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Considered as a function of the quark mases, two-flavor QCD depends on three parameters, in-

cluding one that is CP violating. As the masses vary to unphysical values, regions of both first- and

second-order phase transitions are expected. For non-degenerate quarks, non-perturbative effects

leave individual quark mass ratios with a renormalization scheme dependence. This complicates

matching lattice results with perturbative schemes and clarifies the tautology with attacking the

strong CP problem via a vanishing up quark mass.
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Figure 1: Because of the anomaly, spin-flip scattering of massless up and down quarks does not vanish.

1. Introduction

At the previous meeting in this series [1] I discussed the fascinating physics arising from the
interplay of the three ways chiral symmetry is broken in QCD.These are (1) the spontaneous break-
ing responsible for the lightness of pions, (2) the breakingof the singlet axialU(1) symmetry by
the anomaly, and (3) the explicit breaking of chiral symmetry by the quark masses. For simplicity,
that discussion was restricted to degenerate quarks. Here Imove on to some interesting generaliza-
tions that occur when the quarks are no longer degenerate. Since the number of parameters grows
with the number of flavors, I concentrate here on the two flavortheory and consider what happens
when the quark masses are varied from their physical values.As a function of the these parameters
a rather intricate phase diagram emerges, displaying both first and second order phase transitions.
Much of this talk is adapted from the more detailed treatments in Refs. [2] and [3].

To begin, let me remind you of the expected behavior of two flavor QCD in the limit of mass-
less quarks. Because of confinement and dimensional transmutation, this theory should possess
several massive states, including the proton, neutron, etaprime, and glueballs. In addition, sponta-
neous chiral symmetry breaking should give rise to three massless pions as Goldstone bosons. In
this picture both the eta prime and the neutral pion are composites of distinct mixtures ofuu and
dd quarks. The eta prime, defined as the lightest isosinglet pseudoscalar, also has a contribution
from purely gluonic constituents. The latter are related tothe anomaly and the fact that theπ0 and
theη ′ are not degenerate.

In this theory, consider a hypothetical quark-quark scattering experiment, as sketched in Fig. 1.
This represents spin flip scattering of an up quark against a down quark. Exchanges of both the
neutral pion and the eta prime can contribute to this process. Because these particles are non-
degenerate, their contributions cannot cancel. Therefore, the spin-flip four point function does not
vanish. Were it not for the anomaly, the two exchanges could cancel.

Now turn on a small down quark mass. Take the diagram in Fig. 1 and close the down quark
lines into a loop with a mass insertion as shown in Fig. 2. Thisprovides a mechanism for mixing
the left and right handed up quark,i.e. the up quark develops an effective mass. Starting with a
vanishing up quark mass, the mass rationmu

md
becomes renormalized by non-perturbative effects.

Except in the isospin limit, quark mass ratios will not be renormalization group invariant. Since
lattice gauge simulations include all non-perturbative physics, this effect is automatically present
in such calculations.

This trivial observation is rather old and is often discussed in terms of instanton physics [4, 5, 6,
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Figure 2: A small down quark mass induces an additive shift in the up quark mass through pseudoscalar
meson exchange.

7]. Note that only the last of these references appears in a refereed journal, more than twenty years
after the first. This is a consequence of an intense consternation from the perturbative community
based on the lore that spin flip processes are suppressed in the massless limit.

This renormalization of quark mass ratios is an effect not seen in conventional perturbative
schemes, such asMS. The consequences have therefore been quite controversial. Mass renormal-
ization is not flavor blind, and a mass independent renormalization scheme is problematic. The
MSscheme is not a complete regulator since it ignores such non-perturbative effects. The crucial
conclusion here is that when the up and down quarks are not degenerate, then attempts to match
masses obtained from lattice calculations with perturbative results are inherently meaningless. I
am not criticizingMS as a perturbative regulator; rather, the lattice and perturbative calculations
involve different physics and should not be compared.

2. Specific critiques

The above observations raise frequent objections. At the simplest level, one might try to claim
that the concept ofm= 0 corresponds to the bare mass rather than some running quantity. The
problem with this is that the bare quark masses always vanish. The renormalization group tells us
that as one approaches the continuum limit

m0 ∝ gγ0/β0
0 (1+O(g2

o)) (2.1)

with the known coefficients
β0 =

11−2nf /3
(4π)2

γ0 =
8

(4π)2 .
(2.2)

The asymptotic freedom result that the bare couplingg0 goes to zero in the continuum limit then
immediately impliesm0 → 0. To talk about quark masses as non-vanishing quantities, it is neces-
sary to define them using some finite scale.

A more sophisticated complaint is that one has the option to use a mass independent regular-
ization scheme. In the renormalization group equation for the mass

a
dmi

da
= γ(g)mi (2.3)

only the leading perturbative term inγ(g) is scheme independent. If one requires thatγ(g) is
independent of any of the quark masses, then one automatically obtains

mi

mj
= constant. (2.4)
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Indeed, such a regularization is technically allowed, but it hides the above off-diagonalmd effect
on mu. There is no guarantee that quark mass ratios are independent of scheme, and the lattice,
as usually implemented, is itself not a mass independent scheme. This makes it quite obscure
how to do a matching with lattice results. To be more specific,when mu is different frommd,
isospin is broken explicitly and the charged pion mass differs from that of its neutral partner. A
straightforward effective Lagrangian analysis relates the ratio of pion masses to the quark masses
with the result

m2
π0

m2
π±

= 1−O

(

(mu−md)
2

(mu+md)Λqcd

)

(2.5)

As an immediate consequence, if one holds the quark masses fixed, then the physical hadronic mass
ratios will be scale dependent. Conversely, if one holds thehadron mass ratios fixed, as usually
done in lattice simulations, then the quark mass ratios mustbe scale dependent.

At this point advocates of the matching process frequently suggest doing the comparison at
some high energy, say 100 GeV, where instantons are exponentially suppressed and irrelevant. This
does not resolve the issue for several reasons. First the lattice simulations are not done at such small
scales and the instanton effects must be included. Furthermore, the asymptotic freedom result

1/g2 ∼ log(µ)∼ log(1/a) (2.6)

shows that the exponential suppression in 1/g2 is actually only a power law suppression in the
scale. One can easily estimate the size of these effects fromthe renormalization group, which tells
us that

mη ′ ∝
1
a

e−1/(2β0g2)g−β1/β2
0 6→ 0. (2.7)

The uncertainty in the up quark mass is proportional to this mass as well as being proportional to
md −mu. Thus the expected order of the up quark mass shift at a scale of a few GeV is

∆mu(µ)∼
(mη′−mπ0) (md−mu)

Λqcd
= O(1 MeV). (2.8)

This is a number comparable in size to the quoted lattice masses [8, 9, 10].

In this context it is important to note that the exponent in Eq. (2.7), 8π2

(11−2nf /3)g2 , is consider-

ably smaller than the classical instanton action8π2

g2 . This emphasizes that the relevant topological
excitations need to be considered above the quantum, not theclassical vacuum. Calculations based
on the classical instanton solution strongly underestimate these effects. The renormalization group
gives the correct suppression.

3. General masses in two flavor QCD

I now arrive at the main topic of this talk, the most general mass parameters for two flavor
QCD. A mass term should be a dimension-three Hermitean quadratic form in the quark fields. As
well it should be Lorentz invariant and electrically neutral. Based on these criteria, the most general
expression is

m1 ψψ +m2 ψτ3ψ + im3 ψγ5ψ + im4 ψτ3γ5ψ . (3.1)
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Conventionally one might refer to these four terms withm1 representing the average quark mass,m2

the up-down mass difference, andm3 a possible CP violating term related to the Theta parameter.
Finally m4 represents what is sometimes called a “twisted mass.”

These four mass parameters are not independent. Consider a flavored chiral rotation of form
ψ → eiθ τ3γ5ψ . Under this the various quadratic forms transform as

ψψ → cos(θ) ψψ + sin(θ) iψγ5τ3ψ
ψτ3ψ → cos(θ) ψτ3ψ + sin(θ) iψγ5ψ
iψγ5ψ → cos(θ) iψγ5ψ − sin(θ) ψτ3ψ
iψτ3γ5ψ → cos(θ) iψτ3γ5ψ − sin(θ) ψψ

(3.2)

This rotation mixesm1 ↔ m4 andm2 ↔ m3. What is essentially a change of variables allows one
to select any one of themi to vanish and a second to be positive.

The conventional choice is to takem4 = 0 and then usem1 > 0 for the average quark mass
andm2 for the quark mass difference. The CP odd term proportional to m3 is related to the Theta
parameter and will be discussed further momentarily.

An alternative choice is to selectm1 = 0 and usem4 > 0 as the average quark mass. Then
the quark mass difference moves to them3 term andm2 encodes the CP violation. This is the
choice used for “twisted mass” lattice simulations. The primary motivation lies with certain lattice
artifacts which depend on the twist. These are minimized with this choice [11, 12].

It is important to recognize that the choice between these options is purely a convention and
the continuum physics is equivalent between them. For the following discussion I adopt the first
and more familiar approach withm4 = 0.

A crucial aspect of this theory is how the anomaly prevents rotations betweenm1ψψ and
im3ψγ5ψ . Such would follow from a hypothetical variable change

ψ → eiθ γ5ψ . (3.3)

This however is not a valid symmetry [13, 14, 15, 16] because it changes the fermion measure

dψ → eiθTrγ5dψ . (3.4)

The issue, as nicely elucidated by Fujikawa [17], is that in any regulated theoryγ5 cannot remain
traceless. For example, consider a cutoffΛ and regulate the theory suppressing large eigenvalues
of the Dirac operatorD. The index theorem gives the result

Trγ5eD2/Λ2
= ν (3.5)

whereν is the winding number of the gauge field configuration under consideration. Thus the
above rotation will introduce a factor of exp(iθν) into the path integral and thereby change the
value of the QCD Theta parameter. Actually, the above rotation allows one to move any Theta
parameter from the gauge action into the mass terms. For the following, assume that this has been
done. After this, all three mass parameters are both relevant and independent.
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4. The strong CP problem

Experimentally the strong interactions preserve CP symmetry to high accuracy. This would
not be the case ifm3 were substantial. Indeed, only the two parametersm1 andm2 seem to be
needed. The strong CP problem asks why ism3 so small?

This issue arises because of the possible unification of interactions. The weak interactions are
known to violate CP; so, when the interactions separate as one goes down in energy, why is it that
some residue of the CP violation doesn’t remain in a non-vanishingm3.

One trivial “solution” is that there is no unification. One could consider the strong interactions
on their own and impose CP symmetry from the outset. In this picture the weak interactions only
come in as a small perturbation and do not directly affect theTheta angle.

Another approach couples a new dynamical field directly toiψγ5ψ . In this casem3 becomes
a dynamical quantity and can relax naturally to zero. This requires a new particle corresponding to
this field, although its coupling is not determined and couldbe small. This is the “axion” approach.

It is sometimes proposed that the strong CP problem could be solved by having the up quark
mass vanish. However the above formalism should clarify whythis is not a sensible approach. In
terms of the three mass variables, one could define the up quark mass as

mu ≡ m1+m2+ im3. (4.1)

The problem is thatm1, m2, andm3 are independent parameters with different symmetry proper-
ties. The parameterm1 represents an isosinglet mass contribution whilem2 multiplies an isovector
quantity. It is only the parameterm3 which is CP violating. And the discussion in the introduction
showed thatm1+m2 = 0 is a scale and scheme dependent statement. So while it may betrue that
settingmu from Eq. (4.1) to zero would implym3 = 0, this could be regarded as “not even wrong.”

The basic issue with forcing the up quark mass to zero is that it involves going to polar coordi-
nates with an unnatural origin. In a formal sense one can connect the three mass parameters above
with the more conventional set{mu,md,Θ} via the relations

mu = m1+m2+ im3,

md = m1−m2+ im3,

eiΘ =
m2

1−m2
2−m2

3+2im1m3√
m4

1+m4
2+m4

3+2m2
1m2

3+2m2
2m2

3−2m2
1m2

2

.

(4.2)

The mixing discussed in the introduction shows that this choice of parameters, includingΘ, is in
general scale and scheme dependent.

5. The phase diagram

Taking the mass parameters away from their physical values uncovers a rather rich phase
diagram. This follows from a simple linear sigma model analysis. For this, consider the composite
scalar fields

σ ∝ ψψ , ~π ∝ iψγ5~τψ , η ∝ iψγ5ψ , ~a0 ∝ ψ~τψ . (5.1)
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Figure 3: The parametersm2 andm3 warp the Mexican hat downward in a direction determined by their
relative size.

These provide a model for the two flavor chiral symmetry via aneffective potential

V = λ (σ2+~π2−v2)2−m1σ −m2a03−m3η
+α(η2+~a2

0)−β (ησ +~a0 ·~π)2.
(5.2)

The first term, proportional toλ , is the conventional “wine bottle” or “Mexican hat” frequently
used to describe spontaneous symmetry breaking. The parametersα andβ can be thought of as
“low energy constants” that couple(σ ,~π) with (η ,~a0). These combinations rotate similarly under
flavored chiral rotations; so, these constants preserve thechiral symmetry of the massless theory.
Here theα term serves to give a mass to theη and~a0. The square appearing in theβ term is inserted
so the basic potential still preserves parity. The sign of this term is selected so thatmη < m~a0.

The three mass terms break the chiral symmetry in slightly different ways. Them1 term serves
to tilt this potential and generally selects a unique minimum. The effects of them2 andm3 terms
are more subtle since they do not directly couple to theπ or σ fields. Withm2 (m3) present the field
a03 (η) will be driven to have an expectation value. This will feed back through theβ term to give
a quadratic warping of the Mexican hat. This warping will be downward in theπ0 (σ ) direction.
With both terms present, this warping will be in some intermediate direction, as shown in Fig. 3.
Whenm1 is absent, this warping leaves two possible minima into which the vacuum can settle.
Turning on a smallm1, the resulting tilt will select one or the other as the true vacuum. This results
in a generic first order transition occuring whenm1 changes sign.

A special case occurs whenm3 = 0 andm2 6= 0. Then the warping is downward in theπ0

direction andm1 does not distinguish between the two minima, as sketched in Fig. 4. In this
situation there will be some intermediate value ofm1 where a single minimum at large tilt splits
into two minima with an expectation value for the neutral pion field. This is sketched in Fig. 5.
At this critical point one expects an Ising-like behavior. Here the square of the neutral pion mass
passes through zero and gives rise to a pion condensate. As the pion is CP odd, this represents a
spontaneous breaking of CP symmetry.

Note that this Ising-like transition atm3 = 0, |m1| < |m2| occurs with bothmu andmd non-
vanishing, although they are of opposite sign. This represents a situation where there is a diverging
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Figure 4: At m3 = 0 the warping is orthogonal to the sigma direction and a smallm1 term does not select a
unique minimum.

m  <0 m  >01

m  =01

1

Figure 5: As m1 varies atm3 = 0 there should be a point where a single minimum splits into two.

correlation length and corresponding long distance physics occuring without the presence of any
small eigenvalues for the Dirac operator.

Conversely, the overall picture indicates no special behavior at mu = 0 whenmd 6= 0. In this
case there is no important long distance physics despite thepossibility of small Dirac eigenvalues.
These facts are the seed of many controversies, including the connection between the strong CP
problem andmu = 0 [7], the issue of whether topological susceptibility is a physical observable
[18], and the failure of the rooting process for staggered fermions [19].

The final phase diagram as a function of the three mass parameters appears in Fig. 6. There
are two intersecting first order surfaces, one at(m1 = 0, m3 6= 0) and the second contained in the
region(m1 < m2, m3 = 0). The second surface ends along a critical line. In conventional language,
these transitions all occur when the strong CP angle takes the valueπ, but it is important to note
that there is a finite region withΘ = π without any phase structure,i.e. whenm2 is only slightly
larger thanm1. Here the quark masses differ in sign, but one is much smallerthan the other in
magnitude.
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m
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m  = 0u

Figure 6: The full phase diagram as a function of the three mass parameters.

6. Summary

Non-perturbative effects can result in a mixing between themasses for different quark species.
Because this effect is absent in perturbation theory, it is inappropriate to match lattice and pertur-
bative calculations of quark masses, particularly when they are non-degenerate.

The two flavor theory depends on three possible mass parameters. One of these is explicitly CP
violating; its apparent absence is the strong CP problem. Asthese three parameters are varied from
their physical values, a rather rich phase diagram is encountered, displaying both first and second
order transitions. In this diagram there is no structure atmu = 0 whenmd 6= 0. This is closely
connected with the result thatmu = 0 is not an appropriate solution to the strong CP problem.
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