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1. Introduction

Low-energy QCD can be characterized by four nonperturbaiivantities, of which the gluon
condensaté(gFﬁv)2> and the vacuum correlation length(that is, the distance at which the two-
point, gauge-invariant, correlation function of gluonield strengths exponentially falls off) are
related to confinement (so that the string tension corredipgrto the two static sources in the fun-
damental representationasl A%((gF3,)?) [1]), while the quark condensatgl), together with
the constituent quark masg characterizes spontaneous breaking of chiral symmetrg. giark
condensate is expressible in terms of gluonic degrees etidra, () = —d(T[A5,m])/dm,
where(I"[A, m]), the one-loop effective action, can be represented as a-lind integral over the
closed quark’s trajectoriefg, (1)} and their anticommuting counterpaftg, (1)} [2],

<F[Afnm]>=—2Nf/ =2 mzs/gzﬂ/-@w e ldT(aZi 2vutn)

X {<tr@exp [ig /O‘SdTTa (Aoz — L,U“L,U\,Fﬁv)] > — Nc} . (1.1)

In (1.1), Nt is the number of light-quark flavors,is the Schwinger proper time “needed” for the
quark to orbit its Euclidean trajector2, = 9,A% — 9, A% + g fA°ARAS is the Yang-Mills field-
strength tensor, anfi®'s are the generators of the group $IJ(in the fundamental representation,
obeying the commutation relatid®, T?] = i f2°°T¢, Notice that, since the quark condensation is
generally argued to occur due to the gauge fields, the fraeopére effective action in Eq. (1.1)
has been subtracted, so tig{0, m]) = 0. Furthermorep andA stand there for the periodigd =
J2u(9=2,(0)) @nd the antiperiodic [ = [y, (-—y,(0)) Poundary conditions, which are imposed,
respectively, on the trajectorieg (1) and their Grassmannian counterpagts(t) describingy-
matrices ordered along the trajectory. The trajectoriey dhe conditionfosdrz“(r) =0, meaning
that the center of each trajectory is the origin. That is,fdwor of volume associated with the
translation of a trajectory as a whole is divided out, andwbetor-functionz, (1) describes only
the shape of a closed trajectory, not its position in spadeallly, throughout this talk, we mean
by the quark mass the minimal value of the mass parametentering Eq. (1.1), which renders a
finite (YY) — see Ref. [3].

From the mathematical viewpoint, the effective action \tepresents an integral over closed
quark trajectories, with the minimal surfaces bounded bgditrajectories appearing as arguments
of the Wilson loops. That is,

(ril) = 28 [ Lo [ o, [ gyye (i ) .

s o
X {exp {—2/0 drw“wvm] (W[z,]) — NC}, (1.2)
with the Wilson loop given by
(W(z,]) = <tr9 exp(ig /OsdrTaA";‘,'zp>> (1.3)

andd/dsyy being the area derivative operator, which allows us to recthe spin term- g, g, F[j‘v
in Eq. (1.1). Equation (1.2) allows us to reduce the gaudd-fiependence of Eq. (1.1) to that of a
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Wilson loop. The Wilson loop is unambiguously defined by thaeimal-area surface bounded by
the contourz, (T).

World-line integrals of this type were first calculated bypiosing for the minimal surface a
specific parametrization, which in 3D corresponds to a irjatod of a variable length [4]. We
notice that similar parametrizations of minimal surfacparsed by straight-line strings (which
interconnect quarks or gluons in the one-loop diagramsddely used in the existing litera-
ture [5]. With the 4D parametrization of this kind, we werdeatn obtain, within the effective-
action formalism, a realistic lower bound for the constituguark massm= 460MeV for () ~
—(250MeV)3 (cf. Ref. [3]). For bookkeeping purposes, an explicit dation of this parametriza-
tion from the Nambu—Goto string action will be provided ircgen 1l of this talk.

It happens that for sufficiently larga’s, the mean size of the trajectory is smaller than the
vacuum correlation length, so that the nonperturbative Yang—Mills fields inside ttegetrtory
can be treated as constant, leading to the area-squarecbitatvef Wilson loop [6]. By using
the world-line representation (1.1), the area-squaredciamwbe shown (see Ref. [3] for details)
to yield the known heavy-quark condensate of QCD sum ruyl@g))neavy [ —((gFﬁV)2>/m, in
which casen becomes the constituent mass of a heavy quark. For lightekgjuthe mean size of
their Euclidean trajectories exceetlsso that one can expect the area-squared law to be morphed
into an area law. However, unlike static color sources fransing according to the fundamental
representation of SBL), which yield an area law with a constant string tensigiight quarks are
subject to a zigzag-type mation. This type of motion can dodyreconciled with the area law for
some effective scale-dependent string tengi¢s) (1 1/s, so as to obtain a nonvanishidgy) [3].
We notice that the fractalization of quark trajectoriesjchitiakes place upon the deviation from the
heavy-quark limit, has been studied in Ref. [7] in terms @f¥ilocity-dependent quark-antiquark
potentials.

It is then clear from the above discussion that the minimélevdor the mass parameter
and the mean size of the quark trajectory are not indeperidenteach other so that, in general,
(F'[A%,m]) is a functional of the minimal area. To this we have to add thatquark condensate
characterizes the QCD vacuum, and, therefore, should remeariant under the variations of
the minimal area. The final ingredient should come from eneanservation: the total energy
of a given excited quark-antiquark system should be equ#t@écsum of the quark masses and
the energy stored in the quark-antiquark string. Then, tiregse of our analysis is to study the
effective action as a functional of the minimal area for guantiquark excited systems, that is,
to evaluate the corresponding variatidm such that((y) remains constant for a given series of
guark-antiquark radial excitations. At this point, we negghysical input on how to quantify these
excitations. A natural choice will be to link these excita to the daughter Regge trajectories [8].
In this work, we adopt this point of view.

The talk is organized as follows. In the next Section, usis@m input the excitation energy
corresponding to the-th daughter Regge trajectory, we introduce an Ansatz ®sttaling factor
Z,, which describes an increase in the area of the excitaulysiworld sheet. In this way, we
consider only the radial excitation modes of the quarkepatik pair, which correspond to the
“breathing modes” of the string world sheet. Consideratdmangular excitations, which would
correspond to the disclinations of the world sheet, liesidatthe scope of our present analysis.
Then, we proceed to a selfconsistent determination of thiécal index” y, which defines that
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Ansatz. With this knowledge at hand, we calculate the ctuesit quark-mass correctiaym, as

a function of the radial-excitation quantum numipeidn Section Ill, using the larga-asymptotes
of the formulae obtained faf,, and dm,, we show that the primary contribution to the excitation
energy of the quark-antiquark pair stems from the constitgaark massy,, and not from the area
increase. We also obtain the lowest (thanis; 1) correction to the constituent quark madey,
which turns out to be about 26 MeV. Also in Section Ill, we messome concluding remarks and
an outlook.

2. A correction to the constituent quark mass

In this Section, we derive a general expression for the cborto the constituent quark mass,
coming from radial excitations of the quark-antiquarkrgirsweeping the surface of the Wilson
loop. To this end, we use for the eigenenergies of radiat&xons of the quark-antiquark pair the

Regge formula [8]:
E,= /1o (4n+3). (2.1)

Here,n is the quantum number of a radial excitation, and- (440 MeV)? stands for the string
tension in the fundamental representation of the group FU(3

The energy gafk, — Eg can be filled in by both deformations of the quark-antiquaring
and/or by increasing in the quark constituent masses. Shat i

En—Eo = 0 (Ln— Lo) +2(m, — mp), (2.2)

wherelL,’s are the eigenvalues of the length of the string. Noticéntgurns out to be an implicit
function of L,. We furthermore denote byRg the diameter of the semiclassical Euclidean trajec-
tory performed by the quark in theeth excited state of the system. The value Bf 2annot exceed
some R, max at which string-breaking occurs. The string elongatiogiven by the ratid_,/Lo,
where in the(n = 0) state we must haveR3 = L.

Since we will be calculating the constituent quark masses the units of,\/g, it is conve-
nient to introduce a dimensionless function

fo=my/V/T0. (2.3)

The sought correction to the constituent quark mass canta@el from the effective action (1.1)
if one uses there for the surface, entering the Wilson loog,world sheet of the excited quark-
antiquark string. To this end, let us start by defining thdisgdaactor Z, which describes an
enlargement of the world-sheet area over its value ir{ithe 0) state. We have

L \/TT/O

L —14+5, where 31;7/[\/4n+3—\/§—2-5fn], (2.4)

Lo 2Ry
andof, = f, — fo. Accordingly, the scaling factor, which describes an iaseeof the area of the
string world sheet in the-th excited state, reads

L) 2 ;
zn=<L—> (1452 (2.5)

0
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We further notice that the role of a global characteristithef quark trajectory can be played
either by its semiclassical radif, or by the proper time during which the trajectory is orbited
by the quark. Therefore, these two quantities are related¢h other through a scaling relation of
the form

s Y
Rn = Rnmax- (Smax> . (2.6)

Heresyax is the proper time necessary for the quark to orbit a trajgabthe maximum diameter
2R max equal to the string-breaking distance. The actual valudef‘tritical index” y will be
selfconsistently determined below. Thus, we get for thesming terns, in Eq. (2.5) the following
expression:
y
/o
Sn:Sn(s):i, where Enzﬂ[\MnJﬁ%—@—z-éfn . (2.7)
s 2Ro max
We proceed now to the discussion of parametrizations fominémal area of the string world
sheet and for the Wilson loop. For the minimal area of the oited-string world sheet we use the
following parametrization:

1 /s .
Sip= ﬁ/o dT|£uv)\pZ)\Zp|- (2.8)

It represents a four-dimensional generalizatiorsgf = %fosdﬂz x z| (cf. Ref. [4]), which is the
area-functional of a surface swept out by a rotating rod cdable length. We notice th&p
stems directly from the usual formula for the area (corradpw to the Nambu—Goto string action)
upon the parametrization of the surface by the vector-fana, ({1, {2) = {2-z,({1/0), where
{1 =0t and{; € [0,1]. Indeed, the usual formula for the area reads= [y °d{; foldQ v/detgap,
wheregap = dawy, - Wy, is the induced-metric tensor, and each of the inde@sdb takes the
values 1 and 2. Using the above parametrizationwip({1,{>), one can then readily prove the

following equality:
1 /s : :
Sp=o = E/o dt4\/ 222 — (z424)?.

Next, we follow Ref. [3] for what concerns the parametriaatof the Wilson loop (1.3), which can

be written in the form
Nc

(W(z.]) = 2011 (a)

Here,,, = sw)\pfosdrzA'Zp is the integrated surface element, whose absolute valuepigeid in

(G1Zw])? - Ka (G]Zpv]).- (2.9)

1/2
the sensethak,,,|=(2 ¥ 2 . Furthermorel (x) andK, (x) in Eg. (2.9) stand, respectively,
2 Z uv
u<v

for Gamma- and MacDonald functiong, > 1 is some parameter, ar@= G(s) stands for the
effective string tension of dynamical quarks. As it was shaw Ref. [3], Eq. (2.9) provides an
interpolation between the area law for large loops and tka-aquared law [6] for small loops.
This statement is illustrated by Figs. 1 and 2, which compla@ecombined parametrization (2.9),
for a = 1.9, with the area and the area-squared laws. For this illiGtrawe choose a circular
contour with the minimal are&, setN; = 3, and use the relation [G(IgF[;‘V)2> = 7—772/\% where
A =1.72GeV ! [9] for the case of QCD with dynamical quarks considered héfee chosen
value of a = 1.9 has been shown in Ref. [3] to provide the best analytic apmation of the
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Figure 1: m (099 -Ky(0S) ata =19, €5, e ZEN “g . The valuesS= 4 corresponds to the

radius of the contour equal to 0.51 fm.
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Figure2: —In [20,—,11|_(—a) (097 - KQ(JS)} ata =19, oS % &. The valueoS= 5.5 corresponds

to the radius of the contour equal to 0.6 fm. The gap betwedn- -] andgS, being~ In(gS) at large
distances, is irrelevant for the static potential.

area-squared law by the combined parametrization (2.9hall slistances. Figure 1 illustrates the
efficiency of this approximation.

We are now in a position to calculae[As;, my]), which is defined by Eq. (1.1) witimreplaced
by m,. For this purpose, we multiply the infinitesimal surfacened@tdrz, z, in %, above by the
scaling factoiZ,. Following Ref. [3], we arrive at the expression

®ds 2 a(0+1)(a+2) +eo 1(Zn, Fpv)
<r[A3,|rm]>:—2NfNC/0 S, e <|‘| ﬁ dBW) i (210)
M=) )

v

462
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where _
|(Zn T ) / 72 / Py B GE2ubit 320 Pzt =20 T hath) (2.11)

and.Zy = €,y2pBap-

The world-line integral (2.11) describes an infinite sum oédoop quark diagrams, each
having its own number of external lines of the auxiliary gadigld B,,,. Similarly to what was
done in Ref. [3], we retain in this diagrammatic expansioty dhe two leading terms — the one
corresponding to a free quark, which cancels out in Eq. (lat)l the one corresponding to a
diagram with two external lines of the gauge field. The lagtelds the following expression:

1

(47-[5)2 g(SBZ")Z"‘ﬁ((SBAV) ) (2.12)

I (Zl’h HV)

whereB = (uév Bflv) 1/2.

We start our analysis with the limit > 1, where one can approximate the fackyin
Eqg. (2.12) byS?. In the same large-limit, it is legitimate to disregard the quartic and the hégh
terms in the expansion (2.12), provided the amplitBde bounded from above as

1 1
s§ &
In the last equality, we have used the explicit parametdnaf2.7) of S, in terms ofs. Now, as
it was already mentioned in Introduction, the quark condensy () = —% (T[AS, my]), being
the quantity which characterizes the QCD vacuum, shouldaremindependent. For this to be
possible, the energy of string excitations should be Igrgksorbed by the constituent quark masses

my, and it will be demonstrated below that this is what indegapleas.
An expression for the quark condensate following from ER<.d)-(2.13) reads

mgs  s1/g2 7
(Qy) = - (a+1 a+2 / dse / " dB(B— (2.14)

a+3’
1 W)

where from now on we s@&; = 3. TheB-integration in this formula can be performed analytically
to yield

B < (213)

m nﬁs [An( )7a]
(Y) = Wh/ dse” oA (2.15)
where 2r-1\2
y_

while a somewhat complicated functicfr[nA, a] was introduced in Ref. [3]. An important property
of this function is that, foor 2 1 of interest, the raticf[A, a]/A, as afunction oA\, has a maximum
atA < 1, which sharpens and reaches a finite vatud (18), with the further increase af.

In order for the quark condensate to stay finite in the smalksrimit, one should be able to
representM in the form (cf. Refs. [10, 3])

252An(9)
flAn(s),a] oy
22An(s) /S’ (2.17)



Regge-like quark-antiquark excitations in the effectie¢ion formalism Dmitri Antonov

wheredy is some parameter of dimensionality (mass)ambiguously related to the phenomeno-
logical value of(ys). Moreover, this representation should remain valid up eowélues of the
proper time such that

e Smax > 1. (2.18)

Equation (2.17) can equivalently be written as

flA, a]
An

=X, Where x=2(0gps)%?. (2.19)

Owing to the above-mentioned form of the functiéfA, a]/A, a solution to Eq. (2.19), which
provides a physical decrease @fwith s, readsA, ~ x¢, wheree — 0 for a = 1 of interest, and
x < 1 (cf. Ref. [3]). Therefore, to a very good approximationgaran set in Eq. (2.16)\, ~ 1.
This allows us to obtain the actual value of the powen the initial Ansatz (2.6). To this end,
we notice that, due to the energy conservation in the quatikpaark system, a variation of the
semiclassical radiu&, of the trajectory leads to the variatiadm, = & dR, of the constituent
guark mass. Therefore, a difference between the valuesaftliusR, in the n-th and the 0-th

states PR, = R, — Ry, reads
V282
5Rn - SZV 10

where Eqg. (2.16) has been used at the final step. Now, in codé&gfs. (2.6) and (2.20) to have the
sames-dependencey = 1/3.

With this value ofy at hand, we can now calculate the correctdon, to the constituent quark
mass, which is produced by the radial excitations of the lgaatiquark string. To this end, we
first insert the value of = 1/3 into Eq. (2.20), that leads to the following relatiofdR,)max =
V2om,- Erﬁmaxs{ax Furthermore, fol, max in this formula we use its expression provided by

Eq. (2.7) withy = 1/3. That yields
/ 3 3 ?

Next, we use the approximatia¥m, Smax =~ 1/(dmn)min, Which reflects the fact that the trajectory
of a maximum size (and therefore requiring the maximum prdpee to be orbited) is reached
when the value of the constituent quark mass is minimal. ifféathat this approximation paral-
lels condition (2.18).] Substituting this approximatioria Eq. (2.21), we arrive at the following

equation:
2
3 \/§
" Ntz (Ofmin| - 222
o aRamax((SRn)max \/74 4 ( ”)mln] ( )

In order to solve this equation, we represent it entirelyeimms of(d f,)min. That can be done by
virtue of the relation(dmy)min = /710 (0 f) min, Which stems from Eq. (2.3). As a result, we obtain
the following quadratic equation:

3/4|_-\>0 5Rn
(0fn)min+b-(dfn) rln/f] <\/n+——\/7> =0, where b= (;;;EM )max. (2.23)

6mn — om

(2.20)

o
(ORn)max= /2 w
ORo,m

(6Mn)
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A solution to this equation yields the sought correctionh® ¢onstituent quark mass:

2
(5m”|)min:\/ﬁ.(5fn)min:@ |:J b2+4<\/n+§1—\/§> b] . (2.24)

The limits of this formula at large and smalt will be analyzed in the next Section.

3. Thelimiting cases of large and small excitations. Concluding remarks

Ignoring for a moment the effect of string-breaking, we g the obtaineddmn)min, EQ.
(2.24), vanishes in the limit &f — o, which corresponds to the quark-antiquark string of anitefin
length [cf. the definition ob in Eq. (2.23)]. In reality, however, the string-breakingepbmenon
imposes an upper limit on the possible valuebofindeed, the upper limit for botRy max and
(0Rn)max IS given bydsp /2, wheredsy, is the string-breaking distance. Lattice simulations and
analytic studies [11] suggest for this distance the valuesgf ~ 1.5fm. Using also the phe-
nomenological value off ~ (440MeV)?, we getb < 1.37. Therefore, we find from Eq. (2.24) the
realistic asymptotic behavior of the constituent quark sriase

(0My)min — V/1ton for n> 1. (3.1)

Comparison of this result with the initial Egs. (2.1) and2j2shows that, in the large-limit,
the leading contribution to the excitation enefgy of the quark-antiquark pair stems from the
constituent quark masses. Indeed, one can perform thefaegpansion of(d fn)min given by
Eqg. (2.24), which yieldgd fn)min = v/N[1—bn Y44 @ (n~Y/2)]. Then, inserting this expansion
into the formula forS,, Eq. (2.7), we obtain the leading largesehavior

ST AL LA} (3.2)

S=Smax Ro, max

which is subdominant compared to Eq. (3.1). Recalling E4)(2ve conclude that
Mh, min ~ Lﬁ-

Thus, the constituent quark mass appears as a primary iegteaf the excitation energy of the
quark-antiquark pair in the largelimit, whereas the elongation of the string plays only a seleoy
role. Still, we observe an increase &f with n, which, for sufficiently largen’'s, validates the
approximationz, ~ S used after Eq. (2.12).

Let us now evaluate a correction to the constituent quarksmakich is associated with the
(n=1) excitation. We note that this excitation is developed justap of the maximally-stretched
unexcited-string configuration. For this reason, one canfas such an evaluation the above-
adopted maximum values bf= 1.37 andRy max = 0.75fm, and also sex = snax. Extrapolating
then Eq. (3.2) downta= 1, we get5;, = Sl\k%ax = 1.45. The fact that this extrapolation mc= 1
of the initial parametrically large result of Eq. (3.2) leath S, ~ 1, signals the need to introduce
some correcting numerical factér It can be defined through the relatiohS)? = Z;, where
againZ; = (1+ S)2. This equation yields the value kf= 1.69. Next, according to Eq. (3.2), the
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multiplication ofS; by a factor ofk is equivalent to the multiplication d¥ by such a factor. This
observation yields the corrected valuelof 2.32. Inserting it into Eq. (2.24), we get the sought
estimate for thén = 1) correction to the constituent quark mass:

This value looks like a reasonable additive correction tol#ading resultm = 460 MeV, quoted
in the Introduction.

In conclusion, we notice that excitations of the quarkeurk pairs can in general lead to
an increase of the constituent quark mass and to an elongattithe quark-antiquark string. In
this talk, we have shown that, for large radial excitationghe constituent quark mass grows
as 0(n%/?), while the length of the string grows only @n/4). This result clearly means that
the excitation energy of a quark-antiquark pair stems mdstin the increase of the constituent
guark masses and not from string elongation. Thus, at leiftsinvthe effective-action formalism,
excited quark-antiquark bound states tend to have esbgitia same size, irrespective of their
radial excitations. This is true even if we had energy depeod for bound states different from
that of Eqg. (2.1), because that will be just another presongor the area scaling and hence, the
final qualitative result would not depend on actual detail$iow this scaling is obtained, but just
from the fact that for a given scaling up of the area, the massldvgo like the square of the
string elongation, whereas the string energy would dinmvadly go withoL,,. Finally, such size
stiffness will preclude decay channels to become large stithg elongations, because they chiefly
measure the size of the parent hadron and that does not chppgeciably. We also emphasize
that the adopted calculational method does not rely on asgifépclass of the string deformations
(such as, e.g., the normal modes). Finally, it looks nattoapply the present approach to the
description of an interesting lattice result [12] that, fprarks in the fundamental representation,
the deconfinement and the chiral-symmetry-restoratiorpézatures are nearly the same, whereas
for quarks in the adjoint representation, the chiral-syrmyagestoration temperature exceeds the
deconfinement one by a factor of 8. Work in this direction iseutly in progress.
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