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Abstract. The paper discusses the effect of different space tapering techniques on the broadband performance of a class of
sparse phased arrays based on the golden ratio configuration (Boeringer 2002). Different space tapering techniques are applied
using a finite number of elements enclosed within a defined aperture size in order to demonstrate the effect of the geometry on
the broadband performance. The paper shows how the element locations can be manipulated to achieve high gain and low side
lobes. Tradeoffs are presented between side lobe level and gain for various space tapers over multi-octave bandwidth.

1. Introduction

The design of antenna arrays varies significantly depending on
the desired performance requirements. In this paper the main
concern is the required directivity, bandwidth and side lobe per-
formance. The aim is to be able to meet these requirements with
the least over all complexity that is the total number of elements
needed and their relative positions in the array.

In any antenna array system with N number of isotropic
elements, the maximum possible gain that can be achieved oc-
curs at a wavelength related to the relative positions of the an-
tenna elements. In linear periodic arrays the maximum possible
gain is achieved when the inter-element separation is approxi-
mately 0.9λa . Since the array gain is related to the total radia-
tion pattern from all the elements and not the linear summation
of individual antenna gains, it is possible to arrange the antenna
elements in such away that a higher array gain can be achieved
than NxG over a narrow band, where N is the total number of
elements in the array and G is the gain of one element. The
NxG figure can however be used as a useful quality measure of
the array gain over a broadband.

The maximum possible gain over the frequency band from
N available antenna elements occurs at a narrow bandwidth
centred on fmax . For frequencies less than fmax the gain of the
array will reduce becoming less than NxG at much lower fre-
quencies. This is due to antenna element separations becoming
closer together in terms of wavelength, which reduces or elim-
inates their contribution to the total array gain. The array now
is oversampled and contains many redundant elements. On the
other hand, for frequencies above fmax the gain will also drop,
as the element separation becomes far apart in terms of wave-
length ultimately causing high peaks at angles other than the
main beam, and thus reducing the total gain. This general trend
is true irrespective of the array configuration

In order to design a cost efficient broadband array fmax

should be equal to fLow . This is in order to avoid any elements
becoming redundant at the low frequencies. This means that the
array is under sampled at higher frequencies and therefore, the
element positions must be optimised in order to minimize the
effect of under sampling on the side lobes and the loss of gain.

a This is true provided the array is of the order of 8 elements or
more (Howard 1981)

This optimization however, comes at the expense of reducing
Gmax . In other words, a cost efficient broadband antenna array
trades off maximum possible gain at a narrow band, with gain
and side lobe performance over the total bandwidth.

In some broadband antenna array applications higher gain
is required at a certain portion of the bandwidth where for ex-
ample high noise sources may exist. In other applications a sta-
ble gain over the bandwidth is more of interest. Therefore, it
is useful to be able to control the gain performance over the
bandwidth in order to meet the system requirements with the
minimum number of elements.

In order to see the effect on array performance from a pure
geometrical point of view, a method is presented whereby dif-
ferent array geometries are compared using fixed number of
elements enclosed within a constant circular aperture. The an-
tenna element assumed is a hemispherical element with a gain
of 3 dBi and the performance of the array assumed is now gov-
erned purely by the relative positions of antenna elements ”that
is the mutual coupling is ignored”.

The Golden Ratio Spiral has been reported before for
phased arrays (Boeringer 2002; Vigan 2000) for the purpose
of narrowband and multiple beam applications. In this paper
the Golden ratio spiral is found to possess attractive properties
that are useful for designing broadband sparse phased arrays.

2. Array Configuration

A common way to describe a two dimensional spiral is by us-
ing polar coordinates (r, ψ), where r is a continuous monotonic
function of the angle ψ . There are many types of spirals that
can be constructed such as Archimedean, logarithmic Euler
(wikipedia 2009). A special case of a logarithmic spiral is the
Golden Ratio Spiral where its growth factor is related to the
Golden Ratio. The polar equation for a Golden Ratio spiral:

rn = d f (n) (1)

ψn = 2πφn (2)

where, rn is the radial displacement of the nth element, d is
a scaling factor, ψ is the angle displacement of the nth element
and φ is the golden ratio = 1.618... (mathworld 2008). Provided



P
o
S
(
S
K
A
D
S
 
2
0
0
9
)
0
4
7

286 El-makadema & Brown: Broadband Space tapered Golden Ratio Spiral Phased Arrays

Fig. 1: Array Configurations with Different tapering

that φ is maintained as the golden ratio, equation (1)&(2) define
a class of array geometry termed here ”Golden Ratio Spiral”
defined for various functions f (n).

The function f (n) controls the radius of the nth element
from the centre and can be described as a space taper func-
tion. It is the design of this function that governs the broadband
behaviour of the Golden Ratio spiral class of phased arrays.

The function f (n) can be an analytical function such as
the sunflower model in Boeringer (2002).In this configuration
f (n) =

√
n/π,where n is the index number of the nth element.

Another analytical space taper function found to be useful is
f (n) = n(1/φ) where, n is the index number of the nth ele-
ment,and φ is the golden ratio. The resultant array is called
Golden Ratio Space Taperb.

The function f (n) can also be designed according to a den-
sity taper function as in Vigan (2000). A Taylor and a Gauss
space tapers are selected to be compared with the golden ratio
space taper and the sunflower model described above.

The chosen number of elements is 1020 enclosed in a fixed
aperture diameter of 10 m. A regular array with the same num-
ber of elements and aperture size has a maximum possible gain
at a frequency close to 1 GHz. Therefore, a wide bandwidth
centred at around 1 GHz is chosen to asses the performances of
the different configurations.

The resultant array configurations for different tapers are
shown in figure 1. The figure shows how the space tapering

b The Golden Ratio Space Taper array is also a special case of the
class of Golden Ratio spiral arrays

effects the antenna positions via the geometry equations (1) &
(2).

3. Array Gain

The resultant gain for each configuration is plotted as function
of frequency in figure 2. In the case of the sunflower model, a
high maximum gain is achieved at fmax = 0.95GHz. However,
a dramatic drop in gain occurs at higher frequencies. This con-
figuration is useful when a high gain is needed at the low end of
the band. The effect of space tapering in the case of the golden
ratio and Taylor space taper reduces the maximum gain but pro-
vides smoother gain over a wider bandwidth. In the case of a
Gauss taper more gain has been further compromised for wider
bandwidth. The gain in all configurations tends towards NxG
at higher frequencies.

Fig. 2: Gain performance for different space tapering

The average gain for all configurations throughout the
bandwidth is the approximately the same. However, it is the
behaviour and stability of gain over the bandwidth that can be
of interest.

4. Radiation Patterns

The radiation patterns for the different configurations are
shown in figure 3 at 1 GHz normalized to the peak of the main
beam. The side lobe area can be divided into three regions in
the form of rings:

1. An inner ring that contains the main beam also contains
the near in side lobes (this includes the first side lobe next to
main beam). Space tapering such as in a Gauss taper produces
a broader main beam with much lower first side lobe of -39 dB
compared to -23 dB in a golden ratio taper configuration. 2.
An outer region of higher sidelobes is formed with different
widths and amplitudes for each configuration. High amplitude
with a thin width outer ring appears with the sunflower tapered
compared to a wider lower amplitude outer ring in the case
of Gauss taper. 3. A middle region of lower side lobes remain
between regions (1) & (2), also varying in width and amplitude
for the different arrays.

At higher frequencies as shown in figure 4 the outer rings
with higher sidelobes widens reducing the size of the middle
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Fig. 3: Radiation Patterns for different configurations at 1 GHz

rings of lower sidelobes leaving the level of inner side lobes un-
affected despite the narrower main beam. In practice, the results

Fig. 4: Radiation Patterns for different configurations at 2 GHz

presented in figures 4 and 5 will be multiplied by a realistic el-
ement pattern which can in principle be optimized to reduce
side lobes at wide angles for a given configuration. However, a

narrow element radiation pattern will in general require a larger
element which has to comply with the constraints of the array
geometry, thus needs a consideration study on a case by cases
basis.

Similar to the gain performance, the mean side lobe re-
mains similar irrespective of the array configurations. Once
again, it is the location and relative amplitude of side lobe re-
gions that helps to optimizes different designs. The mean side
lobe is plotted in figure 6 over the band for different configura-
tions. This remains only marginally affected with the exception
of the Gauss taper where at low frequencies, has a broad beam
which dominates the radiation pattern.

Fig. 5: Mean side lobe performance over a broadband for different
configurations

5. Design Case

The Square Kilometre Array radio telescope low frequency
array is required to operate over a wide band between 700-
450 MHz. The sky noise at low frequencies is well known to
be much higher than upper frequencies (Medellı́n 2004). The
array is required to achieve a minimum of 45 dBi gain at the
low frequency to over-come the sky noise. Figure 7 shows the
gain performance over the band using the Golden Ratio Space
Taper and the Gauss space taper configurations both designed
to achieve 45 dB at 700 MHz using the minimum number of
elements. The Golden Ratio Space Taper achieves the required
gain using only 4000 elements, whereas the Gauss space ta-
per needs twice the number of elements to meet the required
gain. However, the Gauss taper has better gain performance at
higher frequency although this gain might not be needed as the
sky noise is lower at those frequencies.

6. Conclusion

Space taper antenna arrays based on golden ratio configuration
exhibit many attractive properties for designing and optimizing
broadband arrays for various applications. Different array ge-
ometry can be used to trade off the maximum achievable gain
at a narrowband for average bandwidth and side lobes. High
gain over wider band can be achieved while maintaining good
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Fig. 6: Gain performances for SKA low frequency array using Golden
Ratio and Gauss space taper configurations

control of side lobe amplitude and locations in the radiation
pattern.
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