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1. Introduction

To regularize the Landau singularity in the next-to-legdimder calculations for processes at
LHC and future ILC, loop diagrams with complex massive géet are interested.

In this paper, we present the progress in the development.&fOPS-GiNaC and show the
results of Feynman scalar one-loop box integral with compiasses. The loop integration is
performed directly in parallel and orthogonal space (POShternal momentum following the
method by Kreimer [5]. The method possibly opens a new waywtadathe singularity of the
Gram determinant and to regularize Landau poles simultastgo

2. Progressin development of XLOOPS-GiNaC

The aim of XLOOPS-GiNaC is to provide a C++ library to cal¢alane- and two-loop one,
two, three, and four-point Feynman integrals with arbjtnarasses (zero, real or complex masses)
and at any tensor rank. It is based on GiNaC [6], a CAS writte@++.

The structure of XLOOPS-GiNaC is shown in the Fig. 1. XLOOBiBlaC provides a com-
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Figure 1: The structure of XLOOPS-GiNaC

plete C++ library for both one- and two-loop functions, angimple interactive interface via
ginsh-xloops for one-loop functions. For numerical integration of tvamp functions, VEGAS
[7] or Parint package [8] is used. The analytical part of tap functions is written in terms of
Hypergeometric functions that can be evaluated by nestedibuary [9].

At the current state, the one-loop one-, two-, and threatgdanctions are tested and imple-
mented into XLOOPS-GiNaC. The two-loop two-point and fpoint functions are not complete
and still in implementation and testing phase.

In this paper, we introduce a new function for the scalar loog-four-point integral with com-
plex masses into XLOOPS-GiNaC. Details of the calculatidhbg published elsewhere [10]. The
algorithm for the new function is actually an extension @& gevious works done by Franzkowski
for scalar one-loop four-point integrals with real masgpagticles [11]. Different to the previ-
ous version of XLOOPS-GiNaC where the input parameters ateew in parallel and orthogonal
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components of momenta, the new function uses the de facth rgsameters of LoopsTools. The
syntax of the new function is as follow

Scalar_OnelLoop 4Pt(pl, p2, p3, p4, p1p2, p2p3, m1, m2, M3rhn); (2.1)
where the scalar one-loop four-point integral is defined by

l+pm

P1 p2

/.d4| 1 l L+pi+p (2.2)

P4 l+pi+ps+m3 P3

with p1p2 = (p1 + P2)?, p2p3 = (p2 + p3)?, andg = i p;. The masses can be compleg =
51

mj, — imoi[i. The width of unstable particlek;, is positive.

Because of changing to the new interface, one-loop foumtgfoinction has been temporary
implemented in a separate module and will be merged into XBO&@iNaC when the interface of
all the other one-loop functions (one-, two-, and threa)are rewritten.

3. Theresults

In this section, we present some results of the new one-loopdoint module which can be
compared to that of LoopTools 2.5 and of Direct Computaticetihdd.

3.1 Scalar one-loop box diagram

We consider one-loop box diagram with complex masses whictiributes to the process
gg — bbH as in Fig. 2. To compare with the results of [12] we chose tipaitiparameters for
XLOOPS-GiNaC as followpZ = M3 = 27225 GeV, pi = pz = MZ =0 Ge\?, & = (p1+ p2)% =
124609 GeV, My = 1740 GeV, 'y = 1.5 GeV, Mgy = 80.3766 GeV,ly = 2.1 GeV, NEE
27106 GeV

Figure 2: The one-loop box diagram of procegs— bbH from [12]

The real and imaginary parts of the scalar one-loop box iateghich are calculated by
XLOOPS-GiNaC is shown in Fig. 3. In the real masses case, adwasingularity appears at
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Figure 3: The real and the imaginary part of the scalar one-loop faimtpntegral that contributes to
g9 — bbH

V2 = v/ (pa+ ps)? = 264 GeV. When the widths; = 1.5 GeV andl'y = 2.1 GeV are inserted
into the masses, Landau pole is regularized. These resalis good agreement with [12].

In Table 1 we show the numerical results of XLOOPS-GiNaCgalaith that of LoopTools 2.5
and of Direct Computation Method at some points in the condition space. The computing speed
is as fast as of LoopTools. In Table 2, other comparisons WitspTools in various configurations
of masses and momenta including timelike, spacelike aidikg cases are shown. All the results
are in good agreement with LoopTools.

rr% real/imag. XLOOPS-GiNaC LoopTools 2.5 Direct Computaioativbd
10 Real 24766077185850360%3 %  0.000247661 (4766077186519F ©3
Imag. 483055128521568258 %  0.000483055  (483055128495544 03

100 Real 81543415594642731853°  8.15434 9  0.81543415602061F %4
Imag. 154500571630594335£24  0.000154501 (1545005716281967 3
1000 Real 147691716458090845585° 1.4769F %>  0.147691716463693 %4
Imag. 221979083544233110&7° 2.2197E€ %  0.221979083545167%5 4

Table 1: Input parameters (in GEY used in the calculationgs? = 10, p3 = —60, p3 = —10, p7 = —10,
(p1+ P2)? = 200,(p2 + p3)? = —10,m2 = 10— 5i, mg = 20— 0i, m§ = 40— 10i.

3.2 Toward two-loop box diagrams

The POS method was applied to evaluate UV-finite two-loop diegrams with real masses
[13]. Recently, we continue to extend the works of R. Kreakehl to a same set of integrals
including complex masses cases. After careful investigatie structure of two-loop integrals, we
noticed that the same integration procedure of scalar amg4box integral can be used to reduce
eight-fold integrals of scalar two-loop box diagrams dowridur-folds integrals those are inputs
of numerical integration step. The interested diagramslaog/n in Fig. 4. However, the stability
of numerical integration is the biggest issue that we hatarte at the moment.
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(P2, p3, P3, P2, pP1p2,p2p3)  Real/lmag. XLOOPS-GiNaC LoopTools 2.5
(10,60,10,90,200,10) Real —7.67549582759019HB*4 —0.00076755
Imag. 793692363083359R 4 0.000793692
(10,60,—10,90,200,10) Real —6.221361528827849 4 —0.000622136
Imag. 820289788323527F 4 0.00082029
(10,60, —10,—10,200,—10) Real —2.85473054088203%* —0.000285473
Imag. 58947374339753 A4 0.000589474
(10,—60,—10,—90,200, —10) Real 15318455243668@ 4 0.000153185
Imag. 256186787016916 4 0.000256187
(10,60,0,90,200,10) Real —6.9233899095796788 ¢ —0.000692339
Imag. 81110140262125966 4 0.000811101
(10,60,0,0,200,—10) Real —3.34993157466233F* —0.000334993
Imag. 6178621892720976 4 0.000617862
(10,0,0,0,200, —10) Real 9195393358045093 ° 9.1953F 05
Imag. 526015665439855H 4 0.000526016

Table 2: Input parameters (in GEY used in the calculationsm? = 10— 5i, m3 = 20— 2i, mg = 30— 3i,
mZ = 40— 4i, andp = 10~%C,

Figure4: The two-loop box diagram [13]

4. Conclusion

In this paper, we presented various results of evaluatiagdthlar one-loop four-point integral.
The results are carefully compared with known results ofdJamls 2.5 and Direct Computation
Method. The results are in good agreement.

In the next step, we will extend the calculation procedureualuate tensor one-loop four-
point integrals as well as two-loop box integrals. We hoparthive a computer program for one
and two loop evaluation with Gram determinant singulanigef
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