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1. The Gribov no-pole condition

In the seminal work [1] Gribov noticed that neither the (covariant) Landau nor the (noncovari-
ant) Coulomb gauge are suitable to select a single gauge-field representant on each orbit of gauge-
equivalent fields. Later on, it was recognized that this so-called Gribov ambiguity is a generic
problem for non-Abelian gauge fixing [2].

The main observation by Gribov is that, upon considering an infinitesimal gauge transforma-
tion parameterized via Aa′

µ =Aa
µ +Dab

µ ωb, one observes that the Landau-gauge condition, ∂µAµ = 0,
is also fulfilled by the equivalent field, i.e. A′

µ , ∂µA′
µ = 0, if the Landau-gauge Faddeev-Popov op-

erator

M ab(x,y) = −δ (x− y)∂µDab
µ = δ (x− y)

(
−∂ 2

µδ ab + fabc∂µAc
µ

)
(1.1)

has zero modes, since we must have, at first order in ω ,

0 = ∂µA′
µ = ∂µAµ −M ω =−M ω . (1.2)

If one removes the possibility of such zero modes by modifying the path integral measure, at least
infinitesimally-related gauge copies will be ignored in any computation of expectation values. Let
us also notice here that the existence of zero modes of the Faddeev-Popov operator invalidates,
strictly speaking, the mathematical correctness of the textbook Faddeev-Popov quantization. In-
deed, the latter procedure is based on the appropriate functional generalization of the identity{∣∣∣∣∂ f

∂x

∣∣∣∣}
x=x∗, f (x∗)=y

∫
dx δ [ f (x)− y] g(x) = {g(x)}x=x∗, f (x∗)=y , (1.3)

where ∂ f
∂x

∣∣∣
x=x∗

plays the role of the Faddeev-Popov determinant. However, the above expression

is only valid if f (x) = y has a single solution at x = x∗, thereby also assuming that ∂ f
∂x

∣∣∣
x=x∗

̸= 0.
Additionally, assuming a positive Faddeev-Popov determinant also allows to drop the absolute
value operation, something which is usually done. If f (x) = 0 would have multiple solutions, let’s
say at x = x∗i , one should use

∫
dxδ [ f (x)− y]g(x) = ∑

i

{
g(x)

∣∣∣∣∂ f
∂x

∣∣∣∣−1
}

x=x∗i

, (1.4)

but, to our knowledge, the functional generalization of this expression cannot be brought into a
workable action for a gauge fixed SU(N) Yang-Mills theory, mainly because (1) a single Faddeev-
Popov determinant can be lifted up into the action by the introduction of ghost fields, but a sum of
determinants does not allow for this trick, and (2) the sign of the determinant should be taken into
due account.

So, if one desires to stay as close as possible to the conventional Faddeev-Popov procedure,
one better restricts the gauge-field region, over which the path integral runs, to the following set of
configurations:

Ω ≡
{

Aa
µ(x) : ∂µAa

µ(x) = 0 , M ab(x,y)> 0
}
. (1.5)
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This Gribov region, with the (first) Gribov horizon being its boundary ∂Ω, exists out of the relative
minima under gauge transformations of the functional E [A] =

∫
ddxA2

µ . Gribov considered the
ghost propagator written as

G (k2) =
1
k2

1
1−σ(k2)

. (1.6)

By imposing

σ(k2)< 1 for k2 > 0 (1.7)

he required [1] that the ghost dressing function k2G (k2) cannot have a pole at finite nonzero mo-
menta. Since the ghost propagator is actually given by

G (k2) =
δ ab

N2 −1

⟨
k
∣∣∣(M−1)ab

∣∣∣ k
⟩
, (1.8)

it is clear that the inequality (1.7), known as the no-pole condition, should be equivalent to the
restriction of the functional integration to the Gribov region Ω.

In this proceeding, based on the work [3], we shall examine, as general as possible, the con-
sequences of the no-pole condition; in particular, we shall focus on the specific case that the num-
ber of space-time dimensions is 2. Why our interest in this case? At present day, there is little
doubt that lattice simulations of the Landau gauge prefer the so-called decoupling/massive solu-
tion, in which case the gluon propagator attains a finite nonzero value at zero momentum, while
the ghost propagator strives to a 1/p2 singularity at low momenta; this at least in 3 or 4 space-
time dimensions [4, 5, 6, 7, 8, 9, 10]. This was also discussed from the analytical viewpoint in
e.g. [11, 12, 13, 14, 15, 16]. These results replaced the for a while rather popular scaling scenario,
in which the gluon propagator vanishes at zero momentum, while the ghost propagator becomes
more singular than 1/p2 [16, 17]. The physical relevance of this propagator research program lies
in their use in phenomenological applications, next to trying to gain a better understanding of con-
finement, or chiral symmetry breaking, in the Landau gauge. We refer to several other contributions
in this proceedings to illustrate this.

In contrast with the d = 3,4 cases, the scaling scenario keeps being supported by the d = 2
lattice data, as is visible from e.g. [4, 18, 19]. A careful analysis based on rigorously derived
bounds allowed to show that D(0) = 0 persists in the infinite-volume limit [6] (see also [19]).
Here, we present a summary of the detailed analysis presented in [3]. The aim is to unravel a
theoretical reason behind the impossibility to find a gluon propagator with D(0) > 0 in d = 2.
We shall see that the problem with a massive kind of gluon propagator always reveals itself under
the form of a logarithmic infrared singularity in the ghost self-energy, viz. the no-pole function
σ(k2). Evidently, such singularity should be excluded, as it clearly violates the Gribov condition1

(1.7). For completeness, we also performed a similar analysis in d = 3,4, in which case we are not
forced to conclude that D(0) = 0, meaning that a decoupling/massive gluon is perfectly possible
in d = 3,4, and not necessarily in contradiction with the requirement (1.7).

1In any case, we do not expect to find a singular term in the quantum correction σ(k2).
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2. Scrutinizing the d = 2 ghost propagator

2.1 Infrared singularity in and bounds on σ(k2) using one-loop perturbation theory

As a warming up exercise, let us first consider the one-loop-corrected ghost propagator in the
Landau gauge, which reads

G (k2) =
1
k2 − δ ab

N2 −1
1
k4 g2 f adc f cdb

∫ ddq
(2π)d (k−q)µ kν D(q2)Pµν(q)

1
(k−q)2 , (2.1)

with δ ab D(q2)Pµν(q) the Landau-gauge gluon propagator and Pµν(q) =
(
δµν −qµqν/q2

)
the

transversal projector. For the moment, we also assume a tree-level ghost-gluon vertex ig f adckν .
The expression (2.1) can be simplified and rewritten into the following form

G (k2) =
1
k2

1
1−σ(k2)

, (2.2)

where σ(k2) is the momentum-dependent function given by

σ(k2) = g2N
kµkν

k2

∫ ddq
(2π)d

1
(k−q)2 D(q2)Pµν(q) . (2.3)

This corresponds to the usual resummation of an infinite set of diagrams into the 1PI ghost self-
energy. Notice that this resummation only makes sense when σ(k2) < 1, i.e. when the no-pole
condition (1.7) is satisfied.

We can then manipulate2 σ(k2) by two consecutive partial integrations

σ(k2)

g2N
=

1
8π

[∫ k2

0

dx
k2 D(x) +

∫ ∞

k2

dx
x

D(x)

]

=
1

8π

[
D̂(k2)− D̂(0)

k2 + ln(x) D(x)
∣∣∣∞
k2
−

∫ ∞

k2
dx ln(x) D ′(x)

]

=
1

8π

[
D̂(k2)− D̂(0)

k2 − ln
(
k2) D(k2) −

∫ ∞

k2
dx ln(x) D ′(x)

]
=

1
8π

{
D̂(k2)− D̂(0)

k2 − ln
(
k2) D(k2) − [x ln(x) − x ] D ′(x)

∣∣∣∞
k2

+
∫ ∞

k2
dx [x ln(x) − x ] D ′′(x)

}

=
1

8π

{
D̂(k2)− D̂(0)

k2 − ln
(
k2) D(k2) +

[
k2 ln

(
k2) − k2 ] D ′(k2)

+
∫ ∞

k2
dx [x ln(x) − x ] D ′′(x)

}
,

2We refer to [3] for an alternative derivation.
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where we assumed3 for simplicity that D(x) ∼ 1/x at large x and that also D ′(x) goes to zero
sufficiently fast at large momenta, e.g. as 1/x2. We have denoted with D̂(k2) a primitive of D(k2).
In the limit k2 → 0 we then obtain

σ(0)
g2N

=
1

8π

{
D(0) − lim

k2→0
ln
(
k2) D(0) +

∫ ∞

0
dx [x ln(x) − x ] D ′′(x)

}
. (2.4)

Clearly, we encounter a small-momentum singularity proportional to −D(0) ln
(
k2
)
, which can

only be avoided upon demanding that D(0) = 0. This is the first indication that it might be difficult
to have a decoupling/massive gluon, D(0) > 0, in 2 space-time dimensions. In specific cases,
the infrared sickness of d = 2 Landau-gauge theory with a massive gluon was already noticed in
[20, 21]. The preference for the scaling solution in d = 2 was very recently also proclaimed from
a somewhat different viewpoint in [22].

2.2 Infrared singularity in and bounds on σ(k2) using the ghost Dyson-Schwinger equation

Since the analysis so far is purely based on one-loop perturbation theory for the ghost propa-
gator, albeit with a completely general gluon propagator, we need to certify our conclusion beyond
this approximation. Therefore, we shall first derive a set of bounds for the one-loop result (2.3),
valid for general d. We need that (see [3, 23])

∫ 1− cos2(ϕ1)

[k2 + q2 − 2k q cos(ϕ1) ]
ν dΩd =

Ωd

q2
d −1

d 2F1
(
ν ,ν −d/2;1+d/2;k2/q2)θ(q2 − k2)

+
Ωd

k2
d −1

d 2F1
(
ν ,ν −d/2;1+d/2;q2/k2)θ(k2 −q2) (2.5)

where the Gauss hypergeometric function 2F1(a,b;c;z) is defined for |z|< 1 by the series

2F1(a,b;c;z) =
∞

∑
n=0

(a)n (b)n

(c)n

zn

n!
= 1 +

ab
c

z +
a(a+1)b(b+1)

c(c+1)
z2

2
. . . , (2.6)

with (a)n = Γ(a+ n)/Γ(a) the Pochhammer symbol. The previous series is converging for c ̸=
0,−1,−2, . . ., and in addition also for |z| = 1 if Re(c−a−b) > 0. In the latter case, we have for
z = 1

2F1 (a,b;c;1) =
Γ(c)Γ(c−a−b)
Γ(c−b)Γ(c−a)

. (2.7)

We also introduced the usual solid angle integral

Ωd =
∫

dΩd =
2πd/2

Γ
(d

2

) . (2.8)

For d = 3,4 and with z ∈ [0,1], it can be shown that the hypergeometric function 2F1(1,1−d/2;1+
d/2;z) has its maximum value, equal to 1, at z = 0, and its minimum value, equal to d/(2(d −1)),

3More mathematical details, as well as a more profound discussion on the assumptions made at the level of the
large/small momentum behaviour of the gluon propagator can be found in [3].
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at z = 1. For d = 2, the function 2F1 (1,1−d/2;1+d/2;z) = 2F1 (1,0;2;z) is identically 1 for
|z| ≤ 1. As such, for general d, we can propose the following estimate

d
2(d −1)

Id ≤ σ(k2)

g2N
≤ Id , (2.9)

with

Id =
Ωd

(2π)d
d −1

d

∫ ∞

0
dqqd−1 D(q2)

[
θ(k2 −q2)

k2 +
θ(q2 − k2)

q2

]
, (2.10)

for the one-loop ghost self-energy

σ(k2)

g2N
=

∫ ∞

0
dq

qd−1

(2π)d D(q2)
∫

dΩd
1− cos2(ϕ1)

k2 + q2 − 2k q cos(ϕ1)

=
Ωd

(2π)d
d −1

d

∫ ∞

0
dqqd−1 D(q2)

[
θ(k2 −q2)

k2 2F1
(
1,1−d/2;1+d/2;q2/k2)

+
θ(q2 − k2)

q2 2F1
(
1,1−d/2;1+d/2;k2/q2)] . (2.11)

From the bound (2.9) we derive an equality for d = 2, in which case there is a singularity, since, as
already discussed in the previous section, Id displays one.

To go beyond perturbation theory, we take a look at the Dyson-Schwinger equation for the
ghost propagator [11, 17, 24] for the d = 2 Landau gauge

1
G (k2)

= k2 − g2 N
∫ d2q

(2π)2 pλ Γλν(k,q)kν D(q2)Pµν(q)G (p2) , (2.12)

where p = k− q and where the gluon and the ghost propagators, D(k2) and G (k2), are now fully
dressed propagators. The quantity ig f adckλ Γλν(k,q) corresponds to the full ghost-gluon vertex.
Upon using eq. (2.2), we can consider

σ(k2) =
g2 N
k2

∫ d2q
(2π)2 pλ Γλν(k,q)kν D(q2)Pµν(q)

1
p2

1
1−σ(p2)

. (2.13)

For a tree-level ghost-gluon vertex Γλν(k,q) = δλν and using the transversality of the gluon prop-
agator we write

σ(k2) = g2 N
kµkν

k2

∫ d2q
(2π)2 D(q2)Pµν(q)

1
p2

1
1−σ(p2)

, (2.14)

or, using a suitable base for polar coordinates,

σ(k2)

g2N
=

∫ ∞

0

qdq
4π2 D(q2)

∫ 2π

0
dθ

1− cos2(θ)
p2 [1−σ(p2)]

, (2.15)

with p2 = k2 +q2 −2k q cos(θ).

6
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Let us first assume there is no ghost enhancement, i.e. that σ(0) < 1. In such case, we easily
derive a lower and an upper bound for the l.h.s. of Eq. (2.15) as follows4:

I ≤ σ(k2)

g2N
≤ I

1−σ(0)
, (2.16)

where

I =

∫ ∞

0

qdq
4π2 D(q2)

∫ 2π

0
dθ

1− cos2(θ)
p2 . (2.17)

This integral I is the one-loop ghost-self-energy contribution we already encountered before, so
we know that I will display an infrared singularity proportional to − limk2→0 ln(k2) in d = 2 unless
D(0)= 0. A fortiori, the σ(k2) of eq. (2.15) has a logarithmic infrared singularity, unless D(0)= 0.

A little more care is needed when σ(0) = 1. Let us then write 1−σ(k2) ≈ ck2e for small k2

and analyze

σ(k2)

g2N
=

∫ ∞

0

qdq
4π2 D(q2)

∫ 2π

0
dθ

1− cos2(θ)
c p2+2e

+
∫ ∞

0

qdq
4π2 D(q2)

∫ 2π

0
dθ

1− cos2(θ)
p2

[
1

1−σ(p2)
− 1

c p2e

]
. (2.18)

The quantity in square brackets in the last integral is finite at p = 0 if the behavior of σ(k2) is given
by 1− ck2e +O(kb) with b ≥ 4e. This quantity goes to 1 at large momenta and its absolute value
is bounded from above by some positive constant M if σ(k2) ∈ [0,1]. As such, we majorate as
follows

σ(k2)

g2N
≤

∫ ∞

0

qdq
4π2 D(q2)

∫ 2π

0
dθ

1− cos2(θ)
cp2+2e + M I , (2.19)

with I the same integral as before. For the other integral we can use the general result (2.5) for
d = 2 and ν = 1+ e, obtaining∫ ∞

0

qdq
4π2 D(q2)

∫ 2π

0
dθ

1− cos2(θ)
cp2+2e

=
∫ k

0

qdq
4πc

D(q2)

k2 2F1
(
1+ e,e;2;q2/k2) + ∫ ∞

k

qdq
4πc

D(q2)

q2 2F1
(
1+ e,e;2;k2/q2) . (2.20)

From the series representation (2.6) it follows that the derivative 2F1(a,b;c;z) can be brought in the
following form:

∂
∂ z 2F1(a,b;c;z) =

ab
c 2F1(a+1,b+1;c+1;z) . (2.21)

In particular,
∂
∂ z 2F1(1+ e,e;2;z) =

(1+ e)e
2 2F1(2+ e,1+ e;3;z) , (2.22)

i.e. it is positive, implying that this hypergeometric function attains its largest value at z = 1. As
ℜ(c−a−b) = 1−2e, we have that for e < 1/2, the hypergeometric function is finite at z = 1, with

4Here, we assume that σ(k2) attains it maximum value at k2 = 0, which was already done by Gribov [1]. In some
cases this can be shown [3], but going into those details would lead us too far now. In fact, even if σ(k2)< 1 would be
maximal at k2 = k2

∗ > 0, the following argument would still work out by replacing σ(0) with σ(k2
∗).

7
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a value given by Γ(1−2e)/ [Γ(2− e)Γ(1− e)]. Thus, for e < 1/2 a singularity can only appear for
k2 → 0. Using the trapezoidal rule,∫ b

a
dx f (x) =

b−a
2

[ f (b)+ f (a) ] + O(b−a)3 , (2.23)

we subsequently find in the limit k2 → 0

lim
k2→0

[
k2

8πc
D(k2) 2F1 (1+ e,e;2;1)

k2 +
∫ ∞

k

dq
4π c

D(q2)

q

]
. (2.24)

As before, we note the presence of an infrared singularity, due to the last term, whenever D(0)> 0.
Both terms on the r.h.s. of the inequality (2.19) develop a − ln(0) singularity proportional to D(0).
Since the lower bound in eq. (2.16) always applies to eq. (2.15) and I displays the same singularity
as obtained for the upper bound, we are forced to conclude once more that σ(k2) can be finite at
k2 = 0 only if D(0) = 0.

To arrive at the general conclusion that in d = 2 we must have D(0) = 0 in order to avoid
an infrared singularity in the ghost self energy, we had to assume that σ(k2) = 1− ck2e +O(kb)

with 1 > 2e and b ≥ 4e in the case ghost enhancement occurs. The d = 2 lattice data [18] suggest
for the ghost propagator an infrared exponent e ≈ 0.15, in reasonable agreement with the scaling
solution of [23, 25, 26] that predicted e = 1/5. Both lattice and analytical estimates are such that
the condition 1 > 2e is satisfied. The demand on the subleading exponent, b ≥ 4e, is something we
must assume, since there are neither lattice nor analytical estimates for this guy.

The attentive reader shall have noticed that so far, we relied on the use of a bare (tree level)
ghost-gluon vertex. Such approximation is usually made in Dyson-Schwinger studies. Though,
to obtain a qualitatively precise comparison between the lattice and analytically-obtained Dyson-
Schwinger ghost propagator, one should go beyond a tree-level vertex [27]. Fortunately, one rec-
ognizes that, by taking in Eq. (2.13) the full vertex Γλν(k,q), instead of the tree-level one δλν , the
above derived results still apply, as long as the vertex itself remains infrared finite, as seems to be
confirmed by lattice data [28, 29]. This illustrates the power of the presented bound analysis.

3. What about d = 3 or d = 4?

Having done all the efforts to analyze the d = 2 ghost propagator from its Dyson-Schwinger
equation, one could wonder if not a similar result could be derived in d = 3 or d = 4 and, if so, if
we can draw any conclusions as in d = 2? For the sake of presentation, let us stick to the d = 4
case in this proceeding; the d = 3 case is completely analogous. The following analysis is again
originating from [3].

The Dyson-Schwinger equation for σ(k2) is given by [24]

σ(k2) = 1 − Z̃3 + Z̃1g2N
∫ ∞

0
dq

q3

(2π)4 D(q2)
∫

dΩd
1− cos2(ϕ1)

p2 [1 − σ(p2) ]
, (3.1)

where Z̃3 and Z̃1 are the renormalization constants for the ghost propagator and the ghost-gluon
vertex respectively. We have again opted for a tree-level ghost-gluon vertex here, but as for the
d = 2 case, if the vertex is infrared finite all results generalize to a nontrivial vertex.

8
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Thanks to the the non-renormalization of the ghost-gluon vertex in Landau gauge [30], we
may set Z̃1 = 1. We shall build the argument on

σd(k2)

g2N
≡

∫ ∞

0
dq

qd−1

(2π)d D(q2)
∫

dΩd
1− cos2(ϕ1)

p2 [1 − σd(p2) ]
, (3.2)

for d general, in the spirit of dimensional regularization. We will show that no infrared singularities
occur for 2 < d ≤ 4, consequently the ultraviolet divergences when d → 4 are treated by the Z -
factor(s). We again derive bounds, but this time for σd(k2). We have

σd(k2)

g2N
≤ I(0)

1 − σd(0)
, (3.3)

if σd(k2)≤ σd(0)< 1, and
σd(k2)

g2N
≤ I(e) + M I(0) , (3.4)

if σd(k2)≤ σd(0) = 1 with σd(k2)≈ 1− ck2e for small k2. We introduced

I(e) =
∫ ∞

0
dq

qd−1

(2π)dc
D(q2)

∫
dΩd

1− cos2(ϕ1)

(p2)1+e . (3.5)

The basic inequalities (2.9) can again be used to write down that

σd(k2)

g2N
≤ Id

1 − σd(0)
, (3.6)

if σd(k2)≤ σd(0)< 1, and
σd(k2)

g2N
≤ I(e) + M Id , (3.7)

if σd(k2)≤ σd(0) = 1. The integral Id has been defined already in eq. (2.10), making clear that Id

for 2 < d ≤ 4 is finite, even if D(0) ̸= 0. We can also evaluate I(e) further, yielding

I(e) =
∫ k

0

qd−1 dq
(2π)dc

2πd/2

Γ(d/2)
D(q2)

k2 2F1
(
1+ e,1+ e−d/2;1+d/2;q2/k2)

+
∫ ∞

k

qd−1 dq
(2π)dc

D(q2)

q2
2πd/2

Γ(d/2) 2F1
(
1+ e,1+ e−d/2;1+d/2;k2/q2) . (3.8)

If e ≤ d/2−1, the hypergeometric function attains it maximum value, 1, at z = 0, while the above
integrals are all well-behaved for k2 → 0, as we assumed d > 2. If, on the other hand, e > d/2−1,
the hypergeometric functions’ maximum is at z = 1, with convergence if e < (d − 1)/2. We can
thus state that

σd(k2)

g2N
≤ M′ I4 (3.9)

for some M′ > 0. Hence, for d = 4 we have a finite σd(0) if D(0) is also finite, but it does not have
to vanish, in contrast with our d = 2 findings.

For completeness, we should mention that when e > d/2 − 1, in which case the hypergeo-
metric function 2F1 (1+ e,1+ e−d/2;1+d/2;z) would not be convergent at z = 1, we are unable
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to derive a sensible upper-bound5. Such values for the exponent e would correspond to a ghost
propagator which would be very infrared singular, in particular for d = 4, the ghost would need to
be at least as singular as 1/k5. Such a strong singularity has never been proposed to our knowledge,
neither numerically nor analytically.

4. What do our d = 2 results imply?

We have thus analytically shown, using as sole input the ghost Dyson-Schwinger equation and
the Gribov no-pole condition, that in d = 2, one can only find a gluon propagator that vanishes
at zero momentum, D(0) = 0. If D(0) > 0, a logarithmic infrared singularity occurs in σ(k2),
which makes it impossible to fulfill the Gribov no-pole condition. The latter serves as a diagnostic
tool to check whether one did not cross the first Gribov horizon, where the Faddeev-Popov oper-
ator vanishes. The used mathematical tools are easy to follow step by step, and do only rely on
some general properties of e.g. the gluon propagator, rather than on (un)controllable approxima-
tions. Our results in a way provide the analytical “reason” behind the d = 2 large-volume lattice
results and their accompanying infinite-volume limit [4, 6, 18, 19]. Indeed, there is no sign of a
decoupling/massive scenario using lattice simulations of d = 2 Landau-gauge theory.

Our results indicate that the finding of the decoupling/massive solution, with D(0) > 0, as
reported in [25, 26], should be reconsidered. Moreover, we believe they also pose a challenge
for the interpretation presented in works like [31, 32, 33] (see also [19] for a critical assessment):
using the fact that one can find an infinite number of solutions to the Dyson-Schwinger equations
[16, 34], it was (and still is) speculated that choosing one of these solutions would correspond to
a supplementary, nonperturbative gauge-fixing choice, on top of the underlying Landau gauge; the
associated gauge parameter would be the inverse of the ghost form factor at zero momentum, or
equivalently in our language, the value of σ(0). Moreover, these different gauge-fixing conditions
should be related [31, 32, 33] to different Gribov copies. If this would really be a matter of gauge
fixing, it looks rather suspicious that an a priori general framework of gauge fixing would make no
sense in d = 2, where any decoupling, in the sense of D(0) > 0, is excluded. The possibility of a
d = 2 decoupling/massive solution would nevertheless be expected in the philosophy of [31, 32, 33]
(see again [19] for a critical discussion).

5. From gluon to ghost propagator

Armed with the current high precision lattice data for ghost and gluon propagators, it remains
the question if these can be described in a single analytical framework, not only qualitatively, but
also quantitatively. An interesting approach to this problem is the philosophy of [34]: given a
quantitatively fine description of the lattice gluon propagator, does the corresponding solution of
the ghost Dyson-Schwinger equation produce an equally fine quantitative description of the corre-
sponding lattice ghost propagator, this without changing any of the input parameters. It was found
in [34] this is not a trivial requirement, as depending on the strength of coupling constant, a set

5Notice that this does not imply anything for D(0), as we would then simply prove the rather obvious bound
σd(k2)≤ ∞.
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of solutions can be found. Of course, in principle the coupling constant in a given renormaliza-
tion scheme is a fixed quantity. A similar observation has been made in [3]. Also the role of the
ghost-gluon vertex cannot be underestimated for quantitative results [27].

We follow a slightly different route, based on the papers [3, 35]. In [10, 36], high quality fits
were presented to the lattice gluon propagator in d = 2,3,4. In the particular case of d = 3,4, the
used fitting functions are in a 1-1 correspondence with the tree-level propagators of the Refined
Gribov-Zwanziger (RGZ) formalism [12, 13], thereby fixing all the input (massive) parameters of
the RGZ approach using lattice input. These masses correspond to condensates, which existence
is favoured based on dynamical reasons [13]. Said otherwise, they correspond to another vacuum
state with lower energy. The natural question arising then is whether perturbation theory around this
nonperturbative vacuum is sufficient to capture all relevant dynamics for e.g. the ghost propagator.
Work in this direction is currently being undertaken in [35]. Preliminary results do point towards
the need of including gluon-ghost vertex corrections to match the one-loop ghost propagator with
its lattice counterpart over the full momentum range. Nevertheless the correct leading infrared
behaviour is already recovered with one loop perturbation theory. It is also instructive to note
here that the coupling constant is not a free parameter in this setting, as it ought to be related to
the renormalization scale using its (one-loop) renormalization group equations in e.g. the MOM
scheme [35].
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