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1. Introduction

These proceedings briefly summarise the status of ATLAS, and selegstphighlights,
especially searches, as presented at the EPS-HEP conference 201aily A large number of
parallel talks and posters from ATLAS presenters are also reported/t@se in this volume, as
are plenary talks which review ATLAS results in wider contexts, coverlagtmweak [1], top [2],
QCD]3], heavy ions[4], and LHC Higgs searches[5]. Essentially edutts included in these
proceedings were preliminary at the time of the conference, and someparpublished (see
references).

2. Data Samples
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Figure 1. Integrated luminosity history in (left) 2010, and (righ) 2L to the date of the conference. Note
log and linear vertical scales, respectively. The lumityosiror is+3.4% and+3.7% respectively.

The LHC luminosity delivery in 2010 was characterised by a roughly exptial rise in peak
luminosity, spanning five orders of magnitude over the year (Figure 1).ta ¢ 45 pbt was
collected by ATLAS. The year 2011 began with luminosities similar to those atrttied£2010,
and has seen a roughly linear rise in instantaneous luminosity from fill to fithéyend of July
reaching 1.7%10°3cm~2s71, and a “best day” with 63 pt}. The integrated luminosity collected
is already, by the time of the conference, thirty times larger than in 2010, a to$.5 fo L.
Analysis results presented use up to 1.2'fbf 2011 data.

The most striking change in beam conditions between 2010 and 2011 Hiagt@as been
the inexorable rise of multiplpp interactions (“pileup”) in both the triggered beam-crossing (“in-
time”) and nearby ones in time (“out-of-time”). The latter affect the data tgenarily through
the long integration times of the calorimeters. The level of pileup may be coarsatpcterised
by the mean numbep, of interactions per bunch crossing at a given point in an LHC fill, togethe
with the bunch spacing, which has been 50 ns in 2011. The distributigrirothe early 2011 data
is shown in Figure 2.

The absolute luminosity calibration is the result of several beam-separatander Meer”)
scans, of excellent quality evidencing stable and very close-to-gausaizsverse beam profiles.
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Figure 2: Left: mean numbeiy, of interactions per bunch crossing for 2011 data; righeyg dependence
of luminosity estimators in 2011 data.

The luminosity calibration is transported to physics data-taking using a rdrditfesent relative
luminosity measures and devices, illustrated in Figure 2. In 2010 data, a patymiminosity
precision in physics 0f-3.4% is obtained [6]. The increased pile-up in 2011 results in only a small
additional error in 2011, due to the multiple luminosity estimators available fos-arscks, so
that a preliminary uncertainty af3.7%[7] is used for 2011 analyses to date.

ATLAS’ typical data-taking efficiency is at the95% level, and the fraction of operational
channels in different detector systems is at487% level or higher. The LHC experiments have
precipitated a revolution in data handling and fast physics analysis cothfzapgevious genera-
tions of large collider experiments. Data written to disk at the experiment ebastucted at the
CERN Tier-0 a couple of days later, after a delay to allow calibration ana othlitions informa-
tion to be updated based on the data themselves: these calibrations arergutficoublication-
quality physics analysis. Analysis typically can start around one weekthéalata are collected,
when a full data quality assessment is complete. Thus results presergeaidable to use data
collected until around four weeks before the conference. This alleztethe superb performance
of the Worldwide LHC Computing Grid, WLCG. Figure 3 (left) illustrates this dbeze perfor-
mance in terms of the numbers of ATLAS analysis and production jobs rumdecacross all
Tier-1 and Tier-2 sites. Job totals of around two-thirds of a million a day ehrizeed.

To date, ATLAS has been able to operate with simple inclusive triggers whdilitdite ef-
ficiency measurements from the data themselves: for electrons and mumwetsze momentum
thresholdspr > 20 GeV and 18 GeV are deployed as the primary, stable, thresholds f201ie
data collected until the conference. The very sharp efficiency turavaitable at the high-level
trigger is illustrated in figure 3 (right). The trigger menu includes a host oférigignatures,
ranging from primary triggers through to supporting and monitoring triggersing at low rates.
The reliable extrapolation of rates to higher luminosities indicates that thesfiépileup are
sufficiently understood at the trigger level.
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Figure 3: Left: total numbers of ATLAS jobs run on the grid, aggregadedoss all Tier-1 and Tier-2 sites,
during the first part of the 2011 running; right: efficiencyrtton curves for 20 Ge\pr threshold electron
trigger, at the first, second, and final (event filter) levels.

3. Dibosonsand Top

There is no space in this article for a review of ATLAS’ extensive Stashdiéodel measure-
ment programme. However, one highlight from 2011 data at this corderi@rthis area has been
the measurement of massive electroweak diboson production crdgsise®he most precise mea-
surements are made in specific fiducial acceptances, which may be é&xdeddo obtain inclusive
W ZandZZ cross-sections:

o (W2) = 211431 (stat) £ 1.2(sysh £33 (lumi) pb][g]
0%4(22) = 8.4+5 (stat) +34 (syst + 0.3(lumi) pb[9]

to be compared with Standard Model NLO expectations aflland 6.5 8:2 pb, respectively.
A highlight in the top sector is a measurement oftth&oss-section with dilepton events, using
0.7 fb~ of 2011 data [10]. Combining this with earlier measurements results in a sectisn of:

o(tf) = 176 5(stat) £13 (syst + 7(lumi) pb[11].

The precision of this measuremetit3%, challenges the current theoretical uncertainty which is at
the level of 10% [12]. Another analysis[13] has measured the singlertmfuction cross-section

in the t-channel with an observed significance ofd7 (Bxpected significance 503. The result is
consistent with the Standard Model expectation.

4. Beyond the Standard M odel

A wide range of searches for new phenomena beyond the Standael Masdbeen carried out
by ATLAS. In this article, a subset of results on exotic physics searateeeported which use the
2011 data sample: for the most part these are in relatively simple topologéee ehobust analysis
could be done rapidly. Already by the time of the conference major improvisnesensitivity
were possible over results based only on 2010 data. Furthermorehsgdor supersymmetry in
the O-lepton and 1-lepton channels are reported, again using the eatlylata sample.
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Figure 4: Left: Invariant mass spectrum of electron pairs in the<&e search; right: Limits obtained o Z
production, combining the electron and muon channels [14].

4.1 Exotic Models

Updated results for dilepton searches are illustrated in figure 4: the elquipinvariant mass
distribution observed with more than 1fhis shown, together with cross-section limits orlike
(narrow) resonances as a function of mass. Production of a sedugatidard model-like Zis
excluded at 95% CL with mass below 1.83 TeV, 0.78 TeV above the limit defiead 2010 data.
Further limits on other dilepton resonance models are also available [14dlditicen, an updated
search for particles decaying to an electron and a muon has beempextfgslacing constraints,
for example, on a straw-man R-parity violating SUSY model [15].
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Figure 5: Left: Transverse mass spectrum of muon and missing tragesvaomentum in the YW~ uv
search. Right: Limits obtained on’Wroduction, combining the electron and muon channels [16].

The search for Wproduction has similarly been extended with the early 2011 data[16], as
shown in figure 5. Limits on a sequential standard model-likendw extend to 2.15 TeV at 95%
CL, when the electron and muon channels are combined, 0.66 TeV highdroha2010 data.

The search for peaks in the dijet invariant mass spectrum is also updangd2011 data, as
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Figure 6: Left: Invariant mass spectrum of dijets; right: limits oross-section times branching ratio for
dijet resonance production, compared with the expectafiorg” and axigluon production [17].

depicted in figure 6. The 95% CL limit on the benchmgtkmodel is increased by 0.76 TeV to
2.91 TeV, updated limits are also placed on axigluon angamlour-octet scalar model, and more
generically on cross-sections for dijet resonances of different wdfr.
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Figure 7: Left: Missing transverse momentuE?“SS, observed in selected events with apgt> 120 GeV
and|n| < 2, andEP'sS > 120 GeV; right: The 95% CL lower limits on the-4n-dimensional Planck scale
Mp for different numbersy, of extra dimensions [18].

In a different combination of highpr objects, a search for “monojet’-type events has also
been updated with 2011 data[18]. The event topology is that of a frgjet recoiling against
little observed activity in the detector, i.e. with missing transverse momentum it@pios jet.
Constraints are placed on the Planck sddfein 4+n-dimensions in the ADD extra dimensions
model [19], where an unobserved graviton gives rise to the missingregeaesmomentum. These
lower limits onMp are shown in figure 7.
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Figure 8. Left: Reconstructedt invariant mass distribution in the lepton-plus-jets clen20]; right:
invariant mass of split and filtered subjets in events witligh{pr W — ¢v candidate [21].

A more complex search relying on lepton, jets and missing transverse eeeaystruction is
that fortt resonances. The reconstructed invariant mass distribution of singtertégandidates
is shown in figure 8. Events are observed, already in just 206 pbdata, out to invariant masses
of 2 TeV. Limits are placed on narrow and wide resonance productissections [20]. This
analysis uses standard top reconstruction techniques: looking to the &mdmore boosted tops,
new techniques will be needed, which will also be important in other seapthogies. As an
example, figure 8 also shows the reconstructed mass distribution of splftli@neld subjets in
events with a highpr W — /v candidate fr > 200 GeV): a rather evident peak from hadronic W
decays is seen [21].

4.2 Supersymmetry

At the time of the conference, ATLAS already had results over a widespeof topologies
for supersymmetric particle production and decay. The bulk of theselssatook for signatures
with R-parity conservation: missing transverse momentum being the commontusgna

Selecting events with jets, missing transverse momentum and no leptons is sesitie
simplest strong production of gluinos and squarks, with decays suqh—aqj("f andg— qq)?f.
The analysis is carried out in four kinematic regions, and the effectives mgsis used as the
discriminating variable in all four cases. It is defined as the scalar sug§'6fand the selected
jet transverse momenta. They distributions obtained are shown in figure 9, together with the
derived limits in the squark-gluino mass plane, and in the MSUGRA/CM&§M vs my plane.

A major improvement in sensitivity is evident from the addition of the 2011 data.

Selecting events with jet€MsS and at least one jét-tagged by a lifetime algorithm allows
searches to be more sensitive to models in whictbthe f; is the lightest squark [23]. This search
is illustrated in figure 10.
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Figure 9: Top: Effective mass distributioms, for the dijet and four-jet high mass regions of the jetssplu

EMISS SUSY analysis; bottom: Limits obtained [22].
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5. The Latest on the Higgs Search

The current status of LHC Higgs searches is summarised elsewhereéamptioegedings [5],
and so here only the most sensitive channels are briefly reviewed. Atdaisng, ATLAS reported
updates with more than 1 b analysed on the channets — yy[24], H — ZZ*) — ¢000[25],

H — ZZ— 0lvv[26], H — ZZ — 00qq[27], H — WW™) — fvev[28], H — WW — fvqq[29],
WH — ¢vbbandZH — ¢/bb[30]. Cut-based techniques have been used throughout at this early
stage, to provide robust analyses.

Invariant mass distributions from thé — yy andH — ZZ(*) — ¢¢¢¢ analyses are shown in
figure 11. Both channels allow the Higgs boson mass to be reconstructegomithexperimental
precision, but the sensitivities (expected 95% CL limits) at this point areetatythe level of the
Standard Model cross-section, due to the low branching ratios into tineéstttes.
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Figure 11: Left: Diphoton invariant mass in events selected inkhe> yy analysis [24]; right: Four lepton
invariant mass in events selected in the~ ZZ*) — ¢¢¢¢ analysis [25].

TheH — ZZ — ¢¢vv channel analysis is more powerful at high mass for Higgs exclusion,
although it lacks such good mass resolution. As indicated in figure 12, taimehon its own
provides a 95% CL exclusion for a range of high Higgs masses: the Biiye my < 450 GeV
is excluded by this channel alone [26].

TheH — WW®*) — ¢v¢v channel is another powerful one for exclusion, also for tow,
however it too does not allow event-by-event determinations of the Higgs,rhasause of the
two escaping neutrinos. In this channel the transverse mass distributiom leptons and missing
transverse momentum is formed (see figure 13), and a sli€&@] < mr < my is selected in
order to derive cross-section constraints for speaificvalues [28]. This channel alone excludes
production of the SM Higgs in the range 142my < 186 GeV at 95% CL. It also shows a small
~ 20 surplus of events over the Higgs mass range 130-150 GeV: more dagaalydis is required
to understand whether this arises from a fluctuation, mis-estimated baokigrar something else.

Putting together all the channels analysed, constraints on the crossisest#ofunction of
Higgs mass are obtained as shown in figure 14. ATLAS excludes at 958MCHiggs production
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Left: Zero-jet channel; right: one-jet channel [28].

in the two regions 155-190 GeV and 295-450 GeV [31].

6. Summary

The performance of the LHC in 2011 has been breathtaking, and the 8Tetector is also
performing very well indeed. A range of measurements and searchsrase available already
from 2011 data, building on the wealth of physics from the 2010 data. Ih titthe time of the
conference, ATLAS had submitted 47 journal papers, and completeddif@rence notes. A total
of thirty-five analyses were updated for this conference: ATLAS ihjmgsdeep into unexplored
regions of phase space with both simple and complex search topologiesupTibel.2 fbr! of

10
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Figure 14: Constraints on Standard Model Higgs production crosseset Top: Comparison of the limits
obtained from different channels; below: Combined limdlig line) together with the expected limits, and
the expected variation of them (green and yellow bands).twheplots cover differeniny ranges [31].

2011 data analysed by the time of the conference has brought a majasedrenew physics
sensitivity compared with 2010.

At this time early in the summer, there was no very significant evidence of &thdodel
Higgs boson production, but thanks to the excellent LHC and ATLASoperdnce large swathes
of mass were excluded at the 95% CL.: specifically the regions 155-190a@Bé 295-450 GeV.
The analysis of the full 2011 data sample promises much.
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