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On the infrared behaviour of QCD Green functions in the Maximally Abelian gauge Reinhard Alkofer

1. Motivation: The dual superconductor picture of confinement

A generally agreed upon explanation of confinement is still lacking. As a matter of fact, the
last confinement conference has hosted a panel discussion with the title “What don’t we know
about confinement?” [1]. Actually it turns out that there are many unanswered questions, and we
do not even know if we already know all questions. Within the many suggested different scenarios
the dual superconductor picture [2, 3] plays a special role. It has been with us for now almost forty
years due to its appealing physical nature of an explanation of confinement. Nevertheless, it proved
to be very hard to substantiate this scenario.

The dual superconductor picture exploits an analogy to the Meißner-Ochsenfeld effect in type-
II superconductors: The vacuum is assumed to contain condensed chromomagnetic monopoles1

which squeeze the chromoelectric field lines between two colour charges into a flux tube. These
vortex like structures can be identified best after an appropriate choice of gauge which singles out
the Cartan subalgebra of the gauge group’s Lie algebra. Several such partial gauge fixings have
been introduced [6]. The most widely used one is the maximally Abelian gauge (MAG): In this
gauge the components of the gauge field outside the Cartan subalgebra are minimized. As the
corresponding generators are off-diagonal matrices, the corresponding gluon field components are
called off-diagonal gluon fields in contrast to the diagonal ones, which correspond to the gluon
field in the Cartan subalgebra.

If the dual superconductor picture is correct the diagonal gluons must dominate the infrared
(IR) properties of a Yang-Mills theory in the confinement phase. This follows directly from the fact
that also the chromomagnetic monopoles live in the Cartan subalgebra [7]. A detailed understand-
ing of this so-called hypothesis of Abelian IR dominance is missing. In terms of MAG Yang-Mills
Green functions one possible realization is an IR finite behaviour for all three propagators of the
theory (diagonal and off-diagonal gluons as well as ghosts) such that the largest value is assumed
for the diagonal gluon propagator. Attributing to the inverse of the propagator at vanishing mo-
mentum a screening mass, m2 ∝ D−1(0), it is evident that in the deep IR the off-diagonal gluon
fields and the ghost decouple from the IR dynamics which is then dominated by the diagonal glu-
ons. Such a behaviour has been found in lattice Monte-Carlo studies (see, e.g., refs. [8, 9]), in the
refined Gribov-Zwanziger framework [10, 11], and in a so-called replica model of the MAG [12].
Another possible realization of Abelian IR dominance would be a diverging diagonal gluon prop-
agator. Such a behaviour turns out to be a potential solution of functional equations by employing
an IR scaling analysis of the MAG [13, 14]. This is reminiscent of the coexistence of a scaling
solution with an one-parameter family of decoupling solutions for functional equations in other
gauges. Such a multitude of solutions is also known from the Coulomb [15, 16] and the Landau
gauges [17, 18].

To fix the notation we will briefly summarize the concept of the MAG in the following section.
We will then discuss the scaling analysis as well as the coexistence of solutions. As these results
point towards a dominance of two-loop terms in the propagator Dyson-Schwinger equations, we
will report on our efforts to regularize sunset and squint diagrams such that they can be efficaciously
included in a self-consistent solution of Dyson-Schwinger equations.

1Chromomagnetic monopoles are gauge independent objects [4], nevertheless, their detection in lattice configura-
tions in general depends on the choice of gauge [5].
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2. Fundamentals of the maximally Abelian gauge

To define the MAG of an SU(N) Yang-Mills theory one needs to split the gauge field into
diagonal and off-diagonal components:

Aµ = T iAi
µ +T aBa

µ , (2.1)

where the T i are the N−1 generators of the Cartan subalgebra of SU(N) with [T i,T j] = 0. In the
physically interesting case of SU(3) the diagonal generators are T 3 and T 8. It is a widely employed
notation to use the indices i, j, . . . for diagonal generators only, and a,b, . . . for off-diagonal ones.
The indices r,s, . . . are used if both types, diagonal and off-diagonal, generators are present within
one relation. Furthermore, we use A for the diagonal and B for the off-diagonal gluon fields.

The herewith introduced splitting of gluon fields has direct consequences for the possible
interactions between the now different components of the gluon fields. Starting from the standard
commutation relation of the generators,

[T r,T s] = i f rstT t , (2.2)

one can directly see that only three off-diagonal or two off-diagonal and one diagonal fields can
interact. For the gauge group SU(2) there are more restrictions because there exist only two off-
diagonal generators and therefore the first possibility cannot be realized. The number of interaction
vertices in SU(N > 2) is then larger than in SU(2). In summary the pure Yang-Mills part has the
following types of interaction vertices: ABB, AABB and BBBB for SU(2) and additionally BBB and
ABBB for SU(N > 2).

The MAG is tuned to minimize the norm of the off-diagonal gluon fields in order to make the
effect of the diagonal part most pronounced. The extrema of the functional

1
2

∫
dxBa

µ(x)B
a
µ(x) (2.3)

are taken if Dab
µ Bb

µ = 0. Hereby the covariant derivative contains only the diagonal gluon field:

Dab
µ := δ

ab
∂µ +g f abiAi

µ . (2.4)

To employ functional methods the remaining U(1)N−1 symmetry of the action is conveniently fixed
to the Landau gauge, ∂µAi

µ = 0. Since the field Ai is Abelian the corresponding Faddeev-Popov
ghosts decouple and only the ghosts of the non-diagonal sector need to be taken into account.
Hereby, a quartic ghost self-interaction term in the action is required to maintain renormalisability
[19, 20]. The interactions stemming from the gauge fixing and the renormalisability requirement
are therefore Acc, AAcc, BBcc, cccc, Bcc, and ABcc. The two latter interaction vertices vanish for
SU(2). This finally leads to the complete action of Yang-Mills theory in MAG:

SMAG =
∫

dx
(1

4
F i

µνF i
µν +

1
4

Fa
µνFa

µν + c̄aDab
µ Dbc

µ cc−g f bcd c̄aDab
µ Bc

µcd−g2
ζ f abi f cdiBb

µBc
µ c̄acd+

+
1

2α
(Dab

µ Bb
µ)

2 +
α

8
g2 f abc f adec̄bccc̄dce− 1

2
g f abc(Dad

µ Bd
µ)c̄

bcc+

+
1
4

g2
α f abi f cdic̄ac̄bcccd +α

1
8

g2 f abc f adec̄bc̄ccdce +
1

2ξ
(∂µAi

µ)
2
)
, (2.5)
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where α is the gauge fixing parameter of the off-diagonal and ξ the one of the diagonal sector.
For an action containing three fields with eleven interaction vertices the derivation of its

Dyson-Schwinger equations (DSEs) or functional renormalisation group equations (FRGEs) is
very lengthy. To this end we employ the computer algebra package DoFun [21], the successor
of DoDSE [22]2. Two new features of DoFun as compared to DoDSE are the inclusion of FRGEs
and the derivation of the Feynman rules from a given action. In addition, the complete algebraic
form of the integrands can now be obtained so that computations directly with Mathematica are
possible. This was very helpful for the calculations of the IR leading diagrams of the MAG [14]
and the Gribov-Zwanziger action [24]. For the latter the application of DoFun helped to identify
a unique solution [25]: Only with the help of a computer algebra system one is able to show that
one of the two possible scaling solutions found in [24] does not yield a numerical solution for the
infrared exponents and can thus not be realized.

3. Infrared analysis

Functional methods provide equations for the fully dressed Green functions. Therefore these
equations are applicable to the IR regime of Yang-Mills theories and provide, at least in principle,
information about the IR behaviour of the theory [26, 27]. The gauge investigated best is the Lan-
dau gauge. Here two types of solutions have emerged from the analysis of functional equations:
The scaling solution [18, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34] and the one-parameter family of
decoupling solutions [17, 18, 32, 35, 36]. The former is characterized by an IR vanishing gluon
propagator, an IR enhanced ghost propagator and IR enhanced three- and four-gluon vertex func-
tions, whereas the latter possesses only IR finite dressing functions except for the gluon dressing
[32]. Both solutions are connected by the choice of a renormalisation condition which is a needed
input to solve the equations [17, 18]. The difference only affects the deep IR behaviour of the
propagators and vertex functions, while all solutions agree for intermediate momenta well below
the scale where perturbation becomes valid3. Up to now no calculation exists where these two
types of solutions generate a difference for physical quantities: In ref. [37] a confining Polyakov
loop potential was derived for both types, the confinement and the chiral transition temperatures
were found to coincide for scaling and decoupling [38], and there are hints that even meson masses
are independent of this choice [39]. This substantiates the interpretation of this additional type of
boundary condition as a non-perturbative gauge fixing parameter as in the Landau-B gauges of ref.
[40]. It is worthwhile to mention that this dichotomy also exists in Coulomb gauge [15, 16].

One major result to be presented here is that in the MAG one also obtains this two qualitatively
different types of solutions, and that there exists a similar connection between them. For the IR
analysis we make the ansatz that all dressing functions follow a power law in the deep IR, e.g., for a
propagator one uses the ansatz D(p) = c(p2)/p2 and cIR = d ·(p2)δ , where δ is the related infrared
exponent (IRE). As we are in a first step interested in the qualitative behaviour we want to determine
the different IREs. Therefore we exploit the very welcome possibility to shift the analysis to the

2Recently, the program CrasyDSE has become available [23]. It provides a framework for solving DSEs numeri-
cally and can directly be combined with DoFun.

3As perturbation theory is included in the functional equations all solutions, of course, agree on the multi-GeV
scale.
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level of the IREs only. This type of IR analysis uses the fact that all integrals are dominated by
low momenta if the external momenta are low. Thus, for the purpose of obtaining equations for the
IREs one can replace all propagators and vertices by the corresponding IR expressions [34, 41].
Then one counts all exponents of momenta and calculates by this procedure the IRE of any given
diagram.

The most elaborate method to derive the scaling relations of the IREs is the combined use of
Dyson-Schwinger and Functional Renormalisation Group equations. This was first done for the
Landau gauge in Refs. [42, 43]. This method can be generalized rather generically so that one can
reduce the infinitely many equations for the IREs to a rather small number of relations between the
IREs [13, 14].

Without loss of generality, for the MAG at ξ = 0 the propagators can be parametrized as

Di j
A (p2) = δ

i j cA(p2)

p2

(
gµν −

pµ pν

p2

)
, (3.1)

Dab
B (p2) = δ

ab cB(p2)

p2

(
gµν − (1−α)

pµ pν

p2

)
, (3.2)

Dab
c (p2) =−δ

ab cc(p2)

p2 . (3.3)

The following notation for the power laws of the dressing functions in the IR is used:

cA(p2)
p2→0
= dA · (p2)δA , cB(p2)

p2→0
= dB · (p2)δB , cc(p2)

p2→0
= dc · (p2)δc . (3.4)

As it is not possible to set the gauge fixing parameter of the off-diagonal part directly to zero the
longitudinal part of the off-diagonal propagator could in principle acquire an own dressing function.
However, a careful analysis reveals that no new IRE is generated. Based on this we assume in the
following infrared analysis only one common dressing function for both tensors.

The main result is that there exists only one consistent scaling relation. It reads [13]:

κMAG :=−δA = δB = δc ≥ 0. (3.5)

This result for the IREs especially implies that the diagonal gluons are IR enhanced and the
off-diagonal ones are IR suppressed. An upper bound for the parameter κMAG can be obtained
by demanding well-defined Fourier transformations of the propagators [31]: κMAG < 1. The IREs
for the vertex functions are such that these functions become more IR divergent when the number
of off-diagonal legs increases [13]. This applies to the MAG in SU(2) and SU(N > 2). It is
an interesting result in itself that no differences for the IREs have been found. The additional
interactions for larger gauge groups do neither spoil the SU(2) relations nor do they allow an
additional solution.

As understood by now the treatment of the bare two-point functions play a decisive role in
the respective Dyson-Schwinger equations. To allow for a scaling solution at least one of the
zero-momentum values of these Born terms has to be canceled by quantum effects. This is well
known for the scaling solution in Landau gauge: The bare ghost two-point function vanishes due
to the choice of a corresponding renormalisation condition [28, 18, 44]. To put no prejudice on
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the system we allow all Green functions to become IR divergent. However, it turns out that the
only consistent solution is the one with an IR enhanced diagonal gluon propagator. As a first
remark, we want to emphasize that we count this as strong evidence that also in the decoupling
solution the diagonal gluon propagator is the IR dominant quantity. Second, we point out that the
value of the diagonal two-point function at zero momentum can serve as an additional gauge fixing
parameter as the ghost two-point function does in the Landau-B gauges of Ref. [40]. To be precise,
an IR finite diagonal gluon propagator implies IR finite off-diagonal propagators. The smaller the
value in the renormalisation condition becomes the closer one is to the scaling solution.

In the MAG, the reason for this entanglement is the quartic interactions between diagonal
and off-diagonal fields. If the diagonal gluon propagator is IR finite, the corresponding tadpole
diagrams are proportional to the inverse of the IR value of the diagonal gluon propagator. Via this
mechanism IR finiteness of all two-point dressing functions is implied. Tuning the zero momentum
value of the diagonal gluon propagator to zero by an appropriate renormalisation condition switches
then to the scaling solution. Note that this is a different situation than in Landau (or Coulomb)
gauge: There is no quartic interaction between the ghost and the gluon in the Landau gauge, and
consequently an IR finite gluon propagator does not enforce an IR finite ghost propagator.

This IR analysis is, of course, not compelling evidence that the scaling solution exists (at least,
in the mathematical sense). A numerical calculation is, however, enormously more complicated
than in Landau gauge. This is implied by the nature of the MAG scaling solution: Two-loop
diagrams are the IR leading ones. Therefore, for a consistent numerical treatment a more elaborated
truncation scheme has to be developed. Continuity arguments then imply that even for the MAG
decoupling solution a straightforward one-loop truncation likely will miss the essential terms.

4. Determination of infrared exponents

Before a numerical solution of the MAG functional equations is attempted it is instructive to
calculate the parameter κMAG and therewith the IREs4. To do this one can restrict oneself to the IR
leading diagrams. Again an ambiguity is found because the role of the squint diagrams cannot be
determined by the IR analysis alone. In the first step we restricted ourselves to the sunset diagrams,
and the accordingly projected equations reduce in the IR to

d−1
A =−XA

AABB(p2,κMAG)dAd2
B−XA

AAcc(p2,κMAG)dAd2
c , (4.1)

d−1
B =−XB

AABB(p2,κMAG)d2
AdB, (4.2)

d−1
c =−Xc

AAcc(p2,κMAG)d2
Adc. (4.3)

The quantities X(p2,κMAG) denote the sunset integrals without the coefficients from the propagator
power laws. The superscript gives the corresponding Dyson-Schwinger equation, and the subscript
the bare vertex contained in the diagram. Using the invariant combinations I1 := d2

Ad2
B and I2 :=

d2
Ad2

c the three equations can be combined:

1 =
XA

AABB(p2,κMAG)

XB
AABB(p2,κMAG)

+
XA

AAcc(p2,κMAG)

Xc
AAcc(p2,κMAG)

. (4.4)

4In this calculation the use of the program DoFun [22, 21] was vital since the intermediate expressions appearing
there are many pages long.
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Figure 1: In the left panel the r.h.s. of eq. (4.4) is shown for several values of the gauge fixing parameter α .
Crossings with the horizontal line represent solutions for κMAG. In the right panel the two solution branches
are displayed as function of α .

With X(p2,κMAG) being known this equation yields the solution(s) for κMAG. For their computa-
tion the dressed four-point functions are needed as input. Their power law behaviour is known to
be IR constant, but the corresponding tensor structures are not available. We employ the reason-
able assumption that the tree-level structures reflect the general properties. (For these tree-level
expressions see, e.g., [14].) The last unspecified quantity is the gauge fixing parameter α of the
off-diagonal part . In the left panel of Fig. 1 the r.h.s. of eq. (4.4) is displayed for several values
of α . It turns out that there are solutions with 0.7 < κMAG < 0.8 for all reasonable values of α .
The right panel displays this directly: As a function of α there are two solution branches, with one
solution always close to κMAG ≈ 0.74. The independence of α is a surprisingly positive outcome,
and it even persists for rather high α .

We want to emphasize that obtaining a solution for κMAG is a highly non-trivial result: The
IR analysis depends only on the combinatorics of Feynman diagrams whereas the computation of
κMAG relies on all the little details such as Lorentz and colour structure.

5. Renormalisation of two-loop terms in Dyson-Schwinger equations

As described above the challenging task for a consistent truncation of the Dyson-Schwinger
equations of MAG Yang-Mills theory rests on the inclusion of two-loop terms. In this respect it
turns out that the renormalisation of the latter (which is already a considerable task in perturbation
theory) provides the first serious obstacle for a self-consistent solution. As it is well-known trunca-
tions do interfere with renormalisation. This leads to so-called "spurious divergences" as truncation
artefacts. These spurious UV divergences have been observed in many practical calculations, and
different techniques to identify or even avoid them have been proposed. For example, for the ghost-
gluon system in Landau gauge the Brown-Pennington-projector [47] can be applied to keep only
the renormalisable terms.

In self-consistent calculations on the one-loop level it has turned out that a quite successful
technique consists in applying a momentum subtraction scheme including only the finite and loga-
rithmically divergent self-energies. The renormalisation conditions are imposed onto the dressing
functions at the subtraction scale [48, 49]. Multiplicative renormalisability is then also one of the
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guiding principle for the construction of ansätze for the truncated Green functions [18]. These
techniques, however, have only been applied to one-loop truncations 5.

From perturbation theory we know that the structure of divergences in two-loop terms can
be much more complicated then in the one-loop case. UV divergences can now be overlapping
and/or nested. In the past many techniques have been developed to remove such UV divergences.
Among them are dimensional regularisation and the BPHZ-procedure using Taylor-subtraction [51,
52, 53, 54]. Dimensional regularisation belongs to the most spread regularisation procedures in
perturbative calculations since it preserves gauge invariance intrinsically. Unfortunately, in self-
consistent calculations this approach is numerically very demanding [55].

The strength of the BPHZ procedure is that it is a clear, well-known and tested method in
perturbation theory. It handles overlapping and nested divergences and can render any Feynman
diagram finite. In addition, it is free of analytical functions which are numerically expensive to
calculate. The general idea to include the BPHZ method into DSE calculations is as follows: Every
specific diagram appearing in a (truncated) DSE can be made finite using Zimmermann’s forest
formula, i.e., all UV divergences are removed, and the integral is then cut-off independent. The
renormalisation is then again, as in one-loop calculations, performed in a MOM-scheme.

To exemplify the method we consider a generic propagator DSE. All terms depend on the
external momentum p, on a renormalisation scale µ and a cut-off scale Λ. Given some renormali-
sation constants Zi one has:

D−1(p; µ) p2 = Z3(µ,Λ) p2 +Z1(µ,Λ)Π(p;Λ) , (5.1)

where D(p; µ) denotes the propagator dressing function and Π(p;Λ) the self-energy term.
Eq. (5.1) is finite by definition. The two factors Z3 and Z1, however, are totally unknown. They

have to be determined in the renormalisation process. The dependence of the self-energy terms on
the cut-off is removed by the forest formula which introduces a new scale into the calculation, the
subtraction point s: Z1(µ,Λ)Π(p;Λ)→ Z1(µ,s)Π̃(p;s) .

Imposing multiplicative renormalisability one obtains conditions for the dressing functions of
the truncated Green functions. One can then absorb the renormalisation constant Z1 in the ansatz
for the truncated Green function [48, 49, 18] and write Z1(µ,s)Π̃(p;s)→ Π̃(p; µ) .

Having obtained the properly BPHZ regularized DSE one can perform the renormalisation
procedure in a MOM scheme. In the last equation the renormalisation constant Z3 is the only
unknown quantity left. To remove it we subtract at a renormalisation scale p2 = µ2 and get

D−1(p; µ) = D−1(µ; µ)+ Π̃(p; µ)− Π̃(µ; µ) . (5.2)

The self-energy term can now be calculated and gives a definite cut-off independent result. The
term D−1(µ; µ) is defined by the renormalisation condition.

To test the procedure we will apply it to the simple DSE-like integral equation with scalar
propagators in four dimensions depicted in Fig.2. Its divergences are treated by applying a BPHZ
subtraction to its integrand. The regularized integrand is obtained by applying the forest formula
to the unregularised integrand: ĨΠ = ∑U ∈FΠ

∏ξ∈U (−td(ξ ))IΠ. The sum in this equation runs over

5Two-loop terms have been addressed in ref. [50], but in this study the two-loop terms have been approximated by
two one-loop integrals.
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= +
−1 −1

Figure 2: A simple self-consistent equation to test the algorithm described in the text.

all elements of the family of forests FΠ of the self-energy diagram Π, while ξ addresses the
subdiagrams appearing in the subsets U . The operator td(ξ ) is the Taylor subtraction operator
up to the order of the superficial degree of divergence of the subelement ξ , and is defined by
tn = ∑

n
i=0

pn

n!

[
∂ n

∂ pn

]
p2=0

. For the sunset-diagram we then obtain a finite and cut-off independent

integrand given by ĨΠ = (1− td(Π))IΠ.

Next, we have to determine the superficial degree of divergence which is given by two (quadrat-
ically divergent). We thus have to Taylor-subtract up to second order to get the regularized inte-
grand. We choose a particular momentum routing through the three propagators of the diagram
from which only the middle one is considered dressed. The upper and the lower propagator carry
a momentum of 1

2 p+q and 1
2 p+ k respectively, where all momenta flow from the left to the right

and where p is the external momentum. The propagator in the middle carries thus a momentum of
−k−q. For the 4-scalar vertex we use an ansatz leading then to the unregularised integral

Π(p,Λ) =
1
3!

∫
Λ

d4k
(2π)4

∫
Λ

d4q
(2π)4

[
1

[(1
2 p+ k)2 +η2]

· Z(−k−q)
[(k+q)2 +η2]

· 1
[(1

2 p+q)2 +η2]
(5.3)

×g2 1
Z1
· 1

Z(1
2 p+ k)

· 1
Z(1

2 p+q)︸ ︷︷ ︸
Γ4s

]
.

Next, we have to Taylor-subtract twice on the integrand of this equation. Hereby we only have to
take the p dependent part into account. Note that the contribution of the vertex, Γ4s, is relevant
and important for multiplicative renormalisability. For the numerical treatment we switch to hy-
perspherical coordinates and perform three angular integrations trivially. With the resulting quite
lengthy expression at hand we solve the equation depicted in Fig. 2 self-consistently. We checked
successfully that multiplicative renormalisability is achieved, see Fig. 3 for the comparison of two
solutions with different renormalisation scales.

After having successfully developed and tested this technique we employ it right now for the
gluon sunset diagram in the gluon propagator DSE in the Landau gauge and to the IR leading
sunsets in the MAG.

6. Summary

To shed light on the relation between different confinement mechanisms we have studied func-
tional equations in the MAG. Our results provide further evidence for Abelian IR dominance, es-
pecially for an IR dominant diagonal gluon propagator and IR suppressed off-diagonal degrees of
freedom. We have also found the dichotomy of a scaling versus decoupling solutions known from
other gauges, and discussed its origin in the MAG: The two types of solutions are related via the

9



P
o
S
(
Q
C
D
-
T
N
T
-
I
I
)
0
0
3

On the infrared behaviour of QCD Green functions in the Maximally Abelian gauge Reinhard Alkofer

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

p
2

0.995

1

1.005

Z
[p

,µ
]

µ2
 = 10

2

µ2
 = 10

3.5

µ2
 = 10

2

µ2
 = 10

3.5

ratio

Figure 3: Solution of the equation depicted in Fig. 2. Multiplicative renormalisability is evident as the two
obtained solutions differ only by the constant ratio. The renormalisation points are marked in red.

zero momentum value of the diagonal gluon two-point function which is subject to a renormalisa-
tion condition.

In order to elucidate this behaviour further we have started the process of numerically solving
truncated functional equations keeping the likely IR dominant two-loop terms. In a first step we
developed and tested a self-consistent two-loop renormalisation based on BPHZ regularisation.
Such a technique is required for solving the DSEs of the MAG which will hopefully shed more
light on the confinement mechanism.
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