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Recently, there has been a renewed interest in the search of a modified theory of gravity at
large distances through a massive deformation of GR (see for a recent review [1]). A great deal of
effort was devoted to extend at the nonlinear level [2] the seminal work of Fierz and Pauli (FP) [3].

In order to construct a massive deformation of GR we need to build non trivial scalar function
of the metric field. To do that an extra tensor field field g2 is needed. It is useful to introduce
a “fictitious” space M2 where g2 is a metric together with spacetime manifold M1 and a map
Φ : M1→M2. Given a metric g2 in M2 one cal pull it back to M1

G = Φ
∗(g2) , Gµν(x) =

∂ΦA

∂xµ

∂ΦB

∂xν
g2AB(Φ(x)) . (1)

Under a diff we have Φ→Φ f1 f2 = f−1
2 ·Φ · f1. The building blocks of diff invariant modified theory

of gravity can be formed starting from the following fundamental geometrical object

X µ

ν = gµα

1 Gαν (1,1) tensor inM1 . (2)

For instance, X µ

µ is scalar in M1. In general, it is convenient to define [4]

τn = Tr(Xn) = (Xn)µ

µ
≡ Tr(Zn) . (3)

Sometimes, see [10], a related object is used to build invariant actions:

Hµν = g1µν −Gµν = g1µν −g1µα Xα
ν , τn = Tr[(1−g−1

1 H)n] . (4)

The class of theories where both g1 and g2 are dynamical and with a non-trivial Φ, are invariant
under the largest set of diffs: Diff1×Diff2. Sometimes, the second metric is taken non dynamical,
then the theory exhibits invariance under Diff1 only. For instance when g2 is a flat and coincides
with Minkowski metric η̃AB, expanding the map Y as

Y A(x) = δ
A
µ xµ +π

A(x) ; (5)

one gets
Gµν = δ

A
µ δ

B
ν η̃AB + η̃µB∂νπ

A + η̃νB∂µπ
A +∂µπ

A
∂νπ

B
η̃AB . (6)

When g1 and g2 are dynamical (bigravity theories), but the identification map Φ is chosen to be
the identity (unitary gauge), only invariance under diagonal diffs for which f1 = f2 = f is present.
Such a choice of Φ is preserved by a diagonal diffs. In the unitary gauge M1 and M2 are identified
and the gauge group Diff1×Diff2 is broken down to DiffD, the group of diagonal diffs. This class
of theories is usually called bigravity. When in bigravity the dynamics of g2 is switched off, taking
for simplicity g2 flat, it can be written (at least locally) as

g2µν = ∂µφ
a
∂νφ

b
η̃ab , η̃ = ω

2 Diag
(
c2,1,1,1

)
. (7)

The “flat” tetrads 1-form ea = dφ a are written in terms of the scalar fields φ a that can be interpreted
as local “flat” coordinates in M1. The inverse metric can written in terms of a dual basis of vector
fields

Ea =
∂

∂φ a =
∂xµ

∂φ a
∂

∂xµ
(8)
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as

g2
µν = Eµ

a Eν
b η̃

ab =
∂xµ

∂φ a
∂xν

∂φ b η̃
ab . (9)

When c 6= 1, the flat background will break Lorentz invariance. In this class of theories we still
have invariance under DiffD. Notice that, by a suitable choice of coordinates one can set φ a = δ a

µxµ ,
using up all the gauge freedom. Decomposing the scalars as

φ
a(x) = δ

a
µ xµ +θ

a(x) ; (10)

one gets that expression for Hµν is basically the same of one obtained when g2AB = ηAB but with
Y 6= id. For all class of theories the action can be written as

S =
∫

M1

d4x
√

g1
(
Mpl R1 +Lmatter

)
+κ Mpl

∫
M2

d4y
√

g2 R2

−4
∫

M1

d4x(g1G)1/4V (X) ;
(11)

where V is a scalar function built out of X and it encodes the IR modifications of GR. The general
properties of the massive gravity for both the Lorentz invariant (LI) and Lorentz breaking (LB)
phases were studied in [5]. In the linearized LI phase, a combination of a massless and massive
spin 2 modes mediate gravitational interactions, however the vDVZ discontinuity is present and
in the zero mass (m2→ 0) there is an anomalous correction (25%) to the light deflection from the
sun that is experimentally excluded [6]. In the LI phase, the standard weak field expansion is not
viable. The LI phase, at the linearized level, is very similar to Fierz and Pauli (FP) [3] theory.

In the LB phase, together with the massive tensor mode there is always a massless one in the
spectrum of metric perturbations. The corresponding phenomenology is quite rich [5, 7, 8]. The
linearized theory can be interpreted as a diff-invariant realization of massive gravity, free of ghosts
and phenomenologically viable (no vDVZ discontinuity is present). The only propagating degrees
of freedom at linearized level are the spatial transverse traceless tensor modes (2 polarizations
for each metric) physically representing a massless and a massive graviton (gravitational waves)
oscillating one in the other and with different speeds, resulting in a nontrivial dispersion relation.
The possibly superluminal speed c2 in the second gravitational sector does not lead to causality
violations, because the new metric has the character of ’æther’. The physical consequence is that
gravitational wave experiments become frame-dependent.

A possible way to circumvent the physical consequences of the discontinuity IN LI case phase
was proposed in [9]; the idea is that the linearized approximation breaks down near a massive
object like the sun and an improved perturbative expansion must be used that leads to a continuous
zero mass limit. In addition, FP is problematic as an effective theory. Regarding FP as a gauge
theory where the gauge symmetry is broken by a explicit mass term m, one would expect a cutoff
Λ2 ∼ mg−1 = (mMpl)1/2, however the real cutoff is Λ5 = (m4Mpl)1/5 or Λ3 = (m2Mpl)1/3, much
lower than Λ2 [10]. A would-be Goldstone mode is responsible for the extreme UV sensitivity of
the FP theory, that becomes totally unreliable in the absence of proper UV completion.

Recently it was shown that there exists a non linear completion of the FP theory [11] that is
free of ghosts, avoiding the presence of the Boulware-Deser instability [12]. Then the propagation
of only five degrees of freedom and the absence of instabilities was generalized in [13]; this was
shown also in the Stuckelberg language in [14].
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The need for a second dynamical metric also follows from rather general grounds. Indeed,
it was shown in [15] that in the case of non singular static spherically symmetric geometry with
the additional property that the two metrics are diagonal in the same coordinate patch, a Killing
horizon for g1 must also be a Killing horizon for g2. Thus, it seems that in order that the Vaishtein
mechanism is effective and GR is recovered in the near horizon region of a black hole, g2 has
to be dynamical. Indeed, in a recent study of spherically symmetric solutions of a class of ghost
free massive gravity theories in the bigravity formulation [16], generically there is room for the
Vaishtein mechanism only when the two metrics are simultaneously diagonal in the same coordi-
nate patch. The same conclusion is found looking at FRW solutions [17] which do not exist when
the second metric is non dynamical.

Finally, it is also interesting to point out that in massive gravity, drastic modifications of gravity
can take place with a non-analytic modification with respect to Schwarzschild [18]. In such cases
the notion of total gravitational energy can be tricky and an ad hoc study is required [19]. Notice
however that such a non-analytic deviation are not present in the class of ghost free massive gravity
theories [16].
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