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1. QED3

A variety of novel features has spurred interest in low-dimensional QED for many decades[1].
For example, high temperature QCD can be represented as the dimensionally reduced QCD3. If
the number of quark flavours (Nf ) is large, the nonabelian behaviour of the theory is suppressed
and it may be approximated as quantum electrodynamics in three dimensions (QED3)[2]. Massless
QED3 in the large Nf limit generates dynamical fermion masses that are suppressed exponentially
in the fermion number. Thus this theory illustrates how large mass hierarchies can be dynamically
generated[3], which is of interest to BSM physics.

More recently, QED3 has been used as a model field theory for three dimensional condensed
matter systems. Examples include applications to high Tc superconductors, where the relevant
dynamics is thought to be isolated to copper-oxygen planes in the cuprate[4]. It is also considered
as a gauge formulation of the 2+1 dimensional Heisenberg spin model[5], a possible model for
graphene[6], and quantum versions of spin-ice[7].

When coupled to Nf massless four-component fermions, QED3 exhibits a U(2Nf ) symmetry
that can be broken toU(Nf )×U(Nf ), which is the three dimensional analogue of chiral symmetry
breaking. It is widely agreed that symmetry breaking occurs for low Nf . More interesting is the
behaviour as the number of fermions becomes large where it is possible that the interaction becomes
sufficiently screened that vacuum condensation no longer occurs. Indeed, Appelquist et al. have
used the large Nf limit with additional approximations to argue that there is a critical number
of flavours, N! ≈ 3.5 above which the theory remains in the symmetric phase. Furthermore, the
lack of massless scalar bound states at the critical coupling has been used to argue that the chiral
restoration phase transition is not second order, but is of a novel type[8].

The belief that a critical number of fermion flavours exists is not without controversy. For
example, Pennington and Walsh assert that wavefunction renormalisation (which is null as Nf → )
is central to determining the details of symmetry breaking. Their solution of a truncation of the
Schwinger-Dyson equations reveals that, in fact, chiral symmetry is never restored[9]. In addition,
Pisarski has used the renormalisation group to argue that fermion mass generation occurs for all
values of Nf [10]. In spite of these claims, more recent Schwinger-Dyson computations again find
a critical value of Nf with N! ≈ 3.5[11, 12].

A novel feature of QED3 is that it is possible to introduce a topological Chern-Simons-like
photon mass term to the theory[13]. This term breaks parity and time reversal symmetries. It is
also possible to formulate the theory with two-component fermions. In this case a nonzero photon
mass induces a finite fermion mass at one-loop (and vice versa)[14, 15]. This raises the interesting
possibility that parity symmetry can be spontaneously broken in the massless theory. This question
was first examined by Appelquist et al. many years ago[15]. They concluded that finite fermion
masses were dynamically generated, but that these masses appear in pairs of opposite sign, thereby
maintaining the parity symmetry of the vacuum and a massless photon, in agreement with a general
argument of Vafa and Witten[16]. Their conclusions were based on an analytic examination of the
Schwinger-Dyson equations in rainbow-ladder approximation. In addition the authors assumed the
large Nf limit, that there is no fermion wavefunction renormalisation, that the fermion self energy
is constant at low momentum, and that it is valid to truncate integrals at the scale e2. Their general
conclusions were confirmed by other groups with similar methods[17]. A brief review of these
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issues and the extension to nonzero temperature are described in the following.

2. Zero Temperature

We study massless abelian gauge theory in three dimensions with two-component fermions[18].
The Lagrangian is taken to be

L = −1
4
F2+ ¯ (i / + e /A) − 1

2
( ·A)2. (2.1)

The coupling e2 has units of mass and the theory is superrenormalisable. As mentioned in the
introduction, a fermion mass term generates a topological photon mass

LCS = µ
1
4 µ Fµ A (2.2)

via radiative corrections. Similarly, a nonzero value for µ will generate a fermion mass at one
loop[13, 14].

The full photon propagator is given by the expression

Dµ =
−i(1− )

p2(1− )2− (µ− ˜ )2

(
Pµ − i

µ− ˜
p2(1− ) µ p

)
− i

pµ p
p4

(2.3)

where the projector Pµ is defined as

Pµ = gµ −
pµ p
p2

(2.4)

and the full photon self energy is parameterised as

µ (p) = p2Pµ (p)+ i µ p ˜ (p). (2.5)

=

1 1 1

=

11

Figure 1: Schwinger-Dyson Equations. Solid circles represent full propagators. The open circles represent
a model vertex.

The Schwinger-Dyson equations for the two-point functions are shown in Fig. 1. Solutions
to these equations yield the full photon propagator, parameterised in Eq. 2.3 and the full fermion
propagator, defined by

S(p) =
i

A(p) /p−B(p)
. (2.6)

The Schwinger-Dyson equations have been truncated by assuming a model form for the vertex (de-
noted with a small open circle). Typical model vertices include the rainbow ladder approximation:

i µ
RL(k, p) = µ , (2.7)
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the central Ball-Chiu vertex

i µ
CBC(k, p) =

1
2
(A(k)+A(p)) µ , (2.8)

or the Ball-Chiu vertex

i µ
BC(k, p) =

1
2

(A(k)+A(p)) µ +
1
2
A(k)−A(p)
k2− p2

(/k+ /p)(kµ + pµ)− B(k)−B(p)
k2− p2

(kµ + pµ). (2.9)

The Ball-Chiu vertex is the unique form of the longitudinal portion of the vertex that is consistent
with the Ward-Takahashi identity and is free of kinematic singularities[19]. Use of the Ball-Chiu
vertex is a necessary, but not sufficient, condition for gauge invariance of the solution.

The transverse portion of the full vertex remains unspecified. Curtis and Pennington have used
multiplicative renormalisability to argue that the most important transverse term is[20]

i µ
CP(k, p) =

1
2
A(k)−A(p)
d(k, p)

[ µ(k2− p2)− (k+ p)µ (/k− /p)
]

(2.10)

with
d(k, p) =

(k2− p2)2+(M(k)2+M(p)2)2

k2+ p2
(2.11)

where M = B/A is the mass term of the full propagator. We shall refer to these truncations as RL
(rainbow-ladder), CBC (central Ball-Chiu), BC (Ball-Chiu), or CP (following Ref. [12], this is the
Ball-Chiu plus Curtis-Pennington vertex in the fermion propagator and the Ball-Chiu vertex in the
photon propagator).

2.1 Chiral Symmetry Restoration

We examine the putative phase transition more closely by plotting the fermion condensate
versus Nf (Fig. 2) for the RL, CBC, BC, and CP models. Also shown are fits with the Ansatz

〈 ¯ 〉(Nf ) = aNf exp

(
−2√

N!/Nf −1

)

. (2.12)

It is quite difficult to obtain these results for large values of Nf : extrapolation in the number
of integration points is necessary for Nf > 4. Our most accurate results are for the CBC vertex and
are in excellent agreement with the Ansatz of Eq. 2.12, implying strongly that a chiral restoration
phase transition does indeed occur. An Ansatz like 〈 ¯ 〉 exp(−N4f ) also does a reasonable job
fitting the CBC points, and of course does not exhibit a phase transition. Nevertheless the quality
of this fit is significantly lower than that of Eq. 2.12.

Remarkably, a simple adjustment of N! in Eq. 2.12 provides excellent fits to the RL, BC, and
CP data as well. We obtain a= 1.8 and

N!(CBC) = 1.00 ·NA
! (2.13)

N!(RL) = 1.10 ·NA
! (2.14)

N!(CP) = N!(BC) = 1.21 ·NA
! . (2.15)
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Figure 2: The condensate for (top to bottom) BC, CP, RL, and CBC models, with fit functions (described in
the text).

Although we can be less certain that the BC and CP models exhibit symmetry restoration, the good
fits, the similarity of all model results, and the theoretical motivation all make this very likely in
our opinion. Our numerical results appear to be in agreement with earlier results [11, 12].

The seemingly good fit of the RL results (although we did not push the computation beyond
Nf = 5.0) illustrates the difficulty in extrapolating numerical results such as these. This is because
it has been shown that the simple RL vertex Ansatz cannot support symmetry restoration[21].

2.2 Parity

We seek to confirm the reflection symmetry breaking pattern suggested by Appelquist et al..
Thus if parity symmetry is maintained one expects either no chiral symmetry breaking or chiral
symmetry breaking with Nf/2 fermions of mass M and Nf/2 fermions of mass −M. If reflection
symmetry is maximally broken then one expects Nf fermions with mass M (or −M). One can also
obtain parity breaking with intermediate scenarios.

We have performed computations assuming a reflection symmetry breaking pattern of (M,M)
with all vertex models[18]. The natural iteration algorithm approaches a limit cycle of the type
(A,B) → (A,−B). While this could prove to be a nontrivial solution (due to the B reflection sym-
metry discussed above), the error does not decrease with iteration. This suggests that the limit
cycle does not represent an actual solution to the Schwinger-Dyson equations. Of course, the
lack of convergence of a natural iteration algorithm does not prove that a solution does not ex-
ist. We have therefore repeated the computation with the minimisation algorithm. In this case A
evolves to a smooth function while B approaches zero (with substantial noise). Similar behaviour
was seen in all vertex models. Thus it appears that a nontrivial reflection-breaking solution to the
Schwinger-Dyson equations does not exist, as suggested in Refs.[15], [17]. This computation is
the first extension of those conclusions to the full two-point function Schwinger-Dyson equations
with vertex models of varying sophistication.

We now seek to generalise these results to all patterns of symmetry breaking. Thus we intro-
duce the parameter
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=
N+−N−
N+ +N−

(2.16)

where N± is the number of fermions with mass ±M. As discussed above, when = 0 and M > 0
one obtains a parity-preserving, chiral symmetry-breaking vacuum structure. When = 1 the
vacuum is maximally parity-violating. In general we find three types of behaviours: (i) iteratively
stable solutions, (ii) limit cycles that are not solutions, (iii) chaotic results that are not solutions.
Results for the rainbow-ladder and CBC vertices are shown in Fig. 3. In the rainbow-ladder case
all results for > 0.4 are of the limit-cycle type (shown as two values for B(0) in the figure).
Surprisingly, stable parity-violating solutions exist for < 0.4. Similar behaviour is seen with
the CBC vertex, except that the transition point is near = 0.35 and chaotic results are seen for
greater values of , with the exception of the maximally parity violating scenario, where a limit
cycle behaviour is obtained. Results for the Ball-Chiu vertex are similar to those of the CBC vertex.
The figure suggests that the transition between parity-preserving and parity-violating vacua occurs
at B(0) = 0, ie., when chiral symmetry is restored.
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Figure 3: Parity breaking solutions vs. . Plusses are RL, crosses are CBC.

3. Finite Temperature

The extension of a reliable computational scheme for QED3 to finite temperature is of interest
due to its many condensed matter applications. This is a technically challenging problem, and
past attempts have been forced to make many additional approximations beyond the truncation
of the Schwinger-Dyson equations. The most immediate concern is the lack of covariance which
makes dynamical quantities a function of two variables, p0,"p, rather than simply p2. This raises
the computational requirements by one or two orders of magnitude.

An additional concern is the presence of infrared divergences in the formalism. Infrared diver-
gences are exacerbated at nonzero temperature because perturbative diagrams are dominated in the
infrared limit by the lowest available Matsubara frequency, which is zero in bosonic sums. Thus,
even though QED3 is infrared finite at zero temperature, problems may arise again at nonzero tem-
perature. This issue has engendered some confusion in the literature. Some authors have noted
that an infrared divergence exists, but have ignored it[22], or imposed an infrared cutoff[23], or

6
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assumed that higher order corrections remove the divergence[24]. Many authors simply evade the
issue entirely by employing the approximation[25]

iDµ ( ,"q) → iD00(0,"q). (3.1)

We shall argue that infrared divergences are endemic to QED3 at finite temperature. Further-
more, the problem is not alleviated by finite fermion masses. Nevertheless, observables are finite
and the theory is well-defined.

We employ the imaginary time formalism and choose to work covariantly, which necessitates
introducing a three-vector, nµ , that represents the heat bath. Thus the full fermion propagator is

S =
i

(A−A0)n/+A /p−B
. (3.2)

Here
pµ = (i n,"p) (3.3)

where n = (2n+1) T is a fermionic Matsubara frequency and A, B, and A0 are functions of n
and "p.

3.1 Photon Propagator

The vacuum polarisation tensor remains transverse at finite temperature, however the presence
of an additional three-vector permits two transverse tensors

PLµ (n,q) = q̂⊥µ q̂⊥ (3.4)

and
P⊥
µ (n,q) = gµ −

qµq
q2

−PLµ (q). (3.5)

A transverse three-vector has been defined as

q⊥µ = qµ −nµ
q2

n ·q . (3.6)

Some useful properties of these tensors are

qµPLµ (q) = qµP⊥
µ (q) = 0 nµP⊥

µ = 0 (3.7)

P⊥ ·PL = 0 P⊥ ·P⊥ = P⊥ PL ·PL = PL. (3.8)

With nµ = (1,0,0) we obtain

P⊥
00 = 0 P⊥

0i = 0 P⊥
i j = −( i j− q̂iq̂ j). (3.9)

The minus sign in the last expression is required in the covariant normalisation employed here.
With these definitions one can parameterise the photon self energy as:

7
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µ (n,q) = P⊥µ ⊥ +PLµ L+ i µ q̂ ˜ + iq̂⊥µ q̂ q̂⊥ 4+ iq̂⊥ µ q̂ q̂⊥ 5+

+ µ ′ ′ q̂ q̂
′
q̂⊥q̂

′

⊥ 6 (3.10)

Note that ˜ , 4, 5, and 6 are all null for four-component fermions and it is possible to combine
the 4 and 5 terms into symmetric and antisymmetric tensors.

The full photon propagator is

iDµ (n,q) = D⊥P⊥
µ +DLPLµ − i

qµq
q4

+ iD̃ µ q̂ + iD4q̂⊥µ q̂ q̂⊥ + iD5q̂⊥ µ q̂ q̂⊥ +

+D6 µ ′ ′ q̂ q̂
′
q̂⊥q̂

′

⊥ . (3.11)

3.2 Infrared Divergences

It is known that L is nonzero at zero momentum: this provides electric screening in-medium.
The one-loop expression for the Chern-Simons form factor is

˜ (mat)(0,q→ 0) = q tanh(m/2T ). (3.12)

This result should be compared to the zero temperature form factor

˜ (0) = q
m
|m| . (3.13)

We remark that both of these results hold to all orders due to a theorem of Coleman and Hill[26].
An old argument due to Fradkin[27] establishes that ⊥ is zero at ( ,"p) = (0,0). This state-

ment can be extended to

⊥(0,q→ 0) = c⊥q2+O(q4). (3.14)

This is explicitly true to O(e5) in QED4 and Blaizot et al. argue that it is true to all orders[28].
The basic idea is that the nonvanishing minimum fermionic Matsubara frequency makes the self
energy an analytic function of q2. An expansion about q= 0 then yields ⊥ → 0+O(q2), with the
odd terms vanishing due to rotational invariance. We note that this argument generalises directly to
three dimensions. This result is important because it implies that there is no dynamical screening
in the magnetic sector.

The lack of magnetic screening leads directly to an infrared divergence in the fermion self-
energy, as we now demonstrate. Consider the exact expression for the fermion self energy that
appears in the Schwinger-Dyson equation of Fig. 1.

i (p) = e2T
n

∫ d2q
(2 )2

S(q) µ (p,q)Dµ (p−q). (3.15)

We again employ the finite temperature version of the Ward identity to obtain the leading
behaviour of the fermion self energy when q= p− :

8
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(p+ , p) =
S−1(p)
p

+
p

+ . . . (3.16)

The leading infrared behaviour is obtained when (or q0) is zero, we therefore set = 0 in the
following. One obtains

div (p) = −ie2T [ S(p)
S−1

pµ
]div

∫

IR

d2

(2 )2
Dµ ( ) (3.17)

= ie2T [
S
pµ
S(p)−1]

·div
∫

IR

d2

(2 )2

[
nµn DL+

nµn −gµ
2

(−D⊥ +D6− i 2 )
]

(3.18)

For two-component fermions only the gauge term is infrared divergent if the photon mass is
nonzero. If it is zero one has

div (p) = ie2T [
S
pµ
S(p)−1]

nµn −gµ
4

[
−i 1
1− c⊥

− i
]
log IR. (3.19)

Similarly for four-component fermions with µ = 0

div (p) = ie2T [
S
pµ
S(p)−1]

nµn −gµ
4

[
−i 1
1− c⊥

− i
c6

(1− c⊥)(c6+ c⊥−1) − i
]
log IR.

(3.20)
We have assumed that 6(0,q→ 0) → c6q2. If there is a screening mass in this form factor one
can take the limit as c6 goes to infinity in Eq. 3.20.

Thus a logarithmic infrared divergence appears in the fermion propagator. This statement is
exact, only relying on the Ward identity, the existence of 1/q2 terms in the exact photon propagator,
and general properties of the photon form factors. It is clear that a finite fermion mass does not
change this conclusion. However, a finite photon mass regulates the transverse part of the propaga-
tor, leaving only the divergence in the gauge term. These expressions make it clear that the infrared
divergence does not affect observables. For example, it is possible to choose a gauge to eliminate
the divergences entirely.

3.3 The Electric Screening Mass

The electric and magnetic screening masses are defined in terms of the longitudinal and trans-
verse form factors of Eq. 3.10

m2el = lim
p→0

L( = 0, p) (3.21)

m2mag = lim
p→0 ⊥( = 0, p). (3.22)

Of course, as stated above, the magnetic screening mass should be zero. The electric screening
mass is an experimental observable and hence should be infrared and ultraviolet finite. Here we

9
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run into a problem: the naive application of Eq. 3.22 yields an infinite result for mel . The problem
can be traced to a few linked causes:

(i) a superrenormalisable field theory can still contain divergences (although only a finite num-
ber of diagrams diverge),

(ii) the zero temperature photon self energy tensor is given in terms of a scalar function as
µ = Pµ , if the regulator and truncation scheme respect gauge invariance. If this is not the

case one must write

µ = gµ +Pµ . (3.23)

The new scalar function diverges. This function was neglected in previous analyses by simply
projecting it away.

(iii) the projection trick no longer works at finite temperature. To obtain a finite screening
mass one must renormalise properly; the final, finite, expression is

m2el = lim
p→0

[ L(0, p)+ (0, p)− (p)− (p)] (3.24)

(In fact, the presence of the gµ term requires a photon mass term 1
2µA A in the Lagrangian and

this expression is more conveniently expressed at the renormalisation point = µ , "p= 0 for T > 0
and p2 = µ2 for T = 0.)

Unfortunately, this expression is very difficult to evaluate numerically. The divergence in the
finite and zero temperature portions must cancel. A simple cutoff regulator will not do since it is
implemented differently in three dimensions and 2+1 dimensions. Numerically implementing di-
mensional regularisation is also not sufficient because this method can only deal with logarithmic
divergences, and we have linear divergences. A third possibility is Pauli-Villars regularisation. This
has the benefit of maintaining gauge invariance and separately regulates the zero and finite tem-
perature portions of m2el , which is desirable. Unfortunately, this doubles the computational effort
as fermion functions (A0, A, B) must be obtained numerically for the Pauli-Villars fermion. Fur-
thermore, one must extrapolate to large Pauli-Villars mass to obtain the cutoff independent result.
This is very inconvenient because obtaining accurate results for large fermion mass is difficult. A
possible way out of this numerical morass is to implement a judicious subtraction.

These options are currently under investigation and we hope to be able to report first-ever
predictions of the truncated Schwinger-Dyson equations without additional approximations for
finite temperature gauge theories in the near future.

4. Conclusions

QED3 is a rich quantum field theory. We have used the Schwinger-Dyson equations with
a variety of model Ansätze to confirm that chiral symmetry is dynamically broken for a small
number of fermion species. We have also observed for the first time the possibility of dynamical
parity breaking. This needs to be investigated more fully; specifically, the preferred vacuum should
be determined. Finally, we have established that QED3 contains infrared divergences at finite
temperature that cannot be avoided, although these should not affect observables. Problems with
computing the electric screening mass have been highlighted, along with potential solutions.
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