PROCEEDINGS

OF SCIENCE

Porting Computation and Data Intensive
Applications to Distributed Computing
Infrastructures Incorporating Desktop Grids®

Tamas Kiss

University of Westminster

115 New Cavendish Street, London, UK, W1W 6UW
E-mail: kisst@wmin.ac.uk

lan Kelley

Cardiff University

5 The Parade, Cardiff, UK, CF24 3AA
E-mail: |.RKelley@cs.cardiff.ac.uk

Peter Kacsuk

MTA SZTAKI

Kende u.13, Hudapest, Hungary, H-1111
E-mail: kacsuk@sztaki.hu

Distributed Computing Infrastructures (DCls) ared&ly utilised by scientists to support
computation and data intensive application scenalflibe European EDGI project is working on
connecting two distinctive types of DCIs, Servicel @esktop Grid systems. The infrastructure
is operated at production level and supports aelargriety of applications. Porting and
deploying an application on such combined platfoaises specific challenges. This paper
summarises the experiences that were gained dtnimgoorting and migration of over 30
applications to the EDGI combined service grid/deslkgrid (SG/DG) platform. Computation
and data intensive application scenarios are apd/yend tools and solutions are suggested to
address specific requirements of application pgrtm a DCI that is extended with local or
volunteer desktop grid resources.

! This work is supported by the EDGI (European Deisksrid Initiative) project funded by the European
Commission within the FP7 framework (project numReR61556).

© Copyright owned by the author(s) under the termth@iCreative Commons Attribution-NonCommercial+®#dike Licence. http://pos.sissa.it

PROCEEDINGS

OF SCIENCE

The International Symposium on Grids and Clouds and the Open Grid Forum
Academia Snica, Taipei, Taiwan
March 19 - 25, 2011

© Copyright owned by the author(s) under the termth@iCreative Commons Attribution-NonCommercial+®#dike Licence. http://pos.sissa.it

Porting Computation and Data Intensive Applications Tamas Kiss

1. Introduction

Although current grid infrastructures offer sigondint amount of resources to run
computation and data intensive applications, sogenarios overgrow the capabilities of
existing production level grid systems. These agpilbns require resources from different grids
raising the need for seamless interoperation betvimterogeneous platforms. The European
EDGeS (Enabling Desktop Grids for e-Science) [112] #&s follow up the EDGI (European
Desktop Grid Initiative) project [27] have contribd to this work by developing a bi-
directional bridging mechanism that seamlessly eot: the two main types of grid
infrastructures, service and desktop grid systeBedore this work service and desktop grid
infrastructures evolved independently from eacleofroviding no support for applications that
wanted to utilize resources from both grid types.

Service grids (SG) provide reliable 24 hour servimgerated and looked after by
professional system administrators. A resourcdac@fly a computing cluster, becomes part of a
service grid by installing and running a highly qdex middleware package, for example the
Globus Toolkit [1], gLite [2], ARC [3] [10] or Uniare [4]. Although these service grid systems
provide guaranteed service, the number of resouoffesed by them is restricted to the
magnitude of a few tens of thousands of procesdéxsumples for production level SG
infrastructures include the gLite, ARC and Unictwased EGI grid [9], or the Globus based
Open Science Grid [11].

Desktop grid (DG) systems, on the other hand, apalale to offer computing resources in
the magnitude of millions of PCs. The resourcesdamated by individuals or institutions and
their computing power can be utilized for desktojd gomputations whenever the processors
are idle. However, this also means that DG systemnse with no guarantees concerning their
quality of service. Examples for DG middleware udg BOINC [5] that powers several large
public desktop grids such as the SETI@HOME projéfor the SZTAKI Desktop Grid [7],
and XtremWeb [8].

EDGeS developed a bi-directional bridge betweengthite based EGEE Grid [13], and
BOINC and XtremWeb based DG systems. The bridgevall DG work units to utilize idle
resources in specified virtual organizations of BGEE, and also offered EGEE users the
capability to select validated applications frora #DGeS Application Repository and run them
on both EGEE and DG resources. EDGI further exteghdsgLite to DG direction to other
middleware supported by the European Grid Infrastme, namely ARC and Unicore, and aims
to improve the quality of service of desktop grigstems by extending them with Cloud
resources on demand, and concentrates on suppartingnly computation but also data
intensive applications.

The EDGeS/EDGI bridge infrastructure [14] [15] aitd supporting components for
distributed data handling [16] have been describeseveral publications. This current paper
concentrates on use-case scenarios and types lidadiopms that could effectively utilize the
EDGI infrastructure. The paper summarises all thogeeriences that were gained through the
porting and deploying of over 30 applications tonbined SG/DG infrastructures.

Porting Computation and Data Intensive Applications Tamas Kiss

2. Requirementstowards applicationsto be run on SG/DG infrastructure

Combining resources of service and desktop gric#tfuctures significantly increases the
number of available resources that applicationsasite to utilise. Larger number of resources
could result in higher throughput and better penfamce. However, using a combined
infrastructure also imposes some limitations reiggrdhe applications. In case of a combined
SG/DG infrastructure the application needs to keceted on both types of grid systems. As SG
infrastructures are capable to run a wider rangapplications than DGs, it is typically the
desktop grid system that limits this range of taaplications. If an application is capable to
run on DG resources then it can typically be exegtuin SG resources too. In this section an
overview of requirements is presented towards tapgplications for SG/DG infrastructures.

One of the most important restrictions is the tgbgarallelisation implemented by the
applications. Worker nodes of a desktop grid arpicslly isolated allowing no direct
communication between the workers. As a consequapdications requiring inter-process
communication (e.g., MPI applications) are not ablg for DGs. Although there some
promising experiments for running MPI applicatians desktop grids incorporating Graphical
Processing Units (GPUSs), these experiments arerlyrlimited by the number and quality of
scientific MPI code that is GPU enabled.

Data handling is another important and limiting téecwhen running applications on
SG/DG resources. The bandwidth available in a publésktop grid is limited due to the
centralized input source and distribution mechasisidesktop grid middleware. Unlike in a
cluster or traditional service grid, where shareidksl are available with high-speed
interconnects, in a desktop grid, input files needbe distributed over the Internet to each and
every volunteer node. Therefore, the feasible sfzieput or output files to be downloaded or
uploaded by a worker in a volunteer DG is typicalbt larger than 100 megabytes. In local DG
systems, however, this file-size could be signiftba larger due to faster local network
connections, allowing even gigabyte sized input antput files. The Attic peer-to-peer data
distribution system [17] [18], developed in the EE%5and EDGI projects, was built to mitigate
this problem of distributing larger files on voleet desktop grids. By utilizing multiple
download endpoints and file replicas to distribdega, Attic can significantly increase the
feasibility of data intensive application scenayias will be demonstrated later in this paper.

Confidentiality of data can also be an issue inlipudGs. As the data is downloaded to
computers of untrusted volunteers, public DGs maly be able to provide the level of data
protection required by many applications. A locaekktop grid infrastructure could provide a
solution for the data confidentiality problem ae thata is not passing company or institutional
firewalls in this scenario.

Besides the above limiting restrictions, thereals® a few generic recommendations that
need to be applied in order to achieve higher perdmce. The execution time of individual
work units of a DG application need to be well baked. Also, very short workunits, in the
range of few seconds or minutes, could signifigariticrease the overhead and decrease
performance. On the other hand, workunits thatranming for several hours are likely to be
interrupted by the donors. In case of workunitsniog for a couple of hours or longer, it is
essential that the application developer implemeantsrnal check-pointing allowing the

4

Porting Computation and Data Intensive Applications Tamas Kiss

application to seamlessly resume after user inpdon. Finally, as a very large proportion of
volunteer computers are running some flavour of Wadows operating system (when
compared to the typically Linux based computingstdus), in most cases it is essential to
develop a Windows (and/or MacOS) based client apfiins.

3. Application Scenariosfor a Combined SG/DG Infrastructure

Requirements towards porting to and running aniegn on an SG/DG infrastructure
could differ depending on the primary and secondarget platform. The primary target
platform is the one that is directly utilised by tbnd-user, while the secondary platform is used
in a user-transparent way utilising the EDGI bndgimechanisms. Based on primary and
secondary target computing platforms, three gengs@r scenarios have been identified and
analysed. In this section, besides the descriptibrihese scenarios, justification for their
feasibility and usefulness is given, and illustdatéa examples. Differences in the application
porting process regarding the different scenaniesaso highlighted.

3.1 Applications Running through the DG to SG Bridge

In this scenario, illustrated on Figure 1, deskgrj applications can utilize resources
from a service grid system, for example from a Be¥irtual Organization (VO) of the EGI
grid, via the DG to SG bridge. The scientific erskuin this scenario runs a DG application,
and the utilization of SG resources is completeypsparent from the users’ point of view. The
DG to SG bridge acts as a powerful DG worker pgllivork units to the dedicated service grid
VO and sending the results back to the desktopsgrnider.

This scenario is useful when the end-user has sctesa relatively small local or
institutional desktop grid system that can sigaifity be extended with service grid resources.
An example for this scenario is the VISAGE videmeaim analysis application by Correlation
Systems Limited [22]. Local users can access tipdicgtion via a custom user interface and
can analyse pairs of frames in a video recordintheriocal BOINC based desktop grid system.
However, the Correlation Systems DG connects apmately 20 local PCs only. Therefore,
sending jobs to the EGI DG VO that contains thodsasf processors can significantly speed up
the computation.

The application porting and deployment process fwmenario 1 is relatively
straightforward. If a DG version of the applicatiexists and runs on a public desktop grid then
it is very likely that the worker applications asepporting a wide range of Linux flavours
including the one applied by the target SG platfotirthe application is running on a local
desktop grid it may be necessary to develop Linoxrker applications that can be submitted to
the target SG platform.

Once an executable for the target SG platformbeas compiled and tested, the host DG
system need to be connected to the DG to SG brisigiting up this connection includes the
registration of the local DG and the target appicawith the bridge. The owner of the DG
application also requires a valid proxy certificat® the most common mechanism for user
authentication in service grid systems. This dedtt is utilised by the bridge when submitting
the application to SG resources.

Porting Computation and Data Intensive Applications Tamas Kiss

EGIDG VO Desktop Grid
wws | PEose ")|
and other 0D 2o < N
EGI 2 j} N _—-:-w
services e] e, DG
B / \\ » e user
: > > . User entry point is DG — using SG
is completely transparent from

user’s point of view
Figure 1 — Applications running from DG to SG

3.2 Applications Running through the SG to DG Bridge

The second scenario is illustrated on Figure 2. 3tientific end-user in this scenario
accesses the SG platform directly and submits pgpécation to service grid resources using the
standard job submission mechanism of the targdafopta. For example, in case of a gLite
based grid the user utilizes a gLite User Interfagehine and prepares a suitable JDL file for
the submission. If the virtual organization whdre job has been submitted includes an EDGI
modified computing element then jobs sent to tlisiguting element will be executed on DG
resources using the SG to DG bridge.

Using desktop grid resources could significantlgréase the processing power of service
grid systems by extending them with potentiallylimils of worker nodes. As high percentage
of current SG applications are parameter sweepsethpplications can be efficiently redirected
to DG resources freeing up SG systems for morefsp&tP| applications, for example.

Several EGI user communities have been supportatiebfEDGeS and EDGI projects to
port and run their applications through the SG @ lridge. An example for these efforts is the
VisIVO (Visualization Interface to the Virtual Obsatory) application [23]. VisIVO is a suite
of software tools for creating customized viewS8DbBfrenderings from astrophysical data tables.
The application previously run on gLite based ser\grid systems and has been ported to the
SG to DG bridge.

Porting an application that utilises the SG to D@ldpe starts with the development of a
desktop grid version of the application. As the legagion is submitted from the service grid,
this side is responsible for the creation and @tthgon of parameter sweep jobs or work units.
It is only a desktop grid client application thateds to be developed. However, as it was
analysed in section 2, this client is ideally colegito different target platforms including
Windows and MAC OS.

The development of the client is supported by sdveigh level tools and APIs provided
by the EDGI project. These tools include the Distted Computing APl (DC-API) that enables
to execute the ported application on multiple daslgrid middleware (e.g. BOINC, XtremWeb
or Condor) [24] without any modification, and ther@@ric Wrapper (GenWrapper) tool that
facilitates the porting of legacy applications oB©OINC based desktop grid platforms [25].

Once the application is ported to the target DGtf@lm it needs to be validated.
Validation is required due to the different seguntodels of SG and DG platforms. While SGs
trust the user and require certificates, DG systenst the application. The validation process
aims to assure that the validated application ussicgg no harm to the desktop grid donors.

Porting Computation and Data Intensive Applications Tamas Kiss

Once validated, the application is published in plblicly available EDGI Application
Repository (EDGI AR). This repository is accessgdhree different types of actors. Desktop
grid administrators can browse the repository amdrdoad the DG version of the applications
that they aim to support. service grid users cad faind download the SG version of the
application. Finally, the SG to DG bridge uses risference provided by the user to one of the
deployed applications in the repository, and erstile bridging of this application to the target
DG systems.

Desktop Grid 1 EGIVO
Wél EDGI WMS
i Services
e ﬁb 'sﬂ!’ — <« | and other
] DG CE + EGI 5g Ly
@4 X\@ EDGIAR services |
S D SG (EGI) user
_ (using EGI UI
Desktop Grid n . machine or portal)
oL :
E.’ === : == - User entry point
NPy nr) is SG
j}i\ - using DG is
g oy transparent
o o) from user’s
point of view

Figure 2 — Applications running from SG to DG

3.3 Applications Using Specific Job Submission or Scheduling Systemsto Utilizeto SG/DG
Resour ces

There are use case scenarios when the target apgli@lready utilises specific high level
user environments or lower level middleware and gabmission frameworks. In these cases
application developers and end-users may wish tgo@xboth desktop and service grid
resources without compromising the current usereBapce. Exploiting the EDGI bridges
directly may not be suitable in these scenariosaliee of some preliminary assumptions
regarding the way SG or DG jobs are submitted.

Besides the production bridges, EDGI also provideiding blocks and components of
these bridging solutions that could be integratedb iother grid middleware or user
environments. This integration assures that the emamunity of the target middleware or user
environment will utilise the combined SG/DG infrastture in a transparent way without
changing the frameworks they accustomed to.

An example for this scenario is illustrated on figg3. The Wisdom production environment
[26] has been extended with a DG submitter modile WISDOM projecis an international
initiative to enable a virtual screening pipeline a grid infrastructure. The project has
developed its own meta-middleware that utilisesBk&# production infrastructure, and capable
to submit and execute very large number of job&Gih resources using a pilot job submission
mechanism. The newly developed D@mnitter uses EDGI components, such as the 3G 8ridg
and its WS Submitter to access desktop grid Ressufithe DG submitter pulls WISDOM jobs
from the WISDOM task manager exactly the same waynaase of EGI jobs. Therefore, the
DG submission did not require modification of theigmal WISDOM architecture and
completely transparent from the end-users’ pointiedv.

Application porting in this case includes the impéntation and validation of a desktop grid
version of the application, similarly to scenarioli2zstead of the EDGI application repository,
the middleware may use its own repositories toestmd submit applications and work units. In
the presented example the WISDOM Job and Task neamagre responsible for this
functionality.

Porting Computation and Data Intensive Applications Tamas Kiss

3 1

WISDOM DG i
Job Submitter———1

1

1

1

3GBridge | | 3G | |BOINC
WS Submitter Bridge DG

Manager Push jobs

1

1

1

1

Pull 1
task :
1

1

1

1

Fmmm—m—mmm - - -

WISDOM ECI ! :
Task | ISubmitter|«. .., EGI :
Manager Pull jobs | 1 | !
Pull L :
task : :_ ______________ :

WISDOM™ T EGl

Figure 3 - Extending the WISDOM environment with a DG sutteri
4. Supporting Data I ntensive Application Scenarios

In current desktop grid scientific volunteer compgtsoftware infrastructures, such as
BOINC and XtremWeb, data is distributed centrallgni a project's coordinating nodes or
servers. In BOINC, this is achieved through ao$édTTP mirrors, each providing clients with
full copies of data input files. Similarly, in XdmWeb, clients are given the URIs of data input
files. These centralized systems require projects only to have the necessary network
capacity needed to provide data to all voluntekus,also to have data readily available and
persistent on their servers at all times to fudfient requests. Further, the network throughput
requirements of serving so many client machines mave to be a hindrance to projects
wishing to explore new types of data-intensive maplon scenarios that are currently
prohibitive in terms of their large data transfeleds. For example, the SETI@Home project,
which has very small work unit sizes (340KB per kvanit, with an average processing time of
two hours) averages about 50 Mbp/s of downloadsendes over 16 Petabytes a month. Each
SETI@Home job is replicated to two unique workarsganing the bandwidth consumption
could theoretically be cut in half if files wereashd among the network participants.

4.1 Desktop grid data distribution using Attic
An alternate approach to the centralized system=wily employed by desktop grids is to

make use of peer-to-peer (P2P) techniques to imgriemata distribution. The application of
using P2P in volunteer computing as a means toaiffthe central network has been explored
in [19]. There are many ways this could be impleted, ranging from a BitTorrent-style
network [20], where data is centrally tracked ahgarticipants share relatively equal loads, to
KaZaa-like super-peer networks [21] where seledesocare assigned greater responsibility in
the network.

Attic, as shown in Figure 4, provides a solutiorevehdata igpushed to a P2P environment
by the service grid nodes that have the necessaryity credentials to access the data from the
their servers. This not only alleviates the seguysioblems associated with somehow allowing
untrusted users access to service grid storageeatspbut it also offloads the data distribution,
making the integration of service and desktop gmadse accessible.

Porting Computation and Data Intensive Applications Tamas Kiss

© Worker Node

Q Data Center
' Data Provider

Figure 4 - Attic network roles

Attic network agents can be logically broken upitiiree key entitiesdata providers,
data centers and workers (data consumers). This 3-tiered, bridged architecture involves the
following high-level interactions. Thdata provider pushes files to an overlay networkdatta
centers, which self-organize using P2P techniques to qmyafe data amongst itself. This data
center layer then serves pull requests for data freworkers that process jobs on the network.
A worker node discovers data servers by sendinggaest to known access points on the
network (likely members of the data center overlingt keep track of which data centers have
registered replicas of the file.

4.2 Using Atticto distribute service grid data on desktop grid nodes

The EDGI project requires a system that can adapvarying input file sizes and
replication factors without unduly stressing or esipg the service grid layer. Service grid
security infrastructure and policies prevent acdes$ocal files from foreign and untrusted
hosts. Anonymous access is generally not am iksumost BOINC projects, as they are able
to have dedicated and network-isolated data servers

By having a more robust data distribution framewaplications can have input files in
the gigabytes, not the megabytes scale, whichgsired for many of the EDGI applications
(e.g., analyzing medical imagery and searchingel@rgtein databases).

To adapt a current (EDGI-supported) service grid jo use Attic, the input files are
published to the Attic system using the Attic to@gher a direct Java library, or a command-
line interface that only requiresirl, a common tool found on most clusters, be instal/hen
a file is published, certain metadata is attacloed, tsuch as the MD5 [28] sums, its size, the
project it is associated with, an initial seed esidpfrom where the file can be downloaded, and
the desired replication factor. The Attic softwéren registers the file, returns a unique attic ID
and URL, and begins to replicate the file on thesvoek.

The service grid user (or middleware) can then submir service grid job through the
EDGI 3G Bridge to run on a desktop grid, as normihe only change is thattic:// input file
locations are also sent with their correspondingGviashes. For XtremWeb jobs, no further
information or adaptation is needed. XtremWeb cawrdoad Attic files without modification
to the core client, due to its inclusion of theivedlava Attic protocol handler, which only
required a few additional lines of code to register URL-handler.

Porting Computation and Data Intensive Applications Tamas Kiss

For BOINC, however, the process is slightly morenptex. In lieu of modifying the
BOINC client to directly recognizattic:// files, which would have required installation of a
new version of BOINC on every client machine in rajgct wishing to utilize Attic, a new
“Attic Proxy” project was created that interceptiié\requests from BOINC projects, retrieves
the Attic files, and passes the resulting file-mtnedirectly back to the BOINC project. All a
BOINC project or user has to do, is “subscribe’tiie Attic Proxy project in addition to their
other BOINC projects. The Attic Proxy then runstire background (within BOINC) and
translates the Attic file requests as they come in.

This proxying mechanism is made possible by firatihg the 3G Bridge rewrite the
attic:// URLs it receives to be the standard HTTRLY that BOINC expects and can retrieve.
However, the HTTP URLs are re-written to refereadecal webserver on the client machine
running on an unused port. The Attic Proxy profetts a lightweight webserver on this port
that intercepts thesettp://localhost/atticURLrequests, translates them into their fundamental
attic:// requests and downloads the files. SimeeAttic Proxy (dubbed libafs, and written in
ANSI C) knows how to interpret tradtic:// protocol, the burden of having Attic libraries en
moved to the Attic Proxy project, and doesn’'t beearequirement of BOINC or the BOINC
projects. Libafs downloads the files, and themmes the resulting file stream directly to the
BOINC project via the localhost HTTP request. &saence, the Attic Proxy acts exactly like a
traditional web proxy — it retrieves the given dileand sends them back to the client as
requested.

Using the Attic Proxy for BOINC, or the native Jgwatocol handler in XtremWeb, it is
possible to publish large files to Attic, launchoé through the 3G Bridge, and run these jobs
on the volunteer desktop grid nodes, without angifieation to the desktop grid middleware.
By leveraging this new technology, projects can nastribute large input files to many
volunteer nodes, without stressing their centrdliggstems. The burden of data distribution is
moved to Attic, which can more easily balance nekwoads, allowing projects to add nodes
that act as partial replicas rather than full msrand, depending on their security policies, to
utilize volunteer resources to even host the Aféia centers.

5. Conclusion and futurework

Within the framework of the EDGeS and EDGI projectsveral applications have been
ported to combined SG/DG infrastructures. The eéepee gained, methodologies utilised and
tools required for this specific application pogtiscenario is summarised in this paper. The
results presented are a good starting point fouréutapplication developers when porting
applications to this specific platform.

The application support service of the EDGI projedt continue its work on supporting
user communities and porting their applicationghis infrastructure. The emphasis will slowly
be shifted from only computationally intensive apalions to more data intensive scenarios, as
it was described in this paper. Also , the EDGlfplan is currently being extended with Cloud
Computing based quality of service guarantees whlsh raises specific challenges to target
applications.

10

Porting Computation and Data Intensive Applications Tamas Kiss

References

[1] Foster, I., Globus Toolkit Version 4: Software ervice-Oriented Systems. Journal of Computer
Science and Technology 21, no. 4, 513-520, 2006.

[2] Laure, E. et al.,, Programming the Grid with gLite. n@mtational Methods in Science and
Technology 12, no. 1, 33-45, 2006.

[3] The ARC Grid Middleware, http://www.nordugrid.orgtidieware/

[4] D. Erwin: UNICORE - A Grid Computing Environment Comency, Practice and Experience
Journal, 14, 2002, pages 1395-1410

[5] D. P. Anderson: BOINC: A System for Public-Resou@mmputing and Storage. 5th IEEE/ACM
International Workshop on Grid Computing, Novem®g2004, Pittsburgh, USA.

[6] D.P. Anderson et al. SETI@home: An Experiment in lietResource Computing,
Communications of the ACM, Vol. 45 No. 11, NovemB802, pp. 56-61

[7] Z. Balaton, et al.: SZTAKI Desktop Grid: A Modular argtalable Way of Building Large
Computing Grids, Conf. Proc. of the Workshop on leaBgale and Volatile Desktop Grids (PCGrid
2007), 30th March 2007, Long Beach, California B,%p1-8, ISBN: 1-4244-0910-1.

[8] G. Fedak, et al.: XtremWeb: A Generic Global ConmutSystem. CCGRID2001 Workshop on
Global Computing on Personal Devices, May 2001, |PEESs.

[9] EGI — European Grid Infrastructutetp://www.egi.eu/

[10] The NorduGrid Website http://www.nordugrid.org/

[11] The Open Science Grid Websithttp://www.opensciencegrid.org/

[12] z. Balaton et al.: EDGeS, the Common Boundary betw®envice and Desktop Grids, Parallel
Processing Letters, Vol. 18, No. 3, September 2[8BN: 0129-6264, pp. 433-445

[13] The EGEE - Enabling Grids for E-sciencE — Websits://www.eu-egee.org/

[14] E. Urbah et al.: EDGeS: bridging EGEE to BOINC and iXiféeb, Journal of Grid Computing, Vol
7, Issue 3, pp 335-354, 2009.

[15] Z. Farkas, et alUtilizing the EGEE Infrastructure for Desktop Gridis; Distributed and Parallel
Systems In Focus: Desktop Grid Computing, Petersiflac Robert Lovas and Zsolt Nemeth
(Editors), Springer, 200&p 27-35.

[16] lan Kelley and lan Taylor. Bridging the Data ManagatmGap between Service and Desktop Grids.
In: Distributed and Parallel Systems In Focus: BgskGrid Computing, Peter Kacsuk, Robert
Lovas and Zsolt Nemeth (Editors), Springer, 2008.

[17] Attic Website — http://www.atticfs.org

[18] AbdelHamid Elwaer, Andrew Harrison, lan Kelley anahlTaylor. Attic: A Case Study for
Distributing Data in BOINC Projects. "8Norkshop on Desktop Grids and Volunteer Computing
Systems (PCGrid 2011). May 2011, Anchorage, Alaska, USA.

[19] Costa, F., Kelley, I., Silva, L., Taylor, 1., 200Beer-To-Peer Techniques for Data Distribution in
Desktop Grid Computing Platforms. In: To be puldidhin a special volume of the CoreGRID
Springer series.

[20] Cohen, B., June 2003. Incentives Build RobustnegitiTorrent. In: Work- shop on Economics of
Peer-to-Peer Systems (P2PEcon’03). Berkeley, CA.

[21] Pasquale Cozza, Carlo Mastroianni, D. T., TayloAuligust 28-29 2006. A Super-Peer Protocol for
Multiple Job Submission on a Grid. In: Pro- ceedimgf the CoreGRID Workshop on Grid
Middleware Workshop in conjunction with Euro-PargBden. To be Published. Springer.

[22] VISAGE: Video Stream Anaysis in a Grid Environment, http://edges-
grid.eu/c/document_library/get file?folderld=6385#8ne=DLFE-1504.pdf

[23] U.Becciani, C.Gheller, M. Comparato, A. Costa: Vi, a VO enabled tool for Scientific
Visualization and Data Analysibitp://wiki.eurovotech.org/bin/view/VOTech/VisIVQ005.

[24] A. Marosi et al.: Enabling Java applications for BiGlwith DC-API, In Distributed and Parallel
Systems, Springer US, August 2008, pp 3-12.

[25] A. Marosi, Z. Balaton, P. Kacsuk: GenWrapper: A ganerapper for running legacy applications
on desktop grids, IPDPS 2009, IEEE.

[26] Jacq N. et al.: Grid-enabled virtual Screening @gfainalaria, Journal of Grid Computing, 6 (1), 29-
432008, Springer Netherlands, 2007, DOI 10.1007/23@07-9085-5.

[27] EDGI Project Websitehttp://edgi-project.eu

[28] W3C MD5 recommandationdittp://www.w3.0rg/TR/1998/REC-DSig-label/MD5-1 0

11

