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Abstract. The future Square Kilometre Array (SKA) radio telescope is an interferometer array that will use a variety of collector
types, including approximately 2500 dishes distributed with separations up to a few thousand kilometres, and about 250 aperture
array (AA) stations located within 200 km of the core. The data rates associated with each individual collector are vast: around
10 GBytes/s for each dish and 2 TBytes/s for an AA station. As each of these must be connected directly to a central correlator,
designing a cost-effective cabling and trenching infrastructure presents a great engineering challenge. In this paper we discuss
approaches to performing this optimisation.
In graph theory, the concept of a minimum spanning tree (MST) is equivalent to finding the minimum total trench length joining
a set of n arbitrary points in the plane. We have developed a set of algorithms which optimise the infrastructure of any given
telescope layout iteratively, taking into consideration not only trenching but also cabling and jointing costs as well. Solutions
for few example configurations of telescope layout are presented. We have found that these solutions depend significantly on the
collectors’ output data rates. When compared to a ”traditional” MST-based approach which minimises trenching costs only, our
algorithms can further reduce total costs by up to 15-20%. This can influence greatly the SKA infrastructure related costs.

1. Introduction

The outline design of the SKA has been described in Schilizzi
et al. (2009). The telescope will be an interferometer array,
comprising approximately 2500 dishes, operating from about
700 MHz to 10 GHz. These will be distributed over continental
distances (up to at least 3000 km from the centre) but will be
concentrated in a core a few kilometres across. In addition to
the dishes there will be around 250 aperture array stations, op-
erating at lower frequencies, from about 70 MHz up to 1 GHz
and distributed over a few hundred kilometres (Bolton et al.
2009; Alexander et al. 2007).

The design of the SKA presents many technical challenges
(Hall 2004). This paper is motivated by the challenges involved
in transporting data signals around the telescope. Because the
SKA will be an interferometer, the data from the individual
collectors must be combined in a correlator, located near to
the centre of the array. Although long-distance data transport is
done commercially, because of its necessarily remote location,
the SKA will require a dedicated fibre-optics network. With
data rates of the order of 10 Gbytes/s from each dish and pos-
sibly 2 Tbytes/s for the AA stations, the total data rate to the
correlator is set to be of the order of 520 Tbytes/s, dwarfing
the current (end 2008) world internet traffic rates (Minnesota
Internet Traffic Studies 2009).

With so much data to transport over such large distances, it
is likely that well over e 100 million will need to be spent on
equipment to generate, condition and receive the signals and on
fibre and trenching to carry the data. Many millions of Euros
can potentially be saved if the data-transport network can be
optimised effectively by changing the fibre paths to trade off
the amount of trenching that must be dug against the length of

fibre and the quantity of networking that is required. Individual
data links cannot be treated separately in the search for a global
cost minimum and so, with close to 3,000 collectors, such a
complex problem cannot be solved by hand. In this paper we
present algorithms that we have developed which can be used
to find a optimum networking layout for a given configuration
of collectors. We illustrate these with some example networks.

2. Defining the problem

In a simplified approach, the main question to be answered is
the following: given a set of collectors located in a plane, where
for each collector a position (x, y) and an associated data rate
are known, what would be the most cost effective way to route
the signal of each collector down to one (or more) central base
(CB) location(s)? An optimal solution will depend on parame-
ters such as prices per unit length of trench and cable as well
as on the position of the CB. The problem is often encountered
in commercial telecommunication network design where con-
straints such as obstacles or topographically excluded regions
can arise. Other applications dealing with similar optimisations
include printed circuit board design, thin soap film solutions,
urban planning of pipe networks, etc.

The problem is defined by several variables. These are:

– a telescope layout: a list of collectors, each collector i being
uniquely specified by an integer and having a position in
space (xi, yi) and an output data rate Di[Gbytes/s].

– a list of one or more central bases, acting as signal sinks.
– a 2-dimensional site mask (terrain map) of local trenching

costs per unit length acting as a trenching cost metric. In
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the simplified case, this value is constant over the entire
telescope area.

– a list of possible cable choices and the associated band-
widths and costs per unit length. This is especially impor-
tant in the context of individual collector output data rates
possibly varying for each collector. We assume that more
than one cable can be used in one trench.

Based on the above input, the expected solution is represented
by an infrastructure layout specification of all trenching and
cabling such that the total costs associated to this infrastructure
are minimum.

3. Overview of relevant mathematics

From a mathematical point of view, the problem is similar to
finding a minimum path length that interconnects n vertices lo-
cated in the plane. In graph theory, the problem is known as
the Euclidean minimum spanning tree (EMST). An example
is given in Fig. 1, where a set of 25 points in the plane are
joined by a minimum path length, defined as a summation over
all links i j : S T =

∑
si j, with si j =

√
(xi − x j)2 + (yi − y j)2 as

the Euclidean distance between points i and j. Randomised al-
gorithms of complexity O(n log n) are known (Cormen et al.
2001).

Fig. 1: The Euclidean minimum spanning tree associated to a set of 25
points in the plane.

Finding a shorter total path length than the EMST can be
achieved by introducing new vertices. Steiner showed that the
total path length of a tree interconnecting a set of n points ly-
ing in the plane can be reduced with respect to the EMST, by
introducing a maximum of n − 2 intermediate vertices which
act as hub points, also known as Steiner points (Hwang et al.
1992). The Steiner points must have a degree of 3 - i.e. connect
to three other vertices - and the three edges incident to such
point must form three 120◦ angles. For a given set of points,
there may be several Steiner trees. Finding the Steiner tree of
a graph is, in general, an NP-complete problem, thought to be
computationally difficult. In practice, heuristics and iteration
are used: namely, a large collection of points is divided into
sub-sets of three or four points and their Steiner trees are indi-
vidually computed and then joined together. Steiner trees for
sets of three and four points respectively are shown in Fig.

2. The length of a Steiner minimum spanning tree cannot be
shorter than

√
3/2 (about 0.86) times the length of the EMST

(Du & Hwang 1992).

Fig. 2: Examples of Steiner trees for sets of three points (a) and four
points (b). Steiner points are shown as squares.

4. A particular problem

Although there are obvious similarities between finding the
Steiner tree of a graph and finding an optimal network infras-
tructure, a few important differences hint to a different optimum
and therefore dictate a different approach.

First of all, not all elements in a telescope network play an
equal role: the location(s) of the CB(s) will dominate the opti-
misation. Also, certain configurations may decouple into sev-
eral sets of collectors, each set being independently connected
to the CB(s) from the others.

Second, another crucial component to be taken into ac-
count, apart from the trenching, is the cable infrastructure.
Depending on band-width, cables come in different varieties
with different costs. This is an essential consideration since
different collectors may have significantly different data-rates.
Also, including the cable costs into the infrastructure cost has
another effect: the problem of optimising of the SKA infras-
tructure layout becomes drastically different than the problem
of finding the total minimum path joining a set of vertices, de-
scribed in Sec. 3. Essentially, this is due to the fact that, whereas
there was a direct correspondence between trenching length
and the total path of a minimum spanning tree, the cable in-
frastructure adds another layer of complexity to the problem:
routing the signal of further collectors via trenches of collec-
tors closer to the core will demand more cable length than di-
rect connections to the CB. This translates into higher costs for
cable.

Third, variable trenching costs, depending on location,
must also be allowed for, together with areas which are topo-
graphically inaccessible.

All these factors will lead to an optimal infrastructure
which may differ significantly from the EMST. For example,
in the extreme case of very expensive data links and low cost
trenching, the solution for a sparse configuration consists of
all the collectors being directly connected, through individ-
ual trenches, to the CB and thereby minimising the total cost,
which is driven mainly by the cost of the cable. This solution
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would actually maximise the total trench length but would still
be the most cost-effective solution. An approach based on min-
imum spanning trees would therefore fail.

If both cable and trench costs are significant, the optimum
solution for the network layout will lie between the extreme
configurations of the EMST, which minimises trenching costs
and the direct connecting of each collector to the CB, which
minimises the cable costs.

Having considered all these aspects, it becomes clear that
an EMST-based optimisation is incomplete. A different ap-
proach is therefore taken.

5. Optimisation algorithms

The solution for the optimal network layout is found by iter-
ation. We have developed a set of algorithms which can be
applied successively (Grigorescu et al. 2009). They each ex-
plore different aspects of the optimisation and several solutions
may be generated by running different combinations of these
algorithms. Nevertheless, a particular succession is preferred
in order to improve CPU time and avoid the optimisation being
stuck in local minima.

The total cost, TC, consists of three different contributions:

TC = Kt + Kc + Ke. (1)

These contributions are as follows. Kt = kt ·
∑

links s(i, j)
represents the trenching costs. kt is the trenching cost
per unit length and may in general be position de-
pendent. The summation is carried out over all links.
Kc =

∑
cable types

∑
links kc · s(i, j) is the total cost of cables, kc

is the cable cost per unit length of a particular cable of type
c. Ke are costs associated with non-collector elements such as
Steiner points.

We consider a telescope to be a collection of elements, each
element being defined by the following attributes: a unique in-
teger identifier; a cartesian position in the plane (x, y); input,
output and intrinsic signal data-rates, all of which can be zero;
a pointer to the other element to which the current element is
connected; a size and a cost; other variables related to book-
keeping. In this way, no distinction is made between collec-
tors, CB’s and other passive elements of the telescope such as
possible Steiner points which can be added during optimisa-
tion. The direction of the information flow is important as it is
used to calculate the data rate transported through each trench.
Elements are always connected such that no loops are created
in the data flow.

The starting point we choose for the optimisation is to con-
struct the minimal cable-cost network by connecting each col-
lector directly to the nearest CB. This is called the star con-
figuration. Our experiments indicated that this is the best start
configuration: it converges the quickest to an optimum config-
uration and at the same time it is never a local minimum. The
optimisation proceeds by employing a series of algorithms se-
quentially. Below, some of these algorithms are explained in
detail.

Connect Serially: This algorithm cycles through the entire
set of collectors in an orderly fashion, from the furthest to the

closest of the collectors with respect to the CB(s), and attempts
to join them serially such that the total cost decreases with ev-
ery attempt. The start point is the most distant collector with
respect to its closest CB. Its unique identifier is added to a
book-keeping list, which initially is empty. A cost-effective at-
tempt is made to connect this to the next furthest collector. If
successful, the unique identifier of the next furthest collector
is also added to the book-keeping list. The next to next furthest
collector is then considered as a potential connecting point. The
algorithm continues in this way until the CB is reached in the
chain of connections. If the book-keeping list does not contain
the entire set of collectors, the algorithm is applied again, using
as a start point the most distant collector which is not included
in the book-keeping list. This algorithm is most powerful when
applied first, directly to the star configuration because it con-
verges only within few iterations. Also, Connect Serially can
improve the total cost significantly within one cycle. It is very
light in terms of needed CPU time per algorithm cycle.

Connect Lines to Neighbours: The purpose of this algo-
rithm is to break longer more direct links from collectors fur-
ther away from the CB into a network including more links of
shorter length, making use of the elements closer to the core
as hub points. It is implemented as follows: for each link in
the telescope, let elements i, j be the the start, stop points re-
spectively of the link, where start and stop are defined by the
data flow direction. A search for the closest element k to the
line i j is performed. If the projection of k on the line i j falls
inside the segment i j, the element i is disconnected from j and
reconnected to k; a new TC is computed; if TCnew < TCold

then the newly made connection is retained. It is preferred to
run Connect Lines to Neighbours after having used Connect
Serially: this will improve upon the possible changes missed by
Connect Serially but will need only just few cycles to converge,
as the layout had already been optimised by the first algorithm.

Add Steiner Points: This routine deals with reshaping the
connections for groups of three elements by introducing Steiner
points, as shown in Fig. 2. First, the algorithm searches for the
following: all elements i to which at least two other elements
connect: j→ i, k → i; or all three elements i, j, k are connected
in a chain: k → j→ i. If all the angles of the i jk triangle are less
than 120◦, the corresponding Steiner point F is constructed.
Then, both k and j elements are connected to F and F is further
connected to i. TC is recomputed and the new connections are
accepted if TCnew < TCold. Add Steiner Points is used once
the layout has been optimised using the algorithms presented
above.

Relax Steiner Points: The Steiner points added by the pre-
vious routine were constructed such that the total trench length
within the triangles was minimised. Therefore, the construction
of these points does not account for minimising costs due to ca-
bles. Nevertheless, the Steiner points are good first estimates.
This routine allows the Steiner vertices created previously to
relax by moving iteratively in four possible orthogonal direc-
tions. The step size is taken to be a fraction of the distance to
the closest vertex of the triangle. The chosen direction of move-
ment is the one which gives the largest negative gradient in TC.
The variable step size ensures a good compromise between ex-
ecution time and precision. There are two possible outcomes:
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either the Steiner point settles to a new position which min-
imises the combined cost of both trench and cable for the given
triangle of collectors or the Steiner point moves such that it
approaches one of existing vertices of the triangle until they
coincide. In the latter case, the Steiner point is removed from
the construction and new connections are made accordingly. In
this way, Steiner points that are created but destroyed in the
relaxation process will contribute actively to the optimisation.

6. Algorithm complexity

The scaling of algorithm complexity with the number of collec-
tors is not trivial. First of all, the performance of all algorithms
depends on the evolution of one parameter, the total cost TC.
At each step within one cycle, changes in the infrastructure are
performed only if TC decreases. Computing changes in TC is
in itself a time-expensive task, scaling as ∼ log(n), as it requires
cycling through branches of collectors and summing individual
costs corresponding to each encountered link in the network.
The optimisation algorithms scale as ∼ n, as they cycle through
the entire set of collectors. Also, at each step within one algo-
rithm cycle, other actions are performed, such as looking for
the closest neighbour or closest link, which also may scale as ∼
n. Indeed, the overall computation time increases in general at
least as fast as ∼ n2log(n). This scaling is inevitable and is jus-
tified by the fact that in our model, for every local change of a
link, an update of the cable component of the downstream sig-
nal path is also needed. Therefore, as local changes affect the
global optimum, finding a optimum solution will require sig-
nificant computation time. Fortunately, the total number of col-
lectors for the SKA telescope will not exceed a few thousand.
These configurations can therefore be optimised within reason-
able times using the numerical computational framework dis-
cussed above. For instance, on a modern workstation, the opti-
misation of layouts of around 2500 collectors takes less than 5
minutes.

7. Examples and discussion

Two different optimisations of the same layout are presented
for comparison in Fig. 4 and 5. Whereas one of the examples
is optimised for total trench length only, equivalent to finding
the minimum spanning tree of the associated graph, the other
example optimises for the combined cost of trench and cable
and therefore employs the full power of our method.

Some input parameters used for the optimisation are listed
in Table 1. The links were modelled using five options for ca-
bling, namely optic fibre cables consisting of 1, 2, 6, 9 and
24 tubes. Each tube consists of 8 strands of fibre. Through
each strand, we assume that 16 different colour channels can
be broadcast, each channel having a maximum bandwidth of
1.25 Gbytes/s. The input values for trench and cable costs were
chosen to reflect realistic commercial values (Serenate Project
2009). Cost wise, all Steiner points were treated as commercial
optic fibre joints.

The two examples in Fig. 4 and 5 are two different optimi-
sations of the same configuration of 165 collectors with a data

Name Value
trench costs e 12k/km

cable costs (1 tube) e 0.85k/km
cable costs (2 tubes) e 1.2k/km
cable costs (6 tubes) e 2.05k/km
cable costs (9 tubes) e 2.7k/km
cable costs (24 tubes) e 5.1k/km

Steiner point costs e 0.4k

Table 1: Input parameters used for the optimisation.

rate of 2 TBytes/s each, consisting of a highly concentrated in-
ner core of 1 km diameter and a sparse random distribution up
to a 5 km diameter around the CB. This is a reasonable dis-
tribution of the central part of the AA station set. The infras-
tructure in Fig. 4 was optimised intentionally for total trench
length only and it has an associated total cost of e 898.55k,
of which e 560.4k are cable costs and e 338.15k are trench
costs. The infrastructure in Fig. 5 was optimised for total trench
and cable costs combined and it has an associated total cost of
e 748.82k, of which e 395.27k are cable costs and e 353.56k
are trench costs. As the individual data rate of each collector
is high, about half of the total costs will be spent on cables.
Therefore, this comparison shows that although the infrastruc-
ture in Fig. 4 has indeed a lower total trenching cost, the total
cost is reduced in Fig. 5 by more than 16%. Namely, a trade-
off of 10% in trench costs is necessary such that total costs are
reduced by 16%. This is indeed a consequence of properly in-
corporating the cable costs into our optimisation procedure.

It is worth mentioning that, for the same layout of the 165
collectors, if one employs a star configuration, where each an-
tenna is directly connected to the CB via its own trench and
cable, the associated total cost is e 1737k of which e 518k
are cable costs and e 1219k trench costs. Our optimisation has
therefore improved the total cost of the infrastructure by a fac-
tor of 230% with respect to the star configuration. We would
like to emphasise that, although the total cable length used for
the star configuration is less than the total cable length asso-
ciated with the fully optimised infrastructure shown in Fig. 5,
the costs related to the cable infrastructure are higher for the
star configuration. This is due to the fact that the cable cost
per unit length per unit of data rate does not increase linearly
with increasing data rates, as seen in Table 1. Namely, 1-tube
cables are four times more expensive than 8-tube cables, for a
given data-rate. Therefore, sharing trenches between different
collectors has also the intrinsic advantage of utilising larger,
less expensive cables.

It was also found that for the configuration shown in Fig.
4 and 5, the addition of Steiner points (not shown in the fig-
ures) would further reduce the total cost by about 1% only. This
finding is justified by the fact that the inner core is too dense
to accommodate cost-effective Steiner points. The quoted 1%
reduction is due to only a few Steiner points, placed outside
the inner core, in the sparse section of the configuration. There,
the high-data rate and therefore the expensive cables conspire
against the need of more Steiner vertices, as that would require
a higher total cable length. In general, Steiner points make a
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greater impact on the total cost for configurations with low data
rate collectors and sparse collector distributions (Bell 1999).

One more example is presented in Fig. 6. It consists of
2250 dishes, with individual data rates of 15 Gbytes/s. Most
of the dishes are grouped in a highly concentrated core of 5
km across. The rest of the dishes are located along five curved
arms which spiral outwards up to 150 km away from the core.
The CB is placed non-symmetricaly on the edge of the core.
The infrastructure has been optimised for the combined cost of
trench and cable costs. The total cost associated to the infras-
tructure of this configuration is e 17469k, of which e 15557k
are trench costs ande 1912k are cable costs. The relatively low
data rate of the dishes dictate a trench dominated total cost, of
which 10% are due to cable costs.

These examples show that a proper treatment of various in-
frastructure components and associated costs not only can re-
duce significantly the total cost but also can provide us with a
valuable insight of how different components (Steiner vertices,
cables, trenching) contribute differently to the total cost, as a
function of collectors’ layout and data rates.

8. Cost maps

So far, we have considered an Euclidean metric on a flat plane.
A more realistic description should account for effects intro-
duced by the Earth’s curvature and varying altitudes. Also,
locally variable trenching costs should be considered, which
would reflect more accurately costs due to different soil types
or different ways of data transport (for example, dug trench-
ing versus over ground cable transport). One could account for
the cumulated effect of all these features by employing a cost
map, mostly in the form of a raster map which associates dif-
ferent penalty values for crossing particular regions on the map
(Fig. 3). The cost map can be a sum of various weighted cost
maps corresponding to independent effects. For instance, no
go areas and topographic obstacles can be added to the cost
map by costing very highly the forbidden regions. Costs re-
lated to access to power grids, roads, antenna deployment costs,
can also be are factored in. The algorithms described in Sec.
5 remain valid as long as Euclidean distances between any
two collectors are replaced by ”lowest penalty” path values,
also called geodesic path lengths. Calculating the geodesic be-
tween two points on a cost map is not a trivial task. One may
employ Dijkstra or A* algorithms for an heuristic approach.
Alternatively, the fast marching algorithm, an analytical ap-
proach to finding geodesics on cost maps, may be more expen-
sive but guarantees that the solution does not represent a local
minimum but a global one (Petres et al. 2005).

9. Outlook

Future work will focus on expanding the current model to in-
corporate more realistic features. The option of using dark fibre
(already available long distance optic fibre infrastructure) will
be included. The possibility of sharing trenches between signal
and power cables will also be investigated. Another realistic
aspect which will be investigated is the use of cost maps, as
described in Sec. 8.

(a) (b)

Fig. 3: An example of altitude map (left) and the penalty map associ-
ated to it (right).
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Fig. 4: An example configuration of 165 collectors with a data rate of 2
TBytes/s each, consisting of a highly concentrated inner core of 1 km
diameter and some sparse random distribution within 5 km diameter
from the CB. The infrastructure was optimised for total trench length
only. Total cost is e 898.55k, of which e 560.4k are cable costs and
e 338.15k are trench costs.
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Fig. 6: A layout of 2250 dishes is shown, grouped in a highly dense
core of 5 km across (enlarged plot) (b) and five spiral arms going out to
150 km radially (a). Only the links between the collectors are shown.
The cables are colour-coded according to the different types of cables
used. The total cost associated to the infrastructure of this configura-
tion is e 17469k, of which e 15557k are trench costs and e 1912k are
cable costs.


