

The structure of XLOOPS-GiNaC is shown in the Fig. 1. XLOOPS-GiNaC provides a com-
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Figure 1: The structure of XLOOPS-GiNaC

plete C++ library for both one- and two-loop functions, and asimple interactive interface via
ginsh-xloops for one-loop functions. For numerical integration of two-loop functions, VEGAS
[7] or ParInt package [8] is used. The analytical part of two-loop functions is written in terms of
Hypergeometric functions that can be evaluated by nestedsum library [9].

At the current state, the one-loop one-, two-, and three-point functions are tested and imple-
mented into XLOOPS-GiNaC. The two-loop two-point and four-point functions are not complete
and still in implementation and testing phase.

In this paper, we introduce a new function for the scalar one-loop four-point integral with com-
plex masses into XLOOPS-GiNaC. Details of the calculation will be published elsewhere [10]. The
algorithm for the new function is actually an extension of the previous works done by Franzkowski
for scalar one-loop four-point integrals with real massiveparticles [11]. Different to the previ-
ous version of XLOOPS-GiNaC where the input parameters are written in parallel and orthogonal
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components of momenta, the new function uses the de facto input parameters of LoopsTools. The
syntax of the new function is as follow

Scalar_OneLoop_4Pt(p1, p2, p3, p4, p1p2, p2p3, m1, m2, m3, m4, rho); (2.1)

where the scalar one-loop four-point integral is defined by

∫

d4l
1

4
∏
i=1

[(l +qi)2−m2
i + iρ ]

p1 p2

p3p4

l

l + p1

l + p1 + p2

l + p1 + p2 + p3

(2.2)

with p1p2 = (p1 + p2)
2
, p2p3 = (p2+ p3)

2, andqi =
i

∑
j=1

p j. The masses can be complexm2
i =

m2
0i − im0iΓi. The width of unstable particles,Γi, is positive.

Because of changing to the new interface, one-loop four-point function has been temporary
implemented in a separate module and will be merged into XLOOPS-GiNaC when the interface of
all the other one-loop functions (one-, two-, and three-point) are rewritten.

3. The results

In this section, we present some results of the new one-loop four-point module which can be
compared to that of LoopTools 2.5 and of Direct Computation Method.

3.1 Scalar one-loop box diagram

We consider one-loop box diagram with complex masses which contributes to the process
gg → bb̄H as in Fig. 2. To compare with the results of [12] we chose the input parameters for
XLOOPS-GiNaC as follow:p2

5 = M2
H = 27225 GeV2, p2

3 = p2
4 = M2

b = 0 GeV2, s2 = (p1+ p2)
2 =

124609 GeV2, M0t = 174.0 GeV, Γt = 1.5 GeV, M0W = 80.3766 GeV,ΓW = 2.1 GeV,
√

s1 =

271.06 GeV

Figure 2: The one-loop box diagram of processgg → bb̄H from [12]

The real and imaginary parts of the scalar one-loop box integral which are calculated by
XLOOPS-GiNaC is shown in Fig. 3. In the real masses case, a Landau singularity appears at
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Figure 3: The real and the imaginary part of the scalar one-loop four-point integral that contributes to
gg → bb̄H

√
s2 =

√

(p4+ p5)2 = 264 GeV. When the widthsΓt = 1.5 GeV andΓW = 2.1 GeV are inserted
into the masses, Landau pole is regularized. These results are in good agreement with [12].

In Table 1 we show the numerical results of XLOOPS-GiNaC along with that of LoopTools 2.5
and of Direct Computation Method at some points in the configuration space. The computing speed
is as fast as of LoopTools. In Table 2, other comparisons withLoopTools in various configurations
of masses and momenta including timelike, spacelike and lightlike cases are shown. All the results
are in good agreement with LoopTools.

m2
3 real/imag. XLOOPS-GiNaC LoopTools 2.5 Direct Computaion Method

10 Real 2.476607718585036053E−4 0.000247661 0.2476607718651927E−03

Imag. 4.830551285215682584E−4 0.000483055 0.4830551284955444E−03

100 Real 8.1543415594642731853E−5 8.15434E−05 0.8154341560206131E−04

Imag. 1.5450057163059433522E−4 0.000154501 0.1545005716281967E−03

1000 Real 1.47691716458090845525E−5 1.47692E−05 0.1476917164636933E−04

Imag. 2.2197908354423311047E−5 2.21979E−05 0.2219790835451625E−04

Table 1: Input parameters (in GeV2) used in the calculations:p2
1 = 10, p2

2 = −60, p2
3 = −10, p2

4 = −10,
(p1+ p2)

2 = 200,(p2+ p3)
2 =−10,m2

1 = 10−5i, m2
2 = 20−0i, m2

4 = 40−10i.

3.2 Toward two-loop box diagrams

The POS method was applied to evaluate UV-finite two-loop boxdiagrams with real masses
[13]. Recently, we continue to extend the works of R. Kreckelet al to a same set of integrals
including complex masses cases. After careful investigation the structure of two-loop integrals, we
noticed that the same integration procedure of scalar one-loop box integral can be used to reduce
eight-fold integrals of scalar two-loop box diagrams down to four-folds integrals those are inputs
of numerical integration step. The interested diagrams areshown in Fig. 4. However, the stability
of numerical integration is the biggest issue that we have totame at the moment.
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(p2
1, p2

2, p2
3, p2

4, p1p2, p2p3) Real/Imag. XLOOPS-GiNaC LoopTools 2.5

(10,60,10,90,200,10) Real −7.6754958275901916E−4 −0.00076755
Imag. 7.9369236308335912E−4 0.000793692

(10,60,−10,90,200,10) Real −6.221361528827869E−4 −0.000622136
Imag. 8.2028978832352737E−4 0.00082029

(10,60,−10,−10,200,−10) Real −2.8547305408820357E−4 −0.000285473
Imag. 5.894737433975371E−4 0.000589474

(10,−60,−10,−90,200,−10) Real 1.531845524366800E−4 0.000153185
Imag. 2.561867870169164E−4 0.000256187

(10,60,0,90,200,10) Real −6.9233899095796788E−4 −0.000692339
Imag. 8.1110140262125966E−4 0.000811101

(10,60,0,0,200,−10) Real −3.3499315746623337E−4 −0.000334993
Imag. 6.178621892720976E−4 0.000617862

(10,0,0,0,200,−10) Real 9.195393358045053E−5 9.19539E−05

Imag. 5.2601566543985510E−4 0.000526016

Table 2: Input parameters (in GeV2) used in the calculations:m2
1 = 10−5i, m2

2 = 20−2i, m2
3 = 30−3i,

m2
4 = 40−4i, andρ = 10−30.

Figure 4: The two-loop box diagram [13]

4. Conclusion

In this paper, we presented various results of evaluating the scalar one-loop four-point integral.
The results are carefully compared with known results of LoopTools 2.5 and Direct Computation
Method. The results are in good agreement.

In the next step, we will extend the calculation procedure toevaluate tensor one-loop four-
point integrals as well as two-loop box integrals. We hope toarchive a computer program for one
and two loop evaluation with Gram determinant singularity free.
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