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1. Introduction

Top quark physics is one of the main physics programs both at the Tevatron collider at Fermilab
and at the Large Hadron Collider (LHC) at CERN. The Tevatron is a proton-antiproton (pp̄) collider
with a center-of-mass energy of

√
s= 1.96 TeV. The LHC is colliding protons against protons with

a current center-of-mass energy of
√

s= 7 TeV. Two experiments, CDF and D0, are located around
the Tevatron, while the general purpose detectors, ATLAS and CMS, are constructed around the
LHC. The Run II of the Tevatron started in 2002 and terminatedon September 30, 2011 with a
delivered integrated luminosity of 11.9 fb−1. The LHC run at

√
s= 7 TeV started in 2009. At the

end of 2011, more than 5 fb−1 are expected to be delivered.

The top quark was discovered in 1995 by the CDF and D0 collaborations [1]. It is the heaviest
elementary particle known today and has a coupling to the Higgs boson close to unity which may
indicate that it plays a special role in electroweak symmetry breaking. Its lifetime is also shorter
than the typical hadronization time thus it is the only quarkthat decays before hadronizing. That’s
why it offers an unique opportunity to study a bare quark. Forall these reasons, the top quark is a
special quark and top quark physics is very relevant to search for new physics.

Direct search for physics beyond the Standard Model (SM) hasbeen performed in the top
quark sector by looking for specific new models that involve top quark signatures or for new par-
ticles that decay like top quarks. For instance searches fortt̄ resonance that could be produced by
the decay of a heavy Z’ or searches for new couplings like flavor changing neutral currents were
carried out. Direct searches in the top quark sector are described in [2].

It is also possible to search for new physics with top quarks in a model independent way
looking for deviations from the SM expectations. In that case it is necessary to precisely measure
the top quark properties. New physics effects could be seen as new or anomalous couplings. For
example, a heavy Z’ exchange can be seen as a four fermion coupling at low energy. An anomalous
coupling between gluon and quarks would affect the production processesqq̄ → tt̄ andgg→ tt̄,
while a four fermion operator would affect only the processqq̄→ tt̄ and an anomalous three gluon
coupling only the process:gg→ tt̄. A new coupling between theW boson and the quarks could
affect both single top production and top quark decays. Hence different top quark observables can
constrain different new physics effects and so it is useful to measure as many top quark properties
as possible.

At hadron colliders the main top quark production occurs in pairs via the strong interaction
by quark-antiquark annihiliation or by gluon fusion. At theTevatron, the dominant process is the
quark-antiquark annihiliation (85% of thett̄ production). The LHC is rather a gluon fusion machine
sincegg→ tt̄ represents 85% of thett̄ production at

√
s= 7 TeV. The latest theoretical computa-

tions at an accuracy that approximates next-to-next-to-leading order (NNLO) in perturbative theory
gives: σ(pp̄→ tt̄) = 7.46+0.48

−0.67 pb at the Tevatron andσ(pp̄→ tt̄) = 164.6+11.4
−15.7 pb at the LHC at√

s= 7 TeV [3] both formt = 172.5 GeV. Hence with 1 fb−1 at LHC, we expect around 4 times
morett̄ events than at the Tevatron with 5 fb−1.

Top quarks can also be produced singly through the electroweak interaction. This production
mode was discovered by CDF and D0 in 2009 [4]. It allows to directly measure theVtb element
of the CKM matrix. It is however challenging to measure sinceit has a rather small production
cross section and its background has a very similar signature to the single top signal. Single top
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in pb σtb σtqb σtW

pp̄ @ 1.96 TeV 1.04±0.04 2.26±0.12 0.28±0.06
PRD 74, 114012 (2006)

pp @ 7 TeV 4.6±0.3 64.6+3.3
−2.6 15.7±1.4

PRD81, 054028 (2010) PRD83, 091503 (2011) PRD82, 054018 (2010)

Table 1: Summary of the latest single top cross section computationsfor mt = 172.5 GeV.

production at hadron colliders can be separated into three channels. The Feynam diagrams for the
s-channel (tb), the t-channel (tqb) and the Wt-channel (Wt) are shown in Figure 1.

Figure 1: Feynam diagrams for the production of single top at hadron colliders. From left to right: s-channel,
t-channel and Wt-channel.

The latest theoretical computations are presented in Table1. The t-channel is the dominant
mode both at the Tevatron and the LHC, while the s-channel is subdominant at the Tevatron and the
Wt-channel subdominant at the LHC. It is interesting to measure these three processes separately
since new physics could show up differently in the differentchannels. For instance a potential
four quark coupling would affect only the s and t-channels while an anomalous top-gluon coupling
would alter only the Wt-channel. Anomalous Wtb coupling would influence all three channels.
Due to its tiny cross section, measuring the Wt-channel is not possible at the Tevatron. For the
same reason, measuring the s-channel at LHC is challenging.

Within the SM, the top quark decays almost 100% of the time into a W boson and ab quark.
This branching ratio can be modified by the presence of new physics. Top pair signatures are then
classified according to the decays of the W bosons. If both W bosons from the top quarks decay
hadronically, the channel is called the alljets final state.It has a large rate but is also contaminated
by a large background from multijet events that is estimatedfrom data. On the contrary, the dilepton
channel occurs when both W bosons decay leptonically into a muon or an electron. It has a small
branching ratio but also a small background contamination.The main background in this channel
comes from Drell-Yan production (with fake missing transverse energy in the dielectron or dimuon
channels). The golden channel is the lepton+jets channel when one W boson from the top quark
decays leptonically and the other one hadronically. It has agood rate with reasonable background
from W+jets production and multijet events. In this channelthe W+jets background normalization
is usually estimated from data while its shape is taken from MC. As top quark decays always
produceb quarks,b quark identification is often used to enhance the purity in the selected data
samples.

In the following, I will describe first the latest results on top quark production then I will
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CDF (4.6 fb−1, PRL 105, 012001 (2010)) σ(pp̄→ tt̄) = 7.70±0.52 (stat+syst+ theory) pb

D0 (5.6 fb−1, PRD 84, 012008 (2011)) σ(pp̄→ tt̄) = 7.78+0.77
−0.64 (stat+syst+ lumi) pb

Atlas (35 pb−1) σ(pp→ tt̄) = 186±10(stat)+21
−20(syst)±6(lumi) pb

CMS (36 pb−1, EPJ. C71, 1721 (2011)) σ(pp→ tt̄) = 150±9(stat)±17(syst)±6(lumi) pb

Table 2: Summary of the latesttt̄ cross section measurements in the lepton+jets channel formt = 172.5 GeV.

present the measurements of the top quark properties. References for the preliminary results pre-
sented here can be found on the collaboration public web pages [5–8].

2. Top Quark Production

Studying top quark production mainly consists of measuringthe top quark production cross
sections. These measurements also allow to handle well known data samples that can be further
used to scrutinize the other top quark properties.

2.1 tt̄ Production Cross Section

The most precise results on thett̄ cross section are measured in the lepton+jets channel. Such
measurements could be based on purely topological information or could be using identification
of jets fromb-quarks (b-tagging requirements). As the main background in this channel comes
from W+jets events, the rate of which is difficult to predict theoretically, the normalization of this
background is usually fit together with the number oftt̄ events. It is also valuable especially in this
channel to use the data to constrain systematic uncertainties in order to reduce them.

The most precise measurements of thett̄ cross section in this channel are summarized in
Table 2 both at the Tevatron and at the LHC. All these measurements are limited by systematic
uncertainties where the largest sources come from the uncertainty on jet energy scale (JES) cal-
ibration, jet identification,b-tagging requirement and from the fraction of W events produced in
association with heavy flavor quarks.

It is also interesting to measure thett̄ production rate in other channels since new physics could
affect the top quark decay channels differently. It is then important to perform the measurements
in different signal/background environment and to see if the measurements in all decay channels
agree with each other. Measurements are now evaluable in almost all possible top quark decay
channels. In particular, ATLAS has provided a new measurement in the dilepton channel using
0.70 fb−1, while CMS measured for the first time thett̄ cross section in the alljets andµτ decay
channels using 1.10 fb−1. The measurements in all the different channels are in good agreement.

Cross section measurements can also be used as a tool to studyother properties. For instance,
D0 recently fit, together with thett̄ cross section, the branching fraction ratioR= B(t→Wb)

B(t→Wq) , where
q represents any type of quarks. This ratio which is predictedto be 1 in the SM can be expressed
in term of elements of the CKM matrix and can then be used to measureVtb assuming the unitarity
of the CKM matrix. Using 5.4 fb−1 in both the lepton+jets and dilepton channel, D0 measures:
|Vtb|= 0.95±0.02 [9].
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CDF (up to 4.6 fb−1) σ(pp̄→ tt̄) = 7.5±0.31(stat)±0.34(syst)±0.15(theory) pb

D0 (5.6 fb−1, PLB 704, 403, (2011)) σ(pp̄→ tt̄) = 7.56+0.63
−0.56 (stat+syst+ lumi) pb

Atlas (up to 0.7 fb−1) σ(pp→ tt̄) = 176±5(stat)+13
−10(syst)±7(lumi) pb

CMS (36 pb−1) σ(pp→ tt̄) = 158±10(uncor.)±15(cor.)±6(lumi) pb

Table 3: Summary of the latest combinedtt̄ cross section measurements formt = 172.5 GeV.

The latest cross section measurements at the Tevatron and LHC are summarized in Table 3 and
in Figure 2. The precision of the measurements is around 6.5%at the Tevatron and as low as 8% at
the LHC. The results agree with the Quantum Chromodynamics (QCD) predictions. In the future,
precise differential measurements will also be carried out.
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Figure 2: Summary of the latesttt̄ cross section measurements at the Tevatron ad LHC as a function of the
center-of-mass energy.

2.2 Single Top Production Cross Section

As discussed above, the dominant mechanism for electroweaktop quark production is the
t-channel production where the top quark is produced in association with a light and ab quark.
To measure the t-channel cross section, the analysis strategy consists of isolating this particular
topology from the other single top processes and from the backgrounds (mainly W+jets andtt̄).
Due to the small production rate and the large background, multivariate methods like neural net-
works (NN) or boosted decision trees (BDT) have to be deployed at the Tevatron. At the LHC both
cut-based or multivariate approaches are used.

The latest D0 measurement [10] uses a combination of three multivariate discriminants to
extract the t-channel single top cross section and reaches an observed significance of 5.5 σ for this
measurement. ATLAS uses both a cut based and a NN which allow also to observe the signal at
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CDF (3.2 fb−1) 0.8±0.4

D0 (5.4 fb−1, PLB 705, 313 (2011)) 2.90±0.59 5.5σ

CMS (36 pb−1, PRL 107, 091802 (2011)) 83.6±29.8(stat+syst)±3.3(lumi) 3.7σ
Atlas (0.7 fb−1) 90+32

−22 7.6σ

Table 4: Summary of the t-channel cross section measurements formt = 172.5 GeV (in pb).

the level of 7.6 σ . CMS uses a 2 dimension fit of the cosine of the angle between the lepton and
the light jet and the pseudorapidity of the light jet [11]. CMS also measures the t-channel cross
section using a BDT [11]. Table 4 summarizes the latest t-channel cross section measurements at
the Tevatron and the LHC.

Measurements of the other single top cross sections have been also performed. D0 performed
a measurement of the inclusive cross section using both t ands-channels as signal using 5.4 fb−1

of data, leading to: 3.43+0.73
−0.74 pb for mt = 172.5 GeV [12]. This allows to extract a limit onVtb

of: |Vtb| > 0.79 at 95 % confidence level (CL). More statistics is needed to be sensitive to the s-
channel. ATLAS also performed a search for the Wt-channel inthe dilepton channel using a cut
based analysis. In this channel, the main background comes from tt̄ production. A limit at 95 %
CL of σWt < 39.1 pb is achieved.

3. Top Quark Properties

Many top quark properties have been measured already. We will focus here only on some of
the most recent developments.

3.1 Top Quark Mass

It is important to precisely measure the top quark mass sinceit is a free parameter of the
SM and because together with the mass of the W boson it allows to predict the mass of the yet
unobserved Higgs boson. If the Higgs boson is discovered, itwould allow to test the consistency
of the SM.

There are mainly three different methods to measure directly the top quark mass. First the
template method which relies on the comparison of an observable in data (often the reconstructed
top quark mass itself) with the prediction for this observable from MC samples generated at dif-
ferent masses. The main advantage of this method is its simplicity. The second method called the
matrix element method leads to the most precise determination of the top quark mass. It consists
of building an event by event probability based on the Leading Order (LO)tt̄ matrix element using
the full kinematics of the event. The third method called theideogram method can be seen as an
approximation of the matrix element method. It uses an eventlikelihood computed as a convolution
of a Gaussian resolution function with a Breit-Wigner for the signal. Independently of the method,
for the channels with a least one W boson decaying hadronically, it is possible to calibrate the JES
constraining the invariant mass of the two light jets from the W decays to the world average W
mass. This allows to greatly decrease the input of the uncertainty from JES. In order to correct for
any potential biases due to the method assumptions it is mandatory to calibrate the measurements.

6
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The results for some of the latest measurements of the top quark mass are given below. CDF
measured the mass requiring missing transverse energy in associated with jets. It allows to recover
acceptance for misidentified leptons from the lepton+jets channel. It extracts the signal using a NN.
The top quark mass is determined using a template method withthree jet invariant masses as ob-
servable for the top quark mass and dijet invariant masses tocalibrate in-situ the JES. This method
leads tomtop = 172.3±2.4 (stat+ JES)±1.0 (syst) GeV. D0 measured the top quark mass using
the matrix element method in the lepton+jets channel. This updated measurement benefits from
a new flavor-dependent jet response correction that allows to additionnally reduce the JES uncer-
tainty. Combining the 2.6 fb−1 new result with the previous published 1 fb−1 measurement leads
to: mtop = 174.94± 0.83 (stat)± 0.78 (JES)± 0.96 (syst) GeV [13]. This measurement is lim-
ited by systematic uncertainties from signal modeling and from the residual JES uncertainty. CMS
used an ideogram method in the lepton+jets channel using 36 pb−1 and extracted a top quark mass
of: mtop = 173.1±2.1 (stat)+2.8

−2.5 (syst) GeV. This result is also limited by systematic uncertainties
mainly from JES.

CDF and D0 have updated the combination of their top quark mass measurements in all the
different top quark decay channels [14]. All channels lead to consistent results and for the first
time, the combined value has an uncertainty below 1 GeV as canbe seen in Figure 3. Work is
still in progress to further reduce the systematic uncertainties. I made an attempt to add the LHC
measurements in the combination taking correlations into account. The result is also shown in
Figure 3.

Using this new Tevatron top quark mass combination, electroweak fits constraint the Higgs
boson mass to be:mH < 161 GeV at 95 % CL with a most probable value ofmH = 92+34

−26 GeV [15].

3.2 W Boson Helicity in Top Decays

Measuring the helicity of the W boson in top quark decays enables to test the SM at the
electroweak scale. New physics could affect the helicity through the coupling of the W boson to
the top and bottom quarks. The SM predicts that the W boson cannot be right-handed.

The measurement is performed either using a template fit or using a matrix element method.
For the template method, the often chosen observable is the cosine of the angle between the lepton
from the W boson decay and the top quark direction in the W boson rest frame (cosθ∗). Combin-
ing the latest Tevatron measurements in the dilepton and lepton+jets channels taken into account
correlations leads to:f0 = 0.732±0.063 (stat)±0.052 (syst) and f+ = −0.039±0.034 (stat)±
0.030(syst) when both the left-handed (f0) and right-handed (f+) W fractions are allowed to vary.
This measurement agrees with the SM predictions off0 = 0.70 and f+ = 0. The input measure-
ments as well as the combined result are shown in Figure 4.

Altas also measured the left-handed and longitudinal (f−) W fractions in the lepton+jets chan-
nel using 35 pb−1and finds:f0 = 0.59±0.10 (stat)±0.07 (syst) when f+ and f− are fixed to their
SM values andf− = 0.41±0.10 (stat)±0.07 (syst) when f0 and f+ are fixed.

3.3 Top Pair Spin Correlations

Even if at the Tevatron and LHC, the top quarks are produced unpolarized, in the SM, the spin
of the top and of the antitop quarks are correlated. Since thetop quark decays before hadronizing,
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DØ-I lepton+jets  5.3±     180.1  3.6)± 3.9 ±(
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Mass of the Top Quark
(* preliminary)July 2011

Figure 3: Summary of the latest Tevatron top quark mass measurements and their combined value [14]. My
attempt to add the LHC measurements in the combination is also shown.

this correlation is preserved in the decay products. Hence the quark is a unique tool to study this
property. These correlations can be affected by new physics. Measuring the correlations allow
also to verify that the top quark is a spin 1/2 particle. In quark-antiquark annihilation, the top pair
is produced in a3S1 state while it is produced in a1S0 state via gluon fusion. That’s why this
correlation is different at the Tevatron and at the LHC.

It is possible to measure the top spin correlation using a template or a matrix element method.
As the differentialtt̄ cross sectionσ can be written:

1
σ

d2σ
dcosθ1dcosθ2

=
1
4
(1−Ccosθ1 cosθ2),

the template method relies on a fit of the cosθ1 cosθ2 distribution whereθ is the angle between the
down-type fermion with respect to the chosen spin basis in the top or antitop quark rest frame and
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Figure 4: Summary of the latest Tevatron W helicity measurements and their combination.

allows to measure the correlation strengthC. CDF measured the spin correlation when choosing
the helicity basis as quantization axis using 4.3 fb−1 in the lepton+jets channel and foundC =

0.60±0.50 (stat)±0.16 (syst) [16]. The SM predictsC= 0.40. D0 has developped a new method
by measuring the fraction of events with spin correlation using a template fit of the variable

R=
P(H = c)

P(H = u)+P(H = c)

whereP(H = c) is the probability that the signal has spin correlation andP(H = u) the prob-
ability that the signal has no spin correlation. The probabilities are computed using the LOtt̄
matrix element with or without spin correlation. Using 5.4 fb−1 of dilepton events, D0 measured
f = 0.74+0.40

−0.41 (stat+ syst) which can be translated using the NLO prediction ofC in the SM to
C = 0.57±0.31 (stat+ syst) [17]. Even if these measurements are still statistically limited, their
sensitivity to exclude the case of no correlation is now close to 3σ .

3.4 Top-Antitop Charge Asymmetry

At Next-to-Leading Order (NLO), perturbative QCD predictsan asymmetry fortt̄ events pro-
duced via quark-antiquark annihilation. Indeed, top quarks are predicted to be emitted preferably
in the direction of the incoming quarks. The exchange of new particles like a Z’ or an axigluon
could modify it. This asymmetry comes from the interferenceof theqq̄→ tt̄ tree and box diagrams
and leads to a positive asymmetry and the interference between the ISR and FSRqq̄ → tt̄g dia-
grams which produces a smaller negative asymmetry. At the Tevatron which is a proton-antiproton
collider, this asymmetry translates into a forward-backward asymmetry. It can be measured with
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Att̄ l+jets l+jets (Mtt̄ ≥ 450 GeV) dilepton

unfolded data 0.158±0.074 0.475±0.114 0.42±0.16
SM prediction (MCFM [19]) 0.058±0.009 0.088±0.013 0.06±0.01

Table 5: Summary of CDF top charge asymmetry measurements with the SMpredictions.

the observable:

Att̄ =
N(∆y> 0)−N(∆y< 0)
N(∆y> 0)+N(∆y< 0)

where∆y= yt −yt̄ is the difference between the top and antitop quark rapidities. At the LHC which
is a proton-proton collider, since the antitop quarks are coming from the sea, they carry on average
less momentum than the incoming quarks. As the produced top quarks are emitted preferably in
the direction of the incoming quarks due to the boost, they appear more central than antitop quarks.
Hence at the LHC, the asymmetry can be observed as a central/forward-backward asymmetry. A
possible asymmetry observable is then:

AC =
N(∆|y|> 0)−N(∆|y|< 0)
N(∆|y|> 0)+N(∆|y|< 0)

where∆|y|= |yt |− |yt̄ |. However, because at LHC the maintt̄ production process occurs via gluon
fusion, this asymmetry is small.

CDF measuredAtt̄ in the lepton+jets and dilepton channels. After correctingfor acceptance
and reconstruction effects, the measurement from CDF in thelepton+jets channel shows a result
3.4σ higher than the SM prediction forMtt̄ > 450 GeV [18]. CDF measurements are summarized
in Table 5.

D0 also measured the asymmetry using 5.4 fb−1 in the lepton+jets channel. After correction
for detector effects, D0 foundAtt̄ = 0.196±0.065 [20] with agrees at the level of 2.4σ with the
prediction from MC@NLO [21]. No significant discrepancy wasobserved with the predictions
at largeMtt̄ at the reconstruction level. Using lepton+jets events, D0 also measured the leptonic
asymmetry:

Al
FB =

N(ql yl > 0)−N(ql yl < 0)
N(ql yl > 0)+N(ql yl < 0)

whereql andyl are the lepton charge and rapidity. After correction for detector effects, it gives:
Al

FB = 0.152±0.04 [20] while the MC@NLO prediction leads to 0.021±0.001. This corresponds
to a difference of more than 3σ . D0 also noticed that the measured asymmetry depends signifi-
cantly on the modeling of thepT of the tt̄ system which is not perfectly described by MC@NLO
at D0 [20].

At the LHC, ATLAS and CMS used slightly different observables to measure:

AC =
N(∆ > 0)−N(∆ < 0)
N(∆ > 0)+N(∆ < 0)

.

ATLAS utilized: ∆ = |yt |− |yt̄ | while CMS used both:∆ = |ηt |− |ηt̄| (whereηt/t̄ are the pseudo-
rapidity of the top and antitop quarks) and∆ = (yt −yt̄)(yt +yt̄). The LHC results are summarized
in Table 6. No significant discrepancies from the SM are observed so far. CMS asymmetry distri-
bution as functionMtt̄ at the reconstruction level does not show any excess for large Mtt̄ .
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unfolded data SM prediction

Altas: Ay
C (0.7 fb−1) −0.024±0.016(stat)±0.023(syst) 0.006 (MC@NLO)

CMS:Aη
C (1.1 fb−1) −0.016±0.030(stat)+0.010

−0.019 (syst) 0.0130±0.001 [22]

Table 6: Summary of the Atlas and CMS top charge asymmetry measurements with the corresponding SM
predictions.

4. Summary and conclusion

Numerous top quark properties have been already measured allowing to better understand this
unique quark and to test the SM at the electroweak scale. These measurements are summarized
in Table 7. With the exception of the puzzling top charge asymmetry, no deviations from the SM
predictions have been observed. However only half of the Tevatron dataset has been analyzed
so far. With limited statistics, the LHC experiments have already delivered impressive top quark
measurements but a lot more precise measurements are expected when analyzing several fb−1. We
are then looking forward for hopefully exciting discoveries in the top quark sector in the future.

References

[1] S. Abachiet al. [ D0 Collaboration ], Phys. Rev. Lett.74, 2632-2637 (1995);
F. Abeet al. [ CDF Collaboration ], Phys. Rev. Lett.74, 2626-2631 (1995).

[2] A. Duperrin, Searches at the Tevatron, these proceedings;
D. Charlton, highlights from ATLAS, these proceedings;
G. Tonelli, highlights from CMS, these proceedings.

[3] U. Langenfeld, S. Moch, P. Uwer, Phys. Rev.D80, 054009 (2009);
M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, M. Wiedermann, Comput. Phys. Commun.
182, 1034-1046 (2011);
N. Kidonakis, Phys. Rev.D82, 114030 (2010);
V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak, L. L. Yang,JHEP1009, 097 (2010);
V. Ahrens, A. Ferroglia, B. D. Pecjak, L. L. Yang, Phys. Lett.B703, 135-141 (2011).

[4] T. Aaltonenet al. [ CDF Collaboration ], Phys. Rev. Lett.103, 092002 (2009);
V. M. Abazovet al. [ D0 Collaboration ], Phys. Rev. Lett.103, 092001 (2009).

[5] CDF Top Quark Physics Public Results, http://www-cdf.fnal.gov/physics/new/top/top.html

[6] D0’s Top Quark Physics Results,
http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_public.html

[7] ATLAS Top Public Results, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

[8] CMS Top Physics Results, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

[9] V. M. Abazovet al. [ D0 Collaboration ], Phys. Rev. Lett.107, 121802 (2011), [arXiv:1106.5436
[hep-ex]].

[10] V. M. Abazovet al. [ D0 Collaboration ], Phys. Lett.B705, 313-319 (2011), [arXiv:1105.2788
[hep-ex]].

11



P
o
S
(
E
P
S
-
H
E
P
2
0
1
1
)
0
0
7

Top Quark Physics Frédéric Déliot

Property Measurement SM L (fb−1)

σtt̄ pp̄→ tt̄ CDF: 7.5±0.31(stat)±0.34(syst)±0.15(th) pb 7.46+0.48
−0.67 pb up to 4.6

(for Mt = 172.5 GeV) D0: 7.56+0.63
−0.56 (stat+syst+ lumi) pb 5.6

pp→ tt̄ Atlas: 180±9(stat)±15(syst)±6(lumi) pb 164.6+11.4
−15.7 pb up to 0.7

CMS: 158±10(uncor.)±15(cor.)±6(lumi) pb 0.036

σtbq pp̄→ tt̄ CDF: 0.8±0.4 pb (Mt = 175 GeV) 2.26±0.12 pb 3.2

(for Mt = 172.5 GeV) D0: 2.90±0.59 pb 5.4

pp→ tt̄ Atlas: 90+32
−22 pb 64.6+3.3

−2.6 pb 0.7

CMS: 83.6±29.8(stat+syst)±3.3(lumi) pb 0.035

σtb pp̄→ tt̄ CDF: 1.8+0.7
−0.5 pb (Mt = 175 GeV) 1.04±0.04 pb 3.2

(for Mt = 172.5 GeV) D0: 0.68+0.38
−0.35 pb 5.4

σWt pp→ tt̄ Atlas: < 39.1 pb 15.7±1.4 pb 0.7

(for Mt = 172.5 GeV)

|Vtb| CDF: |Vtb|= 0.91±0.11(stat+sys)±0.07(th) 1 3.2

D0: |Vtb|= 1.02+0.10
−0.11 5.4

B(t→Wb)
B(t→Wq) CDF:> 0.61 @ 95% CL 1 0.2

D0: 0.90±0.04 5.4
σ(gg→tt̄)
σ(pp̄→tt̄) pp̄→ tt̄ CDF: 0.07+0.15

−0.07 0.18 1

Mt Tev: 173.2±0.9 GeV - up to 5.8

Atlas: 169.3±6.3 GeV - 0.035

CMS: 173.4±3.3 GeV - 0.036

Mt −Mt̄ CDF:−3.3±1.4(stat)±1.0(syst) GeV 0 5.6

D0: 0.8±1.8(stat)±0.5(syst) GeV 3.6

W helicity Tev: f0 = 0.732±0.063(stat)±0.052(syst) 0.7 up to 5.4

fraction Atlas: f0 = 0.59±0.10(stat)±0.07(syst) 0.7 0.035

Charge CDF: -4/3 excluded @ 95% CL 2/3 5.6

D0: 4/3 excluded @ 92% CL 0.37

Γt CDF:< 7.6 GeV @ 95% CL 1.26 GeV 4.3

D0: 1.99+0.69
−0.55 GeV up to 2.3

spin correlation Cbeam CDF: 0.72±0.64(stat)±0.26(syst) 0.777+0.027
−0.042 5.3

D0: 0.57±0.31(stat+sys) 5.4

Charge pp̄→ tt̄ CDF: 0.158±0.074 0.06 5.3

asymmetry D0: 0.196±0.065 5.4

pp→ tt̄ Atlas: Ay
C =−0.024±0.016(stat)±0.023(syst) 0.006 0.7

CMS:Aη
C =−0.016±0.030(stat)+0.010

−0.019(syst) 0.013 1.1

Table 7: Summary of the main top quark properties

12



P
o
S
(
E
P
S
-
H
E
P
2
0
1
1
)
0
0
7

Top Quark Physics Frédéric Déliot

[11] S. Chatrchyanet al. [ CMS Collaboration ], Phys. Rev. Lett.107, 091802 (2011), [arXiv:1106.3052
[hep-ex]].

[12] V. M. Abazovet al. [ D0 Collaboration ], [arXiv:1108.3091 [hep-ex]].

[13] V. M. Abazovet al. [ The D0 Collaboration ], Phys. Rev.D84, 032004 (2011), [arXiv:1105.6287
[hep-ex]].

[14] [ Tevatron Electroweak Working Group and for the CDF andD0 Collaborations ], [arXiv:1107.5255
[hep-ex]].

[15] [The LEP/Tevatron Electroweak Working Group],
http://lepewwg.web.cern.ch/LEPEWWG/plots/summer2011/

[16] T. Aaltonenet al. [ CDF Collaboration ], Phys. Rev.D83, 031104 (2011), [arXiv:1012.3093 [hep-ex]].

[17] V. M. Abazovet al. [ D0 Collaboration ], Phys. Rev. Lett.107, 032001 (2011), [arXiv:1104.5194
[hep-ex]].

[18] T. Aaltonenet al. [ CDF Collaboration ], Phys. Rev.D83, 112003 (2011), [arXiv:1101.0034 [hep-ex]].

[19] J. M. Campbell, R. K. Ellis, Nucl. Phys. Proc. Suppl.205-206, 10-15 (2010), [arXiv:1007.3492
[hep-ph]].

[20] V. M. Abazovet al. [ D0 Collaboration ], [arXiv:1107.4995 [hep-ex]].

[21] S. Frixione, B. R. Webber, JHEP0206, 029 (2002), [hep-ph/0204244];
S. Frixione, P. Nason, B. R. Webber, JHEP0308, 007 (2003), [hep-ph/0305252].

[22] G. Rodrigo Private Communication (2011).

13


