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1. Introduction

Top-quark pair production is a benchmark process at hadron colliders such as the Tevatron and
LHC. Its special role in the physics program of these experiments makes it crucial to have precise
QCD predictions for the total and differential cross sections. The starting point for such predictions
is the next-to-leading order (NLO) calculations of the total and differential cross sections carried
out more than two decades ago [1]. Since higher-order corrections to these results as estimated
through scale variations are expected to be as large as 10-15%, it would be desirable to extend the
calculations beyond NLO. Here there are two paths. One is to calculate the full next-to-next-to-
leading order (NNLO) cross section. This is indeed an activearea of research and was discussed at
this conference by Andreas von Manteuffel. Another is to usetechniques from soft gluon resum-
mation to calculate what are argued to be the dominant corrections at NNLO and beyond. Such
resummed calculations are the subject of this talk.

2. Soft gluon resummation

Soft gluon resummation is a rich field with a long history and it is far beyond the scope of this
talk to give a proper overview. We aim instead to briefly explain the main ideas and how they are
applied in the literature.

The basic idea of resummation can be conveyed through the following schematic picture.
Quite generically, (differential) partonic cross sections dσ̂ receive double logarithmic corrections
of the formαn

s lnm≤2nλ at each order in perturbation theory, whereλ is a variable which vanishes
in the limit where real gluon radiation is soft. Resummationis essentially a re-organization of the
perturbative series appropriate for the parametric counting L ≡ lnλ ∼ 1/αs. In particular, one can
show that the partonic cross sections can be written in the form1

dσ̂ = exp[αsL
2g1 + αsLg2 + α2

s Lg3 + . . .]×C(αs)+O(λ ) . (2.1)

In words, the logarithmic corrections exponentiate up to power corrections inλ . The functionsgi

(anomalous dimensions) andC (matching functions) can be calculated order by order inαs. Every
time one adds a higher-order functiongi an infinite series of logarithmic terms is resummed into
the exponent, which explains the nomenclature of the technique. Roughly speaking, including the
piece in the exponent proportional tog1 is called leading-logarithmic order (LL), including that
proportional tog2 next-to-leading-logarithmic order (NLL), and so on. The current state of the art
in top-quark pair production is NNLL.

Soft gluon resummation can be thought of as a universal technique which takes a specific
form for different observables. In top-quark pair production at hadron colliders, all applications
in the literature can be grouped into one of the three cases listed in Table 1, which shows specific
(differential) cross sections along with a parameter whichvanishes in the soft limit (this plays the
role of theλ in (2.1)). The list looks slightly arbitrary at a first glancebut there is a logic behind
it. At Born level, top-quark pair production is a two-to-twoprocess depending on Mandelstam

1This is schematic both because the exponentiation takes place in an integral transform space, either Mellin or
Laplace, and because the formulas involve matrices in colorspace rather than simple functions.
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Name Observable Soft limit

pair-invariant-mass (PIM) dσ/dMtt̄dθ (1−z) = 1−M2
tt̄/ŝ→ 0

single-particle-inclusive (1PI) dσ/dpTdy s4 = ŝ+ t̂1+ û1 → 0
production threshold σ β =

√

1−4m2
t /ŝ→ 0

Table 1: The three cases in which soft gluon resummation has been applied. The first column indicates the
name often used in the literature, the second the observableto which it applies, and the third the partonic
variable associated with large logarithmic corrections inthe soft limit.

variables which satisfy ˆs+ t̂1 + û1 = 0. The most general partonic cross section is thus double
differential. Beyond Born level, one must integrate over phase space with respect to extra real
emissions to get a double differential cross section. The basic choices are to observe properties
of the top-quark pair, as in PIM kinematics, or properties ofthe top (or anti-top) quark, as in 1PI
kinematics. Results in PIM or 1PI kinematics are obtained byintegrating over a different portion
of the fully differential phase space and are thus independent calculations. A final choice is to
integrate over the whole phase space and calculate the partonic cross section in the production
threshold limit. As far as soft gluon resummation is concerned, results in the production threshold
limit are a special case of the PIM and 1PI results and do not contain independent information.
However, in the limitβ → 0 one must also consider Coulomb terms of the form lnmβ/β n, and
a full treatment of all singular terms in that limit involvesa joint soft and Coulomb resummation
[2, 3].

In each of the soft limits in Table 1 resummed calculations for the partonic cross sections are
available to NNLL accuracy. Hadronic cross sections are obtained from the partonic ones through
convolutions with partonic distribution functions (PDFs). As an example, the pair invariant-mass
distribution is given by

dσ
dMtt̄

= ∑
i, j=q,q̄,g

∫ 1

τ

dz
z

Φi j (τ/z,µF )
dσ̂i j (z,Mtt̄ ,µF ,µR,αs(µR))

dMtt̄
, (2.2)

whereΦi j is the parton luminosity function. In the limit of very largeinvariant mass, the variable
τ ≡ M2

tt̄/s→ 1, which implies that the partonic variablez≡ M2
tt̄/ŝ→ 1, so the most singular terms

in the partonic threshold limit dominate the cross section at each order inαs and resumming them
is an improvement. However, for the total cross section or for smaller values of the invariant mass,
the convolution integral involves values ofz close to zero as well as those close to unity, and it
is not obvious that the singular terms in thez→ 1 dominate over the less singular ones. The
typical argument, referred to as “dynamical threshold enhancement,” is that the parton luminosity
functions fall off so steeply as a function of their first argument that the convolution integral is
saturated by values ofz close to unity, in other words by the partonic threshold region, no matter
what the lower limit of integration. Similar arguments can be applied to the 1PI and production
thresholds, although it cannot be overemphasized that the power corrections away from partonic
threshold are different in each case and must be studied carefully. Reliably estimating the size
of these corrections is the most important issue in phenomenological applications of soft gluon
resummation.
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3. Total and differential cross sections

In this section we cover some phenomenological applications. We first compare resummed
and fixed-order calculations of the total production cross section. Results in the pole scheme for
the top-quark mass are summarized in Table 2. In addition to the NLO results, we show different
“approximate NNLO” implementations of the resummed results: production threshold results as
obtained by the HATHOR program [4] with the default settings; 1PI results as obtained in [5];
1PISCET and PIMSCET results as obtained in [6], combined into a final result for the cross section
using the procedure and computer program presented in [7]. By default, we setµ = µR = µF = mt ,
with mt = 173 GeV. We display NLO results using MSTW2008 NLO PDFs, while for approximate
NNLO results we use MSTW2008 NNLO PDFs. Uncertainties in theHATHOR and 1PI results
from [5] are estimated by varyingµ up and down by a factor of two, while uncertainties in [7] are
estimated by independent variations ofµR and µF by factors of two, along with a scan over the
values of the cross section in PIM and 1PI kinematics.

Tevatron LHC (7 TeV)

NLO 6.74+0.36
−0.76

+0.37
−0.24 160+20

−21
+8
−9

Aliev et. al. [4] 7.13+0.31
−0.39

+0.36
−0.26 164+3

−9
+9
−9

Kidonakis [5] 7.08+0.00
−0.24

+0.36
−0.24 163+7

−5
+9
−9

Ahrens et. al. [7] 6.65+0.08+0.33
−0.41−0.24 156+8+8

−9−9

Table 2: Results for the total cross section in pb at NLO and within thevarious NNLO approximations. The
first uncertainty is related to perturbative uncertainties, and the second is the PDF error using the MSTW2008
PDF sets [8] at 90% CL.

An examination of the numbers in the table reveals the following features. First, the pertur-
bative uncertainties in the NLO result are on the order of 20%at both the Tevatron and the LHC.
This is a bit larger than the PDF uncertainty in both cases, although especially at the LHC one may
obtain rather different results with other PDF sets, we refer the reader to [9] for a recent discussion
of this issue. Second, the perturbative uncertainties in the approximate NNLO results as obtained
through the individual calculations are invariably smaller than at NLO–depending on the imple-
mentation, the uncertainties are reduced by a factor of roughly two to three, and are thus under the
PDF uncertainties. At the LHC, the different NNLO approximations are in relatively good agree-
ment, though the cross section of [7] is somewhat smaller than in [4, 5]. At the Tevatron, on the
other hand, the results from [4, 5] are significantly larger than those from [7]. In fact, the range of
values spanned by the three different approximate NNLO results at the Tevatron is about as large
as that spanned by the NLO calculation. Given the discrepancy, one is faced with the choice of
estimating the theory uncertainties through the NLO calculation, with the spread of approximate
NNLO values from the three different calculations, or by a particular NNLO approximation alone.
The authors of [4, 5, 7] all give arguments in favor of their particular implementation of soft-gluon
resummation, but it is beyond the scope of the talk to properly summarize them. We refer the reader
to [10] for more details.

Next, we very briefly mention predictions for differential cross sections. Particularly interest-
ing are the differential cross section and forward-backward asymmetry as a function of the invariant
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massMtt̄ of the top-quark pair. We compare in Figure 1 the NLO and NLO+NNLL results from
[11] with experimental data from the CDF collaboration [12]. There is good agreement between
theory and experiment for the differential distribution, but the CDF measurement of the forward-
backward asymmetryAtt̄

FB in the high invariant-mass bin is much higher than the theoryresult. A
smaller discrepancy is found in the D0 results [13] presented at this conference.
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Figure 1: The differential cross section and forward-backward asymmetry as a function ofMtt̄ .
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