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The inherent mesoscopic nature of nuclei and the Coulomb interaction make it difficult to cast

systems interacting through the strong force into thermodynamic terms. Our task is to extract the

phase diagram of the theoretical infinite symmetrical uncharged nuclear matter from experiments

of nuclear collisions where the systems are neither infinite, symmetrical, nor uncharged. A frame-

work of how to relate isotopic yields of such experiments to coexistence densities and pressures

is set in place by use of Fisher’s droplet model. The theory isapplied to the model systems of the

Ising model and a system of particles interacting via the Lennard-Jones potential. The specific

details inherent to nuclear reactions are considered. These include finite size effects, the Coulomb

repulsion, and the lack of a physical vapor in contact with a decaying system. Experimental data

of compound nucleus experiments are studied within the theory presented, which is also shown

to extend to higher energy reactions. With all these considerations, the phase diagram of nuclear

matter is extracted.
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1. Introduction

Microscopically, the nature of the forces holding a nucleus together beingrepulsive at short
distances with a diffuse attractive potential well at larger distances is analogous to the forces hold-
ing a drop of water together. It is then natural to expect that the nuclear system will exhibit a
liquid-vapor phase transition just as their atomic and molecular brethren do. Macroscopically,
there is no way to study a bulk sample of nuclear matter to characterize it in the same fashion as
these other analogous systems. As a result, the exact nature of the nuclear matter phase diagram is
unknown.

The experimental data that is accessible for the nuclear system comes fromnuclear reactions.
These reactions can range from lower energy that are characterizedin terms of compound nuclear
decays to higher energy where it is more appropriate to talk in terms of multifragmentation. These
reactions range from collision energies of 6 AMeV to 1 AGeV.

Many signals in such experiments have been used to claim that there is indeeda phase transi-
tion in nuclear matter. These signals have included studying bimodality and the caloric curve. May
these signals actually be due to the phase transition or not is irrelevant to the fact that none of them
have given rise to a phase diagram of nuclear matter. We have chosen to study cluster yields as a
means to study the phase transition in hopes of ultimately creating a phase diagram [1].

In previous studies, the concepts of thermalization and reducibility have been introduced to
describe the cluster yields of nuclear reactions [2]. Even though the actual physics behind these
nuclear collisions are complex, only a small number of parameters are needed to characterize the
process. The process of thermalization is how the energy of the collision is distributed over many

Figure 1: Left: The average yield as a function of the square root of thetransverse energy. The symbols
show experimental data points while the solid lines show fitsto the data using a Boltzmann form. Right: The
excitation function for carbon (left) and neon (right) emission. The symbols show experimental data points
and the solid curves are Poisson fits. See reference [2] for further details.
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degrees of freedom of the system whereby generating a temperature. An Arrhenius plot, like those
shown in figure 1, shows that the emission rates of clusters as a function ofinverse temperature
creates a linear plot as expected for a thermal system. Furthermore, reducibility is the idea that
the number of large fragments being emitted from the hot source can be described in terms of a
one fragment probability. Figure 1 also shows how the probabilities of multiple large fragment
emissions can be parametrized by the one fragment probability. Together, thermalization and re-
ducibility show that the clusters emitted from such reactions are thermal and stochastic.

The task in front of us is to connect these thermal cluster yields, being microscopic in nature,
to the macroscopic characterization of the system in terms of a phase diagram.Using the physical
cluster model and Fisher’s droplet model [3, 4], we study the clusters found in the Ising model
and a system interacting through a Lennard-Jones potential. With the clusterconcentrations from
simulations, the phase diagrams of the systems can be extracted.

With a connection between the cluster concentrations and the thermodynamic variables of a
system, the peculiarities of the nuclear system need to be considered. Sincethe system is never
studied as a vapor in direct contact with its coexisting liquid, three details needto be considered:

1. The finite nature of the liquid drop as opposed to a bulk sample.

2. The presence of the Coulomb repulsion.

3. The fact that the liquid evaporates into a vacuum and not into its coexistingvapor.

Armed with these considerations, we turn our attention to the data from experiments and see
that the expected trends are observed. From this data, we can achieve our goal of constructing the
phase diagram of nuclear matter.

2. Cluster concentrations of coexisting systems

2.1 Physical cluster model

Cluster models were originally developed to account for the non-ideal nature of real fluids.
The purpose of the physical cluster model is to treat the vapor as an idealgas of clusters. As a
result, the following two relations are established for the density,ρ, and pressure,p, of the system
as a function of the cluster concentrations of sizeA, nA:

ρ = ∑
A

AnA, (2.1)

p= T ∑
A

nA. (2.2)

The first equation is true for any partitioning of the system into clusters. Thesecond equation is
not trivially true for any partition, and can be seen as the sum over partialpressures of an ideal gas
of each cluster size.

These equations also hold the key in relating the microscopic concept of clusters to the ther-
modynamic variables of pressure and density. The question that remains is tofind a suitable theory
to describe the cluster concentrations,nA.
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2.2 Fisher’s droplet model

Fisher’s droplet model is a phenomenological approach to enumerating thecluster concen-
trations [3, 4]. Generically, the concentration of a cluster should be equal to a Boltzmann factor,
incorporating the change of free energy,∆FA, to take a cluster of a given size from the liquid into
the vapor phase:

nA = exp[−∆FA/T] = exp[−(∆EA−T∆SA)/T] . (2.3)

The change in energy,∆EA, is seen to be the energy associated with creating the surface of a cluster:

∆EA = c0Aσ . (2.4)

The relation between this equation and the liquid drop expansion are evident.Thec0 is the surface
energy coefficient, andσ would be 2/3 for a spherical drop. Since the smaller clusters are not
spherical, strictly speaking, the value ofσ is allowed to change from this ideal value.

Fisher’s contribution to evaluating the cluster concentrations comes in writing the change in
entropy,∆SA, as follows:

∆SA = log[q0]− τ log[A]+
c0Aσ

Tc
. (2.5)

To better see how this describes the cluster entropies phenomenologically, consider the resulting
cluster concentrations using the above two equations:

nA = q0A−τ exp

[

−c0Aσ
(

1
T
−

1
Tc

)]

. (2.6)

For a system at the critical point, one expects the cluster concentrations to follow a power law,
which is captured in the above equation. The parameterτ is seen to be the critical exponent to
describe that power law. The valueq0 is the proportionality constant.

The aspect of the above equation which we take advantage of is thatTc is a parameter. Fitting
the cluster concentrations to Fisher’s formula gives the critical temperatureof the system, and the
phase diagrams can be produced by using equations 2.1 and 2.2.

3. Clusters in model systems

To test the validity of Fisher’s equation for cluster concentrations, we chose two model systems
to study. The phase diagrams of these systems are well understood, and our approach is to see how
well the phase diagrams can be reproduced via the cluster concentrations. The two systems are the
Ising model and the Lennard-Jones model.

3.1 The Ising model

The Ising model is a system of spins confined to a grid which interact with nearest neighbors.
The energy of a given lattice configuration is:

E =−J ∑
〈i, j〉

sisj −H ∑
i

si . (3.1)
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The first sum is over all nearest neighbors, andJ is the interaction energy between two spins. The
second sum represents the energy of the spins interacting with an external magnetic field with
strengthH.

Even though this system models the ferromagnetic phase transition, it is seen tobe related to
the lattice gas model. Specifically, in no external field,H = 0, the system is isomorphic to the
lattice gas at coexistence [5, 6]. Thus the phase transition in the Ising model isanalogous to the
liquid-vapor phase transition.

For this study, calculations were performed using the Swendson-Wang algorithm [7], a stan-
dard Monte Carlo technique, on a cubic lattice with a linear dimension of 50 cells.Periodic bound-
ary conditions were used to minimize the finite size effects. Since we are interested here in the
nature of the system at coexistence, no external field is used. The clusters were defined by using
the Coniglio-Klein algorithm, dividing the geometric clusters into smaller partitions [8].

3.2 The Lennard-Jones model

The Lennard-Jones model is an off-lattice system where the particles interact with a pairwise
potential of the form:

VLJ(r) =−4ε
[

( rLJ

r

)−6
−
( rLJ

r

)−12
]

. (3.2)

Here,r is the distance between the two particles andε and rLJ are the characteristic energy and
distance of the system, respectively.

To study the system at coexistence the Gibbs ensemble method was employed [9]. A system
of 4800 particles was studied. The volume of each phase has a linear dimension of about 20rLJ.
Even though both the liquid and vapor are generated from this process, we are concerned here with
only the vapor phase. The clusters were defined using Hill’s procedure[10]. Random momenta are
assigned to each particle since the Monte Carlo simulation does not produce them.

Figure 2: Left: Fisher scaling of the cluster concentrations in the Ising model using equation 3.3. Right:
The phase diagram of the Ising model. The symbols are the extracted values from Fisher’s theory and the
line is the actual density of the system. [11, 15]
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Figure 3: Left: Fisher scaling of the cluster concentrations in the Lennard-Jones model using equation 3.3.
Right: The phase diagram of the Lennard-Jones model. The symbols are the extracted values from Fisher’s
theory and the line is the actual density of the system. [14]

Ising Model Lennard-Jones Model
theoretical values this work theoretical values this work

Tc 4.51152± 0.00004 [12] 4.52± 0.01 1.3120± 0.0007 [13] 1.368± 0.002
σ 0.63946± 0.0008 0.732± 0.008 0.63946± 0.0008 0.744± 0.002
τ 2.209± 0.006 2.30± 0.08 2.209± 0.006 2.199± 0.005

Table 1: Extracted parameters from the cluster scaling compared to the accepted theoretical values.

3.3 Fisher scaling in model systems

Once the cluster concentrations are calculated in the above systems, they can be fit to equation
2.6. A convenient way of plotting the data is by making a Fisher plot. Upon rearrangement of
equation 2.6, one finds:

nA(T)
q0A−τ = exp

[

−c0Aσ
(

1
T
−

1
Tc

)]

. (3.3)

In plotting the logarithm of the left hand side as a function of the argument of theexponential, all
the data collapses onto one line irrespective of temperature and cluster number.

Figures 2 and 3 show the Fisher plots generated for both the Ising and Lennard-Jones models,
respectively. Both systems display Fisher scaling. Furthermore, the extracted parameters of the fits
replicate the theoretical values of the systems as seen in table 1.

Also shown in figures 2 and 3 are the extracted density-temperature phasediagrams using the
sums in equations 2.1 and 2.2. Even though these results are not close to the precision of more
typical procedures, it is evident that the cluster scaling does indeed replicate the diagrams.

4. Nature of the cluster yields from nuclear reactions

Now that we have shown that cluster scaling can be used to create a phasediagram, we turn
our attention to the nuclear system. Nuclear reactions do not result in a system at coexistence.

6
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Rather, it is a charged finite system decaying in a vacuum. To relate the cluster yields found in
experimental data to those that would be found in a system at coexistence, three considerations
must be made. First, the finite nature of the liquid drop affects the yields relative to the infinite
system. The presence of the Coulomb repulsion must be accounted for, since we want to consider
only the phase diagram arising from the nuclear matter interacting via the strong force. Lastly, the
relation between the system decaying into a vacuum is compared to the system inequilibrium with
its coexisting vapor. Once these three topics are addressed, the experimental data can be tamed.

4.1 Finite size corrections

The mesoscopic nature of nuclei make the study of finite size effects imperative. For the
properties of ground state nuclei, these finite size effects are embodied in the liquid drop expansion
[16]. In the liquid drop expansion, the binding energy is written as a term linear with size and a term
that goes as the size to the two-thirds power. The former is seen to be a property of bulk nuclear
matter, whereas the latter represents the finiteness of the nucleus and the presence of a surface.

To see how the finite size affects the cluster yields, return to equation 2.3 from the theory of
cluster concentrations:

nA = exp[−∆FA/T] = exp[−(∆EA−T∆SA)/T] . (4.1)

The∆EA and∆SA were seen to be the change of the respective variable as a cluster was removed
from the liquid phase and placed in the vapor. In the case of a bulk sample ofliquid, the properties
of the liquid are unchanged, and the change of energy and entropy arejust the creation of the
cluster’s surface. In a finite system withA0 particles in a liquid drop, removing a cluster changes
the size of the drop and hence changes the surface of the drop. The resulting smaller liquid drop,
the “complement”, must be taken into account [17]. The change in energy istherefore:

∆EA = c0{Aσ +(A0−A)σ −Aσ
0 }. (4.2)

This is the negative Q-value of the reaction, just as would be expected from a nuclear decay. The
change in entropy is also affected by the presence of the liquid drop:

∆SA =−τ log

[

A(A0−A)
A0

]

+
c0

Tc
{Aσ +(A0−A)σ −Aσ

0 }. (4.3)

Collecting the terms together into equation 4.1, the cluster concentrations are re-evaluated for
the case of a vapor in coexistence with a liquid drop:

nA =

(

A(A0−A)
A0

)−τ
exp

[

−c0{Aσ +(A0−A)σ −Aσ
0 }

(

1
T
−

1
Tc

)]

. (4.4)

In comparison to the bulk system, the vapor is populated with more clusters:

nA(T,A0) = n∞
A(T)exp(A∆µfs/T). (4.5)

Here,n∞
A is the cluster concentrations in the bulk, and the presence of the liquid drop isto shift the

chemical potential of the system relative to the bulk system by∆µfs:

∆µfs =−
1
A

(

c0ε [(A0−A)σ −Aσ
0 ]−Tτ log

[

A0−A
A0

])

. (4.6)

7
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.
As would be expected,∆µfs tends to zero when the liquid drop size becomes large; as the

liquid becomes larger the finite size effects become smaller. These equations are directly related to
the Gibbs-Thomson effect of increased vapor pressure in the presence of a liquid drop [18].

4.2 Finite size correction in model systems

To study the complement correction, the two model systems that were used previously to study
Fisher scaling are used again. Unlike the grandcanonical calculations done in the case of studying
the bulk coexistence, particle number must be conserved to stabilize a liquid drop.

For the Ising model, a canonical Monte Carlo simulation is performed on a lattice with a linear
dimension ofL =25 cells [17]. A relatively small number of the cells are set spin up, rangingfrom
Ad

0=117 toAd
0=468. Coexistence is studied up to a certain temperature at which a liquid dropis

no longer stable and the system becomes one homogeneous phase. Since the liquid drop is itself
not part of the vapor, its volume is not included in measuring the cluster concentrations, which are
otherwise measured in the same matter as before.

For the Lennard-Jones model, a microcanonical molecular dynamics simulationis performed
in a spherical container with elastic walls. A constantAd

0=600 is used, and various droplet size-
temperature combinations are obtained by varying the energy and containersize. As with the
Ising model, the volume of the liquid drop is identified and excluded from evaluating the cluster
concentrations.

The results of these two sets of simulations are presented in figure 4. The toptwo figures show
the Fisher scaling for the bulk system, as discussed in the previous section.Using the parameters
from the bulk systems, the cluster concentrations from the liquid drop simulations are plotted in the
middle panel. It is clear the Fisher scaling is not the same, and there is an excess of clusters relative
to the bulk. The bottom panel then shows the clusters scaled using the complement corrected
Fisher scaling from equation 4.4. The cluster concentrations are seen to be described correctly by
the complement correction.

It should be noted that the collapse of the liquid drop data uses the parameters from the bulk
system. This shows how the two systems are connected, and that even thoughthe idea of a critical
temperature is ambiguous for the case of a finite system, the critical temperatureof the infinite
system determines the cluster scaling in the finite system. Furthermore, the reverse procedure can
be performed, where the clusters from the finite system can be fit to the Fisher complement relation,
regaining the parameters of the infinite system.

4.3 Coulomb repulsion

The presence of a 1/r potential, such as the Coulomb repulsion, makes it impossible to de-
scribe a bulk system thermodynamically. This is the reason why we are considering uncharged
nuclear matter. The question is how to handle the Coulomb force which is ever present in nuclei,
and extract information of the system as if it is not there [19].

8
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Figure 4: Top: Fisher scaling of the cluster concentrations for the infinite system using equation 2.6. Middle:
Fisher scaling of the cluster concentrations for the systemwith a liquid drop using equation 2.6. Bottom:
Fisher scaling of the cluster concentrations for the systemwith a liquid drop including the complement
correction using equation 4.4. For all of the plots, the leftcorrespond to the Ising model and the right to the
Lennard-Jones model.

The Coulomb problem can be separated into three separate problems:
1. The liquid self energy.
2. The vapor self energy.
3. The liquid-vapor interaction energy.
The first problem is solved by use of the liquid drop expansion. The Coulomb term in the

liquid drop expansion represents the loss of binding due to the liquid self energy. Since nuclei are
finite in size in nuclear collisions, the Coulomb term stays finite and can easily be subtracted from
the the total binding to leave behind the parts characteristic to the strong force.

The second problem is a problem for considering a gas of nucleons. Withthe Coulomb re-
pulsion, the only stable configuration of the vapor would be a vapor of zero density. Since there
is never a vapor in coexistence with the liquid drop in a nuclear collision, this problem becomes
irrelevant. The assumption made is that a cluster emitted from the source immediatelyleaves and
does not interact with any other outgoing cluster. In this respect, the lack of a physical vapor in
contact with the liquid drop is not a hindrance, but makes this analysis possible.

In principle, the third problem is actually not a problem at all. To have coexistence between
two phases, these phases do not need to be in contact. As long as the two systems are at the same
temperature and chemical potential, coexistence is guaranteed. The presence of a surface between

9
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Figure 5: Schematic potential energy curves for cluster emission with (left) and without (right) the Coulomb
interaction. The only difference between the emission of the cluster in the two cases is the presence of an
extra barrier when the Coulomb interaction is present.

the two is irrelevant to the thermodynamic properties of the two independent phases. As a result,
there need not be any interaction energy between the two phases to properly describe coexistence.

In the hot source generated after a nuclear collision, the Coulomb interaction energy produces
a barrier to cluster emission. This barrier does not change the final equilibrium of the system, as
seen in the previous argument, but changes the emission rate. The evaporation of clusters can be
cast in terms of transition state theory [20]. Consider the potential energy curves shown in figure
5. With no Coulomb, the energy of the system emitting at the surface of the source is the same
as the energy of the two being separated at infinity. With Coulomb, this is no longer true, and the
additional energy can be modeled as the interaction energy of two touching charged spheres. The
rate of emission,R, is thus modeled by:

R∝ exp[−Bs/T] = exp[−(∆Esur f ace−∆ECoulomb)/T], (4.7)

where the∆E terms represent the barrier created from the two different interactions.Hence, the
rates are hindered by a Boltzmann factor of the Coulomb barrier. Dividing this factor from the
observed rates yields the rate that would be expected for the system with noCoulomb interaction.

Even though the Coulomb interaction would make it impossible to define the thermodynamic
variables of the nuclear system, the fact that we can only study finite systemsmakes it possible to
account for the repulsion. In the case of decay from a hot source, the only effect of the Coulomb
interaction is to create a barrier to emission. This hindrance to decay can be divided out of the
yields observed, and what remains are the yields of an uncharged system.

4.4 Emission into a vacuum

Without a coexisting vapor in contact with the liquid, how can the decay rates of a liquid drop
in vacuum be associated with the equilibrium concentrations [21]?

To see how this apparent contradiction is resolved, consider the two experimental detection
schemes show in figure 6. Each case represents an enclosed system. The first is a system in

10
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Figure 6: Schematic representation of the rate of particles crossingthe liquid-vapor boundary for two dif-
ferent experimental set-ups. It is seen that the outward fluxof particles from the liquid is identical with or
without the presence of the vapor phase.

coexistence with the top wall of the container being a detector. The detector measures the rate at
which particles hit the wall.

The position is irrelevant as long as the pressure and temperature are kept constant in the
system. As a result, moving the detector all the way to the surface of the liquid results in the same
measurement. Thus, the outward flux of particles from the liquid is equal to theflux of particles
from the coexisting vapor hitting the wall.

For an ideal vapor, as the physical cluster model presumes, the rate of particles,RA, impinging
upon a wall is written as:

RA(T) = nA(T)〈vA(T)4σinv(vA)〉. (4.8)

Here,nA is the equilibrium concentration,vA is the velocity of the particle, andσinv is the inverse
cross section. The termvA is of order

√

T/A, andσinv is of orderA2/3
0 , whereA0 is the mass

number of the hot source.

Another difference between the equilibrated system and a system decaying into a vacuum is
that the decaying system cools down as it evaporates particles. At first itwould appear that the
temperature of the system needs to be known for the whole history of the evaporation. To avoid
this complication, only the intermediate mass fragments are considered, with charge of more than
Z = 6. These larger fragments have a large barrier for emission, not only due to the increase of
surface, but more so because of the Coulomb barrier as discussed in theprevious section. As a
result, the larger fragments are considered to be emitted first, or not at all.

A complete physical picture of the evaporation process is thus made. After the collision, the
system quickly equilibrates to a temperature. The resulting hot liquid drop loses its energy through
particle emission. The large fragments are only emitted when the system has this large initial
energy, and their rate of emission is directly related to the coexisting vapor concentrations through
equation 4.8. The system then continues its evaporative cooling, but overwhelmingly emitting only
the smaller mass fragments.

5. Experimental fragment scaling

With the above considerations of cluster scaling and the details of the nuclearsystem, we turn
our attention to the fragment distributions from experimental measurements of nuclear reactions.
Two types of experiments are used to create the phase diagrams of nuclearmatter.

11
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Reaction Tc (MeV)
58Ni + 12C → 70Se 18.4± 0.3
64Ni + 12C → 76Se 18.0± 0.2
1 AGeV 84Kr + 12C 17.5± 0.2
1 AGeV 139La + 12C 18.3± 0.2
1 AGeV 197Au + 12C 17.7± 0.1
1 GeV/cπ + 197Au 17.26± 0.02

Table 2: Estimates of the critical temperature of nuclear matter from six different nuclear reactions.

One type of experiment gives rise to a standard “compound nucleus”. These nuclear collisions
are characterized as when the beam and target nuclei fuse into a single highly excited nucleus. The
resulting compound nucleus is easily parametrized by mass number, excitation energy, and angular
momentum through conservation laws [22].

The other experiments are loosely grouped into what is call “multifragmentation” [23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33]. These experiments are at much higherincident particle energies.
As a result, a single compound nucleus is not formed. Rather, the collision breaks the two nuclei
apart, leaving behind a smaller remnant which contains only a small amount of the incident beam
energy. It is harder to characterize the remnant in the same terms as the compound nucleus, but in
principle they decay in the same fashion. The remnant quickly equilibrates and cools by means of
evaporating clusters. Similar studies have been performed on such experimental results, however
the Coulomb force and finite size effects were not properly taken into account [24, 25, 34].

Regardless of the means of formation of the highly excited remnant and/or thecompound
nucleus, the decay thereafter is all considered in the same formalism. Each system is characterized
in terms of a mass number, charge, excitation energy, and angular momentum. The excitation
energy is transformed into a temperature via the Fermi gas approximation [36,37]. The effects of
angular momentum of the decaying source is also considered. The resultingcluster yields are then
analyzed as described in the previous sections. Complete and in depth detailsof this analysis can
be found in reference [35].

The data from six different reactions (listed in Table 2) and three different experiments were
used and over 500 data points were fit with three (for the compound nuclear data sets) or four
(for the multifragmentation data sets) free parameters per reaction (there were, on average, nearly
23 data points per free parameter). Charges from 6≤ Zf ≤ 25 and excitation energies of 1.08
AMeV ≤ E∗

r ≤ 4.75 AMeV were used in the analysis. Table 2 shows the results forTc from all the
experiments. These values agree with each other to within 3% and give an estimate of the critical
temperature of bulk nuclear matter asTc = 17.9±0.4 MeV. This value agrees well with theoretical
predictions [38, 39, 40, 41, 42].

Plotting the scaled ratio of the yields of a given fragmentY(Zr ,Ar) as a function of asAσ ε/T
collapses the measured fragment yields for anyAf andEr onto a single curve. This is shown in
Figure 7. The curve is, for all intents and purposes, the liquid-vapor coexistence curve of bulk
nuclear matter since the effects of finite size, the Coulomb force, angular momentum and isospin
have all been accounted for and scaled out.

12
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Figure 7: The scaled charged yields from the six different nuclear reactions. Over 500 points are collapsed
on a single curve which describes the behavior of bulk nuclear matter. HereΘ is an effective chemical
potential that takes into accounts for the effects of finite size, Coulomb force, angular momentum, and
isospin dependencies. See reference [35] for further details.

6. The nuclear phase diagrams

With the physical cluster model and the fitting parameters from the experimentaldata, the
nuclear phase diagrams can be created. Combining the equations from the physical cluster model
and Fisher’s droplet model, the pressure is written as:

p= T ∑
A

q0A−τ exp

[

−c0Aσ
(

1
T
−

1
Tc

)]

, (6.1)

and the critical pressure is
pc = Tc∑

A

q0A−τ . (6.2)

Likewise, the density is:

ρ = ∑
A

q0A1−τ exp

[

−c0Aσ
(

1
T
−

1
Tc

)]

, (6.3)

and the critical pressure is
ρc = ∑

A

q0A1−τ . (6.4)
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First, we consider the reduced phase diagrams, where the thermodynamic variables are scaled
by the critical values. Since the fits for the experimental data are done with theratio of cluster
yields, the normalizationq0 is still unknown. Considering the scaled phase diagrams removes this
complication.

Also, the density of the liquid phase as a function of density is not directly measured in the
experiments. The only knowledge of the liquid phase is the saturation density at zero temperature
from studies of ground state nuclei.

To determine the normalization constant and to construct the liquid branch of the density-
temperature phase diagram, Guggenheim’s relation of the reduced phase diagrams is used [43]:

ρl ,v

ρc
= 1+d1ε ±dβ εβ . (6.5)

In this equation, the upper sign is used for the liquid branch, the lower sign isfor the vapor branch,
andβ is the critical exponent [3, 4, 6]:

β =
τ −2

σ
= 0.3265±0.0001. (6.6)

The two parametersd1 anddβ are system dependent. The reduced phase diagram for the vapor
branch is then fit to these two parameters. The reduced phase diagram for the liquid branch is
then generated by switching the sign as seen in equation 6.5. Furthermore thenon-reduced phase
diagram is created by scaling to the density of saturated nuclear matter at zero temperature. Figure
8 shows the resulting phase diagram. The critical density is found to beρc = 0.06±0.02 A/fm3.

To create the pressure-temperature phase diagram, the normalization constant found for the
density is used. The resulting critical pressure ispc = 0.3±0.1 MeV/fm3. Figure 8 also shows the
pressure-temperature phase diagram.

Figure 8: The extracted phase diagrams for bulk nuclear matter. Left:The pressure-temperature coexistence
curve. Right: The density-temperature coexistence curve.The line in the middle represents the average
density of the two phases [35].
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7. Conclusion

This talk summarizes the steps taken to generate the liquid-vapor phase diagram of bulk un-
charged symmetric nuclear matter. Since the typical means of measuring the thermodynamic prop-
erties of the nuclear system are not available, new techniques need to be employed.

Even though the theory of clustering in a vapor was developed independent of nuclear physics,
the application to nuclear reactions is relevant. The physical cluster model in conjunction with
Fisher’s droplet model is shown to provide enough information to producephase diagrams for a
system.

To show that clustering in a real gas can be used to generate phase diagrams, the theory is
applied to model systems. Fisher scaling is observed in both the Ising model and the Lennard-
Jones model. Furthermore, the scaling can reproduce the phase diagramsof the systems which
have been determined previously through more traditional procedures.

The difference between the environment of a nuclear reaction and systems in direct coexistence
also are considered. The finite size of a nucleus is shown to be taken into account through appli-
cation of the complement correction. Further simulations of the Ising model and Lennard-Jones
model show the validity of the complement correction.

The presence of the Coulomb repulsion in the nucleus is also discussed. Application of the
transition state method reveals that the Coulomb interaction affects the decay rates by the addition
of an energy barrier. Taking the extra barrier into account leaves a description of the uncharged
system.

Finally, the lack of a physical vapor in contact with a decaying nuclear source is considered.
The rates of evaporation from the decaying source is seen to be unchanged between a system with
and without being in contact with its coexisting vapor. Furthermore, the ratesof decay are directly
related to the concentrations of the clusters in a coexisting system.

With a theory in place for analyzing the experimental data from nuclear reactions, the nuclear
phase diagram is created. Experiments of lower energy collisions creatinga compound nucleus are
easily characterized, making them important in the analysis. Even though multifragmentation data
is harder to characterize, the theory of cluster yields is the same and is applied in the same way.

The diverse experimental data produce consistent set of parameters for bulk nuclear matter,
which allow us to create the phase diagrams of nuclear matter.
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