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1. Introduction

In the last few years our understanding of the infrared (IR) behafitite fundamental QCD
Green's function has improved substantially. Putting together the informabitained though
various non-perturbative methods, such as lattice simulations [1, 2, 364, Schwinger-Dyson
equations (SDEs) [7, 8, 9], functional methods [10, 11], and algebrahniques [13, 14], itis by
now well-established that, in the Landau gauge, the gluon propagatorgnosddressing function
are finite in the IR (in d = 3,4). [7, 9]. Evidently, these results support thergmass generation
picture proposed by Cornwall several years ago [15], disfavdhiago-called “ghost-dominance”
picture of QCD [16, 17], whose theoretical cornerstone has beernxisterce of a divergent (“IR-
enhanced”) ghost dressing function.

However, the finiteness of the ghost sector does not imply necessatith¢hghost contribu-
tion has been relegated to a marginal role in the QCD dynamics. In fact, congpadigience to
the contrary has emerged from detailed studies of the gap equation thagl€dhe breaking of
chiral symmetry and the dynamical generation of a constituent quark m&skdll Specifically, a
detailed study has revealed that the proper inclusion of the ghost sactthhénquark SDE is cru-
cial for obtaining quark masses of the order of 300 MeV in the preseftgte gluon propagator
[19]

Given the importance of the ghost sector for the dynamical generatiogaristituent quark
mass, the main purpose of this talk is to ask whether a similar situation applies irsthefdhe
dynamical generation of an effective gluon mass [20].

2. Disentangling the “one-loop dressed” ghost contributios

In what follows we will work within the specific framework provided by then#hesis of the
pinch technique (PT) [15, 21, 8, 22, 23] with the background field me{B&di1) [24].

We start by recalling that within the PT-BFM scheme the gluon self-enBrgyq), is giving
by the sum of the diagrams represented by Fig. 1, i.e.

10

M) = 3 ()" (2.1)

Exploiting the well-known blockwise transversality properties of the PT-BRKY (q), it is
possible to separate the transversal contribution of the one-loop drgksst diagrams, repre-
sented by the diagrantss) and(as), and to be denoted by

Mg’ (a) = (ag)"" + (aa)""; (2.2)
where(ag) and(a4) are given by
()uv = ~G7Ca [ TP (k. 0. =k~ @)D(ID(k-+ ) (k-+G, ~q, —K),

(a)uv = Zgchguv/I;D(k)- (2.3)
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Figure 1: The SDE corresponding to the PT-BFM gluon self—end?gﬁ,(q). The graphs inside each box
furnish an individually transverse contribution. Whitegtk) circles denote full propagators (vertices).

In the equations abov®?®(q?) = 62°D(q?) denotes the full ghost propagator, defined in terms of
the ghost dressing functidh(q?) as

_F(@) (2.9)

while F“ represents the three-particle vertex describing the interaction of thgtoacid gluon
with a ghost and an antighost, with (all momenta entering)

T ope (0. P) =gF T u(na. P TY(na,p) = (r—p)y (2.5)

Finally, Ca is the Casimir eigenvalue of the adjoint representat@n= N for SU(N)], and we
have introduced thd-dimensional integral measure (in dimensional regularization) according to

/z W /ddk (2.6)

kK (2md/)

with u the 't Hooft mass, and = 4 — d. Then, by virtue of the PT-BFM Ward identity
igHTu(r,q, p) = D*(r) =D ~*(p), 2.7)

it is immediate to establish the transversality 4’ (q), namely [22]
qune”(a) = 0. (2.8)
It is convenient for our purposes to decompose the full self-en@ggyq) as
MY (a) = MEY(a) +NE¥ (a), (2.9)

wherel}”(q) denotes the sum of the remaining subsets of diagrams in Fiig., hoth the gluon
one- and two-loop dressed diagrams, as well as two-loop dresseddiggrams,
10

MY () = Zl (@) (2.10)

i=
i#34
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Notice that due to the special Ward identities satisfied by the PT-BFM verfit€qq) is also
transverse [22, 23].

Using Eq. (2.9), the SDE for the full gluon propagator in the Landau gaidhe PT-BFM
scheme assumes then the form [7]

q?PHV(q) +i [N () +NEY (q)]

AHe?)PHY (q) = , (2.11)
P [1+G(@?)]?
where the gluon propagatdy,, (q) is defined as
A2 . _ OuQv
Apv(a) = —1A(g7)Puv(a); Puv(@) = Guv — ra (2.12)

The functionG appearing in (2.11) is the form factor associated wjth in the Lorentz decompo-
sition of the auxiliary two-point function\, given by [7, 25]

Auv(d) = —ig?Ca /k A% (K)D(q— K)Hyo (0, q— K, k)

qud
‘aZVL(qZ). (2.13)

= gqu(qz) +

Notice that the auxiliary functiohl is related to the (conventional) gluon-ghost vertex by the
identity
rIJ(r7q7 p) = _vaVIJ(p7r7q)7 (214)

and that, in the (background) Landau gauge, the following all ordeiaelholds [26, 27]
F Yo%) = 1+G(a?) +L(P). (2.15)

Now, let us return to Eq. (2.11), and define in a completely analogous wayutimtityA (g?),
given by
q*PHY(q) +iMF"(q)
[1+G(@)
Evidently,A; represents the propagator obtained by subtracting out from the fggetorA the
one-loop dressed ghost contributions. Then, taking the trace of bet{ZE#1) and (2.16), defining
the trace of1£"(q) as

A QPP (g) = (2.16)

HC(qZ) = ngu(Q)a (2.17)

and solving for;, we arrive at

o o APAN(@D |
Ar(0%) = A(q ){1 (d—1) [1+G(q2)]2} ) (2.18)

which represents our master formula.

In order to obtain the behavior of the propagate(g?) from Eq. (2.18) we will in the next
sections(i) identify the full gluon propagatof\(g?) with that obtained from the lattice, ar(d)
determine nonperturbatively the quanfity from Egs. (2.3) and (2.17), and evaluate it numerically
using as input the lattice results for the ghost dressing funétion).
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3. The nonperturbative calculation of M¢(g?)

The first step in the calculation of the non-perturbative quantig?) is the definition of an
Ansatz for the fully-dressed ghost vertﬁ;g, appearing in graplag) of Eq. (2.3) which satisfies
the crucial Ward identity of Eq. (2.7). This task can be accomplished withehpedf the “gauge-
technique” [28] which reconstruct the vertex by “solving” its Ward identEpllowing the same
steps of the derivation presented in [29] for the scalar QED vertex, tisat& for the fully-dressed
ghost vertex ,, reads,

Tu(ra,p) =i (:2__‘25 [D~(p*) —DH(r?)], (3.1)

which evidently satisfies Eq. (2.7) when contracted vgth Obviously the “gauge technique”
leaves the transverse (automatically conserved) part of the verteteamiteed, which, on general
grounds, is expected to be subleading in the IR [28, 30].

Substituting (3.1) in the first equation of (2.3) and taking the trace, it is relgtstraightfor-
ward to obtain the result

Me(0?) = g°Ca [4T (9) — G?R(q)] , (3.2)

where

_ [D(k+q) —D(k)
R(q) = /k(k+q)k2’

D(k+q) —
T(q)_/kkz (k+q)? k2 2/D (33)

To further evaluat€l.(g?), we must invoke the so-called “seagull-identity” [31],

af (K
2 2
/kk e 2/f (K3 (3.4)

valid in dimensional regularization, which enforces the cancellations otaljudl-type of diver-
gences. Notice that, in the limit— 0, the termg?R(q) vanishes, and so do@gq), since

a0 ,3D(K2) d/ -
T(q) /k S 5 [D0=0, (3.5)

where in the last step we have employed Eq. (3.4), itk?) — D(k?). Employing this resuilt,
follows immediately from Eq. (3.2) thdll¢(0) = 0. Using the fact thafA~1(0) = m?(0), we con-
clude that the one-loop dressed ghost diagréagsand(as) do not contributelirectly to the value
of dynamical gluon mass at zero momentum transfer. The easiest wayrece this is by re-
calling that the mechanism responsible for endowing the gluon with a dynamass relies on
the presence of massless poles in the nonperturbative tree-gluon [thechtde in graph(a;) of
Fig. 1], whereas the ghost vertex has the usual structure [note teecgbsf poles in the Ansatz of
Eq. (3.1)] [32].

In addition, notice that whed = 4, R(q) is ultraviolet divergent, and must be properly renor-
malized, by introducing the appropriate wave-function renormalizationtantis
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The (subtractive) renormalization must be carried out at the level ofX23pecifically (set-
ting directlyd = 4), _

Zao* + 3 [Mr(9) +Me(q)]
[1+G(e?))*
where the renormalization constaitis fixed in the MOM scheme through the conditiin® (p?) = p2.

Applying this condition at the level of Eq. (3.6) together with Eq. (2.15), @sidg the fact that the
functionL(x) is considerably smaller tha®(x) in the entire range of momenta, (so that we can use
the approximation 4 G(u?) ~ F~1(u?) = 1) allows one to expres& as

A7HeP) =

: (3.6)

Zpn=1- 3u2 (M () + Me(p)]. (3.7)

Finally, substituting Eqg. (3.7) into Eq. (3.6), and defining (in a natural vihg)renormalized
AH(P) as

9+ 5 [Mr(a) — (/)N (1)]

—1(2y
Ar (q )_ [1+G(q2)]2 ) (38)

the renormalized version of the master formula (2.18) will read
A IS G L Tt LI (3.9)

3 [1+G(q?)]?

Evidently (3.9) is obtained from (2.18) by replaciag(q?) — Agt(9?) (“R’ for “renormalized”),
andn¢(q) — M¢r(q), where

Mer(a) = Me(q) — (@F/H*)Ne(1). (3.10)

For the ensuing numerical treatmentR(fg) and T (q) carried out in the next section, it is
advantageous to have the crucial propérf§) = 0 a priori built in, in order to avoid possible
deviations due to minor numerical instabilities. To that end, we introduce theityud

T = T(@-T(0) - i 2D 8 228 @.11)

which has the property of ensuring (by construction) Thed) = 0, while, at the same time, coin-
ciding with the originalT for all momentag.

In addition, it is convenient to re-expreR&y) andT (q) in terms of the ghost dressing function.
Using Eq. (2.4), after some elementary algebra, one obtains

kK+q) — - F(k+q)—F(k) 0JF(k)].
/k2 (k+q)2 /k2 [(k+q)2 T(Q)_/k[ kraZ_kk ok | G2
note that the angular integration of the first ternRisan be carried out analytically for any value
of the space-time dimensiah
Finally, note that up until this point we have been working in Minkowski spd® make the
transition to Euclidean space, we must employ the usual rules. Specificallsew) = ika and

¢ = —o?, and use thabe(qZ) = —A(—0f); Fe(af) = F(—02); Ge(af) = G(—¢2), suppressing the
subscript “E” in what follows.
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Figure 2: Left panel Lattice result for theSU(3) gluon propagatorA(q), in d = 4, renormalized at
p =4.3GeV. The continuous line represents the fit given by Eq.)(4Rlight panel The SU(3) ghost
dressing functionk (g?), renormalized at the same poipt= 4.3 GeV; the solid line corresponds to the fit
given by Eq. (4.2).

4. Numerical Results

We will now proceed to perform the numerical analysis. Using the availathiedaata on the
ghost dressing functioR, we evaluate the ternR and T given in Eq. (3.12), and combine them
following the Egs. (3.2) and (3.10) to obtain the (renormalized) ghost ibotitsn to the gluon
self-energy.. Finally, we construch\; using (2.18) and the lattice results available for the gluon
propagato?\. This exercise is carried out for two different casgés: 4, N =3, andd = 3,N = 2.

In Fig. 2 we show the lattice results for the four-dimensia®d(3) gluon propagatof(g?)
(left panel), and the corresponding ghost dressing fundfi@g) (right panel), obtained from [3],
and renormalized gt = 4.3 GeV.

As has been discussed in detail in the literature [19, 32, 33], both setseofdn be accurately
fitted in terms of IR-finite quantities. More specifically, for the cas&@f?), we have proposed a
fit of the form [33]

12N N2 2N L 2 13CaQ: [ 9%+ p1M3(cP) YL
A g?) =M3(g?) +q [1+ %nzlln( 2 ﬂ M (q)_m. (4.1)

Notice that in the above expression, the finitenesAof(g?) is assured by the presence of
the functionM?(g?), which forces the value a&~(0) = M2(0) = mg/p,. The continuous line on
the left panel of Fig. 2 corresponds our best fit, which can be rejgextisettingng = 520 MeV,
g2 = 5.68, p; = 8.55 andp, = 1.91.

The SU(3) lattice data forF (g?), shown in the right panel of Fig. 2, will be fitted by the
following expression

. 9CaGE | (& +psM*(?) m
1/~2 A . 2/ ~2
PP~ Lo ggmin (D) v - 62

with the parameters given ligg = 520 MeV,g% = 8.65, p3 = 0.25 andp, = 0.64. Notice that the
M(¢?) has the same power-law running as the one reported in Refs [34, 35, 36]
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Figure 3: Left panel Numerical evaluation of the ghost contributibla(qg) to the gluon propagator using
as input our best fit for thd = 4, N = 3 ghost dressing lattice datRight panel The removal of the one-

loop dressed ghost contribution from the (lattice) gluoopagator results in a diminished “swelling” in the
momentum region below 1 GéV

The only missing ingredient for the actual nonperturbative determinatidhy,cdind therefore
A, is the value ofas = g?/47. Instead of choosing a single value fmg, we will use the physi-
cally motivated range of values [0.20,0.29], which will furnish a more regméative picture of the
numerical impact of the ghost corrections on the gluon propagator.

The results obtained for the renormalizZRcnd T, after substituting into the corresponding
formulas our best fit foF, given by Eq. (4.2), are shown on the left panel of Fig. 3, together with
the combinatiorg?R — 4T, which appears on the rhs of Eq. (3.2). It is clear that the contribution
of the term & is rather negligible; in a way this is to be expected, given that this term vanishe
identically in perturbation theory (for all values @, and vanishes nonperturbatively at the origin.

Next, we use these results to constriigt given in Eq. (3.10), and finall\;, expressed by
Eqg. (3.9) (Fig. 3 right panel), using both valuesmf namelyas = 0.29 (blue dashed line) and
as = 0.20 (magenta dashed-dotted line).

We then see that the net effect of removing the ghost contribution is taesgppignificantly
the support of the gluon propagator in the region below 1 Gé¥igher values ofis increase the
impact of the ghost contributions, but only slightly, as can be seen on thepdgel of Fig. 3. As
we will see in the next section, this “deflating” of the gluon propagator in tterimediate region
of momenta, produced by the removal of the ghost contributions, hasdahing consequences
on the generation of a dynamical gluon mass.

Now we will repeat the same exercise using the lattice resulfo8 andN = 2. Let us start,
as in the previous case, by showing in Fig. 4 the lattice results [2] for the-thmeensional gluon
propagatoA(q) (left panel) and the ghost dressing functiéfq) (right panel). BothA(q) and
F(q) saturate in the deep IR region, and can therefore be fitted by means oftéRefipressions.

In the case of the gluon propagator, an accurate fit is giving by

1

A(d) = Aexp[—(q—do)?/w] + aTbarod

(4.3)

where the fitting parameters ake= 0.49,q9o=0.11,w=0.37,a=0.43,b=—0.85, andc = 1.143.
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Figure 4: Left panel Lattice results for th&U(2) gluon propagator id = 3. The continuous line represents
our best fit to the data obtained from Eq. (4 R)ght panel Lattice data for th&U(2) ghost dressing function
F(q) in 3 dimensions; the solid line corresponds to the best faémgly Eq. (4.4).

For the ghost dressing function, we use the following piecewise interpolator

1

- = f for o*>3, 4.4
a-+bg-+cc? g (4.4)

or <3 and F(q):l—l—e:j_qz,

F(a)

with fitting coefficientsa= 0.19,b=0.61,c= —0.14,d = 0.63 ande = 0.26 obtained by requiring
the function to be continuous gt = 3.

Next, substituting the results presented on the left panel of Fig. 5 into E@3.gnd (2.18),
and usingg = 1.208, we computél; andA,. On the right panel of Fig. 5, we compare the residual
propagatot), (blue dashed line) with the full propagait(q). Clearly, the effect in the tridimen-
sional case is even more pronounced: the ghost contribution completaipates over the rest,
determining to a large extent the overall shape and structure of the jatopag

: : : : 5 : : : : : : : T :
@  V=140and p=2.2
4 V=200"and p=2.2
@ V=240°and p=22 |

V=320’ and p=2.2
= —Aq)

—A(q)

25

R-4T

-50 4
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R, T,and q

-100 4

2

q

-125 4

-150 T T T T T T T T T T T
0 2 4 6 8 10 00 02 04 06 08 10 12 14 16 18 20

q [arbitrary units] q [arbitrary units]

Figure 5: Left panel Numerical evaluation of the ghost contributibhy to the gluon propagator using as
input our best fit for thel = 3, N = 2 ghost dressing lattice datRight panel The result of removing the
one-loop dressed ghost contribution from the gluon profmaigad = 3. The effect is much more dramatic
than in thed = 4 case, since all the structure is determined by the ghostilbotion, whileA, has the sole
(but crucial!) role of rendering the propagator finitegat O.
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Figure 6: The kernel 7.y of Eq. (5.2) constructed out of the lattice propagaiofleft panels) and the
ghost-less propagatdy; (right panels) for thel =4 N = 3 (top row), andd = 3 N = 2 (bottom row) cases.
The insets show in each case the shape of the propagatorousesldate the kernels.

5. The effects of the ghost loop in the mass equation

In the previous section we have studied how the subtraction of the ghasibcions affects
the profile of the gluon propagator. However, as we will see now, tleetsfigoes way beyond a
simple change in the overall propagator shape, modifying its salient quaititaracteristics, and
in particular the generation of a dynamical gluon mass.

To establish this, we use tlge— 0 limit of the equation describing the behavior of the dynam-
ical mass equation.e.

 d-1  4g’Ch [
) =~ T @ 1160 || aymP) ), (5.1)

with the kernel’zg.n given by

Han(y) = ye A y) [yAy)]'- (5.2)

Since the constant multiplying the integral is positive, the negative sign i &foq. (5.1)
tells us that the required physical constramt0) > 0 can be fulfilled if and only if the integral ker-
nel 4. (constructed solely out of the gluon propagator) displays a sufficieap dnd extended
negative region at intermediate momenta [32].

In the left panels of Fig. 6 we plot the kernelg;.y obtained from the lattice data for the cases
d=4,N = 3 (top row), andd = 3 N = 2 (bottom row); both display the characteristic negative
region that allows, at least in principle, the existence of solutions of Eb), fairnishing a positive
value form?(0).

10
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On the other hand, the situation changes substantially once the ghost leopigad, in which
case the kernelgZg.y must be constructed frofy (right panels of the same figure). Febe= 4 one
observes a shift towards highgs of the zero crossing, and a correspondingly suppressed negative
region; even though this is not sufficient to exclymbe sethe existence of a physical solution to the
mass equation (5.1), a thorough study of the approximate equation darif&?] reveals that no
physical solution may be found. Tlike= 3 situation is even more obvious: the highly suppressed
negative region present in this case cannot support solutions ofBtL?(0) > 0, thus leaving
as the only possibility the trivial? = 0 solution.

The main conclusion one can draw, therefore, is that the ghosts plagariemtal role in the
mechanism of dynamical gluon mass generation, since the failure to prapetge them results
in the inability of the theory to generate dynamically a mass for the gluon.

6. Conclusions

In this talk we have presented a study of the impact of the ghost sector ometadl form of
the gluon propagator in a pure Yang-Mills theory, for different sp@oe-dimensionsd = 3, 4)
andSU(N) gauge groupsN = 2,3).

The suppression of the gluon propagator induced by the removal ohtt&-tpops has far-
reaching consequences on the mechanism that endows gluons withraichlimaass, associated
with the observed IR-finiteness of the gluon propagator and the ghessidg function. Specif-
ically, using a recently derived integral equation controlling the dynamiagh@fimomentum-
dependent) gluon mass, we have demonstrated that when the reducegrgipagators are used
as inputs, the corresponding kernels are modified in such a way thatys@alsolutions may be
found, thus failing to generate a mass gap for the pure Yang-Mills the6tylf&stead, as has been
shown in [32], the use of the full gluon propagator in the same equatioerg&s a physically
acceptable gluon mass.
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