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We report on the first next-to-leading BFKL study of the crosssection and azimuthal decorrel-

lation of Mueller Navelet jets. This includes next-to-leading corrections to the Green’s function

as well as next-to-leading corrections to the Mueller Navelet vertices. The obtained results for

standard observables proposed for studies of Mueller Navelet jets show that both sources of cor-

rections are of equal and big importance for final magnitude and final behavior of observables,

in particular for the LHC kinematics investigated here in detail. The astonishing conclusion of

our analysis is that the observables obtained within the complete next-lo-leading order BFKL

framework of the present contribution are quite similar to the same observables obtained within

next-to-leading logarithm DGLAP type treatment. The only noticeable difference is the ratio the

azimuthal angular moments〈cos2ϕ〉/〈cosϕ〉 which still differs in both treatments.
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1. Introduction

The high energy regime of QCD is one of the key questions of particle physics. In the semi-
hard regime of a scattering process in whichs≫ −t, logarithms of the type[αs ln(s/|t|)]n have
to be resummed, giving the leading logarithmic (LL) Balitsky-Fadin-Kuraev-Lipatov (BFKL) [1]
Pomeron contribution to the gluon Green’s function describing thet-channel exchange. To reveal
this effect, various tests have been proposed in inclusive [2], semi-inclusive [3] and exclusive pro-
cesses [4]. The basic idea is to select specific observables minimizing usual collinear logarithmic
effects à la DGLAP [5] with respect to the BFKL one: the involved transverse scales should thus
be of similar order of magnitude. We here consider the Mueller Navelet jets [6] in hadron-hadron
colliders, defined as being separated by a large relative rapidity, while having two similar transverse
energies. In a DGLAP scenario, an almost back-to-back emission is expected, while the allowed
BFKL emission of partons between these two jets leads in principle to a larger cross-section, with
a reduced azimuthal correlation between them. We review results of Ref. [7] where both the NLL
Green function [8] and the NLL result for the jet vertices [9]are taken into account.

2. NLL calculation

The two hadrons collide at a center of mass energy
√

sproducing two very forward jets, whose
transverse momenta are labeled by Euclidean two dimensional vectorskJ,1 andkJ,2, while their
azimuthal angles are noted asφJ,1 andφJ,2. The jet rapiditiesyJ,1 andyJ,2 are related to the longi-
tudinal momentum fractions of the jets viaxJ = |kJ|√

s eyJ . We restrict ouselves to fixed rapidities and
transverse momenta. For largexJ,1 andxJ,2, collinear factorization leads to

dσ
d|kJ,1|d|kJ,2|dyJ,1 dyJ,2

= ∑
a,b

∫ 1

0
dx1

∫ 1

0
dx2 fa(x1) fb(x2)

dσ̂ab

d|kJ,1|d|kJ,2|dyJ,1 dyJ,2
, (2.1)

where fa,b are the parton distribution functions (PDFs) of a parton a (b) in the according proton.
The resummation of logarithmically enhanced contributions are included throughkT -factorization:

dσ̂ab

d|kJ,1|d|kJ,2|dyJ,1 dyJ,2
=

∫

dφJ,1 dφJ,2

∫

d2k1d2k2Va(−k1,x1)G(k1,k2, ŝ)Vb(k2,x2), (2.2)

where the BFKL Green’s functionG depends on ˆs= x1x2s. The jet verticesVa,b were calculated at
NLL order in Ref. [9]. Combining the PDFs with the jet vertices one writes

dσ
d|kJ,1|d|kJ,2|dyJ,1 dyJ,2

=

∫

dφJ,1 dφJ,2

∫

d2k1d2k2Φ(kJ,1,xJ,1,−k1)G(k1,k2, ŝ)Φ(kJ,2,xJ,2,k2) ,

where Φ(kJ,2,xJ,2,k2) =
∫

dx2 f (x2)V(k2,x2). (2.3)

In view of the azimuthal decorrelation we want to investigate, we define the coefficients

Cm ≡
∫

dφJ,1 dφJ,2 cos
(

m(φJ,1−φJ,2−π)
)

∫

d2k1d2k2Φ(kJ,1,xJ,1,−k1)G(k1,k2, ŝ)Φ(kJ,2,xJ,2,k2),

from which one can easily obtain the differential cross section and azimuthal decorrelation as

dσ
d|kJ,1|d|kJ,2|dyJ,1 dyJ,2

= C0 and 〈cos(mϕ)〉 ≡ 〈cos
(

m(φJ,1−φJ,2−π)
)

〉 =
Cm

C0
. (2.4)
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The guiding principle of the calculation is then to use the LL-BFKL eigenfunctions

En,ν(k1) =
1

π
√

2

(

k2
1

)iν− 1
2 einφ1 , (2.5)

although they strictly speaking do not diagonalize the NLL BFKL kernel. In the LL approximation,

Cm = (4−3δm,0)

∫

dν Cm,ν(|kJ,1|,xJ,1)C
∗
m,ν(|kJ,2|,xJ,2)

(

ŝ
s0

)ω(m,ν)

, (2.6)

where Cm,ν(|kJ|,xJ) =

∫

dφJ d2kdx f(x)V(k,x)Em,ν(k)cos(mφJ) , (2.7)

and ω(n,ν) = Ncαs/πχ0
(

|n|, 1
2 + iν

)

, with χ0(n,γ) = 2Ψ(1)−Ψ
(

γ + n
2

)

−Ψ
(

1− γ + n
2

)

. The
master formulae of the LL calculation (2.6, 2.7) will also beused for the NLL calculation, the
eigenvalue now turning to an operator containing aν derivative, which acts on the impact factors
and effectively leads to a contribution to the eigenvalue which depends on the impact factors.

At NLL, the jet vertices are intimately dependent on the jet algorithm [9]. We here use the
cone algorithm. At NLL, one should also pay attention to the choice of scales0. We find the choice

of scales0 =
√

s0,1 s0,2 with s0,1 =
x2

1
x2

J,1
k2

J,1 rather natural, since it does not depend on the momenta

k1,2 to be integrated out. Besides, the dependence with respect to s0 of the whole amplitude can
be studied, when taking account the fact that both the NLL BFKL Green function and the vertex
functions ares0 dependent. In order to study the effect of possible collinear improvement [10],
we have, in a separate study, implemented forn = 0 the scheme 3 of the first paper of Ref. [10].
This is only required by the Green function since we could show by a numerical study that the jet
vertices are free ofγ poles and thus do not call for any collinear improvement. In practice, the use
of Eqs. (2.6, 2.7) leads to the possibility to calculate for alimited number ofm the coefficientsCm,ν

as universal grids inν , instead of using a two-dimensional grid ink space. We use MSTW 2008
PDFs [11] and a two-loop strong coupling with a scaleµR=

√

|kJ,1| · |kJ,2| . In order to compare our
analysis with DGLAP NLO approaches [12] obtained through the NLL-DGLAP partonic generator
DIJET [13], for which symmetric configurations lead to instabilities, we here display our results for
|kJ,1| = 35GeV,|kJ,2| = 50GeV (see Ref. [7] for symmetric configurations).

3. Results

Fig. 1a and 1b respectively display the cross-section and the azimuthal correlation as a func-
tion of the relative jet rapidityY, for the LHC design center of mass energy

√
s= 14TeV. This

explicitely shows the dramatic effect of the NLL vertex corrections, of the same order as the one
for the Green function [14]. In particular, the decorrelation based on our full NLL analysis is
very small, similar to the one based on NLO DGLAP. The main source of uncertainties is due to
the renormalization scaleµR and to the energy scale

√
s0. This is particularly important for the

azimuthal correlation, which, when including a collinear improved Green’s function, may exceed
1 for small µR = µF . The only remaining observable for which a noticeable difference can be
expected between BFKL and DGLAP type of treatment is the ratio 〈cos2ϕ〉/〈cosϕ〉 .

The NLL analysis presented here could be extended to describe forward jets production.

Work supported in part by the French-Polish Scientific Collaboration Agreement POLONIUM,
the grant ANR-06-JCJC-0084 and by a PRIN grant (MIUR, Italy).
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Figure 1: Differential cross section (a), azimuthal correlation〈cosϕ〉 (b) and ratio〈cos2ϕ〉/〈cosϕ〉 (c) in
dependence onY for |kJ,1| = 35GeV,|kJ,2| = 50GeV. The errors due to the Monte Carlo integration are
given as error bands. Blue: pure LL result; Brown: pure NLL result; Green: combination of LL vertices
with the collinear improved NLL Green’s function; Red: fullNLL vertices with the collinear improved NLL
Green’s function. Dots show the results of Ref. [12] obtained with DIJET [13].
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