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Baryon form factors from Dyson-Schwinger equations

1. Introduction

Probing hadrons with electromagnetic, axial and pseudoscalar currents reveals their basic
structure properties and provides a connection with the underlying quark and gluon dynamics in
Quantum Chromodynamics (QCD). While the nucleon’s axial structure is experimentally more dif-
ficult to access, an abundance of information has been collected for photon-induced processes that
are described by NNγ elastic and N∆γ transition form factors. Precision measurements have stim-
ulated the development of tools to address questions related to quark orbital angular-momentum
correlations in the perturbative domain, the transition between perturbative and non-perturbative
regions, or pion-cloud rescattering effects in the chiral and low-momentum region. The associated
chiral non-analyticities stemming from the nucleon’s ’pion cloud’ have been frequently discussed
when connecting results from lattice QCD, chiral effective field theories and quark models with
experiment.

A complementary framework for studying hadron phenomenology is the one via Dyson-
Schwinger equations (DSEs). They interrelate QCD’s Green functions and provide access to non-
perturbative phenomena such as dynamical chiral symmetry breaking and confinement, see [1, 2]
for reviews. The investigation of hadron structure in the Dyson-Schwinger approach proceeds via
covariant bound-state equations, i.e., the Bethe-Salpeter equation (BSE) for mesons and the covari-
ant Faddeev equation for baryons [3, 4]. The approach has several benefits: it is Poincaré-covariant
throughout every step and provides access to all momentum scales and all quark masses without the
need for extrapolations. Since one operates directly with QCD’s degrees of freedom, observable
phenomena at the hadron level can be systematically traced back to their microscopic origin.

The drawback of the approach is its necessity of truncations. Owing to the numerical complex-
ity of the Faddeev equation, present baryon calculations have been performed in a rainbow-ladder
truncation, where qqq interactions are neglected and the qq and qq̄ interactions are modeled by
a dressed gluon exchange. As a consequence, several phenomenologically important features are
missed in the resulting form factors. A characteristic example is the absence of pion-cloud contri-
butions in their chiral and low-momentum structure. The relevant gluon topologies that generate
pion-cloud effects at the hadron level are not captured by a rainbow-ladder truncation which there-
fore represents the baryon’s ’quark core’. In the case of the N∆γ transition form factors discussed
below, an additional quark-diquark simplification is made, where scalar and axialvector diquark
correlations approximate the qq scattering matrix and lead to an effective two-body description.

In the following we will summarize recent results for the nucleon’s electromagnetic, axial
and N∆γ transition form factors. More detailed discussions, result tables as well as references to
experimental and lattice data which are frequently used in the plots for comparison can be found in
Refs. [5 – 7].

2. Covariant Faddeev approach

The description of baryon structure properties in the Dyson-Schwinger approach requires
knowledge of the nucleon and ∆ bound-state wave functions and their microscopic ingredients
in terms of QCD’s Green functions. A convenient starting point is given by the three-quark con-
nected and amputated scattering matrix T. It encodes the relevant information on baryons which
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Figure 1: Covariant three-body equation for a baryon wave function, cf. Eq. (2.3).

correspond to poles in T. At a given pole for a baryon with mass M the scattering matrix assumes
the form

T P2=−M2

−−−−−−→ ΨΨ

P2 +M2 (2.1)

which defines the baryon’s covariant wave function Ψ, and Ψ is its charge conjugate1.
Of course, if the scattering matrix were known a priori, the masses of nucleon and ∆ together

with their wave functions could be directly extracted. This is not the case and thus we aim for rela-
tions that allow to circumvent the explicit determination of T in practical applications. T satisfies
a scattering equation, i.e., the nonperturbatively resummed Dyson series

T = K+KG0 T , with G0 = S⊗S⊗S and K = K[3] +
3

∑
a=1

S−1
(a)⊗K(a) . (2.2)

By construction, the kernel K is the sum of a three-quark irreducible contribution K[3] and per-
muted two-quark irreducible kernels K(a), where the subscript a stands for the respective spectator
quark. S denotes the dressed quark propagator. The combination of Eqs. (2.1–2.2), evaluated at a
bound-state pole P2 =−M2, yields a self-consistent integral equation for the baryon wave function,
cf. Fig. 1:

Ψ = KG0 Ψ . (2.3)

It can be solved once the dressed quark propagator and the qq and qqq kernels, which encode the
interactions at the quark-gluon level, are determined. Naturally, all these relations are equally valid
in the meson case if the three-quark scattering matrix and kernel are replaced by their qq̄ analogues
and G0 is taken as the qq̄ propagator product.

The coupling of the baryon to an external qq̄ current, on the other hand, is reflected by the
’gauged’ scattering matrix Tµ whose residue at the bound-state pole defines the current matrix
element Jµ :

Tµ
P2

i =P2
f =−M2

−−−−−−−−−→−
Ψ f Jµ Ψi

(P2
f +M2)(P2

i +M2)
. (2.4)

Depending on the type of current, which we generically denote by the index µ , the respective
matrix element Jµ contains for example the electromagnetic, axial or pseudoscalar form factors of
the baryon. Here Pi and Pf are the incoming and outgoing baryon momenta and Ψi and Ψ f are
the corresponding wave functions. They need not describe the same type of baryon; for instance,
Eq. (2.4) could also be applied to the N∆γ transition.

The requirement that the current couples linearly to all internal building blocks of the scattering
matrix T implies that it has the formal properties of a derivative. Eq. (2.2) can then be used to

1For simplicity, we will use the term ’wave function’ here both for the bound-state amplitude Ψ and the bound-state
wave function G0Ψ, where the latter has quark propagator legs attached.
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+  ++

Figure 2: General expression for a baryon’s current matrix element given in Eq. (2.5). The qq̄
vertex, dressed quark propagator, and qq and qqq kernels are sandwiched between incoming and
outgoing baryon wave functions.

resolve Tµ to a coupling to the dressed quark propagator and the kernel K. The general expression
for a baryon’s non-perturbative current is thereby obtained as follows [8, 9, 5]:

Jµ = Ψ f
(
T−1)µ

Ψi = Ψ f G0 (ΓΓΓ
µ −Kµ)G0 Ψi . (2.5)

It is illustrated in Fig. 2 and consists of an impulse-approximation diagram and further contributions
involving the qq and qqq kernels. Its ingredients are given by

ΓΓΓ
µ =

3

∑
a=1

Γ
µ

(a)⊗S−1
(b)⊗S−1

(c) , Kµ =
3

∑
a=1

Γ
µ

(a)⊗K(a)+
3

∑
a=1

S−1
(a)⊗Kµ

(a)+Kµ

[3], (2.6)

where the quark labels {a,b,c} are an even permutation of {1,2,3}.
Let us characterize the external current (for example, electromagnetic, axialvector or pseu-

doscalar) by Γ
µ

0 ∈ {Z2iγµ , Z2γ5γµ , Z4iγ5 }, equipped with appropriate flavor structures, where Z2

and Z4 are renormalization constants. The microscopic coupling of the current to the quark is then
represented by the respective qq̄ vertex Γµ which satisfies a Dyson-Schwinger equation:

Γ
µ = Γ

µ

0 +TG0 Γ
µ

0 = Γ
µ

0 +K G0 Γ
µ , (2.7)

where T denotes now the qq̄ scattering matrix and K the qq̄ kernel. Pictorially speaking, this
amounts to the sum of a pointlike part plus all possible reaction mechanisms between quark and
antiquark which constitute the scattering matrix. In the second step we have exploited the scattering
equation (2.2) for T to obtain an inhomogeneous Bethe-Salpeter equation for the vertex which, in
analogy to the bound-state equation (2.3), allows to determine the vertex self-consistently from the
qq̄ kernel K.

The appearance of the quark-antiquark T-matrix in the defining equation for Γµ entails that
the vertex contains meson poles whenever the bare structure Γ

µ

0 has non-vanishing overlap with the
respective meson wave function, cf. Eq. (2.1):

Γ
µ

Q2→−m2
M−−−−−−→ΨM

rµ

M

Q2 +m2
M
, rµ

M = Tr
∫

ΨM G0 Γ
µ

0

∣∣∣
Q2→−m2

M

. (2.8)

Here, Q = Pf −Pi is the total qq̄ momentum that flows into the vertex and the index ’M’ stands
for meson. Since Γµ enters the form factors diagrams via Eq. (2.6) it is clear that these poles must
also appear in the timelike Q2 structure of the form factors where they set the relevant scales: the
ρ−meson dominates electromagnetic processes, the axialvector meson a1 appears in axial (isovec-
tor) form factors, and the pion and its excitations in pseudoscalar form factors of hadrons.
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The same reasoning was generalized in Ref. [10] to derive the hadron’s coupling to two exter-
nal currents with qq̄ quantum numbers:

Tµν
P2

i =P2
f =−M2

−−−−−−−−−→
Ψ f Jµν Ψi

(P2
f +M2)(P2

i +M2)
,

Jµν = Ψ f

[(
T−1){µ T

(
T−1)ν}−

(
T−1)µν

]
Ψi ,

(2.9)

where the curly brackets denote symmetrization of the indices. Depending on the types of hadrons
and currents involved, the resulting scattering amplitudes Jµν can describe a variety of different
reactions such as Compton scattering, pion electroproduction, Nπ or ππ scattering, or crossed-
channel processes such as pp̄ annihilation into two photons or meson production.

We have now outlined a systematic approach to compute various hadron properties from their
underlying non-perturbative substructure in QCD. Its input is provided by the quark propagator S
and the qq, qq̄ and qqq kernels. Once these quantities are determined, no further model input is re-
quired: we can selfconsistently solve the bound-state equation (2.3) to obtain a hadron’s wave func-
tion and mass, solve the inhomogeneous BSE (2.7) for the vertex, and combine them to calculate
hadron form factors and scattering amplitudes. The Dirac-Lorentz structure of the wave functions,
vertices and current matrix elements is fully determined from Poincaré covariance. By implement-
ing the complete ’operator basis’ in each case, its momentum-dependent Lorentz-invariant dressing
functions (the ’form factors’) are obtained from the equations described above.

In order to proceed, we have to specify a truncation procedure. The apparent problem is the
lack of information on the kernels which, according to the reasoning so far, encode the information
from QCD’s Green functions that is relevant for hadron physics. Omitting the term K[3] in Eqs. (2.2)
and (2.6) yields the covariant Faddeev equation together with its corresponding currents [4, 5].
They trace the binding mechanism of three quarks in a baryon to its quark-quark correlations.
Moreover, the simplest ansatz for the qq (and qq̄) kernel is the rainbow-ladder kernel:

K = Z2
2

4πα(k2)

k2 T µν

k γ
µ ⊗ γ

ν , (2.10)

where T µν

k = δ µν − kµkν/k2 is a transverse projector with respect to the gluon momentum k. Its
implementation in the Faddeev equation yields, by iteration, all dressed-gluon ladder exchanges
between quark pairs. Implemented in the current, only the direct couplings to the quarks, i.e., the
first two terms in Fig. 2, survive.

The rainbow-ladder kernel satisfies vector and axialvector Ward-Takahashi identities which
ensure electromagnetic current conservation and the Gell-Mann-Oakes-Renner and Goldberger-
Treiman relations at the hadron level [11, 6]. Through these identities, Eq. (2.10) also determines
the kernel of the quark DSE whose solution is numerically straightforward. The quark-gluon vertex
is thereby reduced to its vector structure ∼ γµ , and its nonperturbative dressing, together with that
of the gluon propagator, is absorbed in an effective interaction α(k2) which is the remaining model
input. We employ the Maris-Tandy ansatz of Ref. [12] which reproduces the one-loop logarithmic
running at large gluon momenta and features a Gaussian bump in the infrared that generates dy-
namical chiral symmetry breaking. Different parametrizations have been recently tested and yield
similar results for a range of hadron properties [13 – 15].
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Figure 3: Quark-mass dependence of nucleon static electromagnetic properties compared to lat-
tice results. Left panel: squared isovector Dirac radius (rv

1)
2. Right panel: isovector and isoscalar

anomalous magnetic moments κv and κs in units of nuclear magnetons. Stars denote the experi-
mental values. Figure adapted from Ref. [5].

3. Nucleon electromagnetic form factors

The nucleon’s electromagnetic current is expressed by two dimensionless form factors: the
Dirac and Pauli form factors F1(Q2) and F2(Q2), or the Sachs form factors GE(Q2) and GM(Q2) as
their linear combinations: GE = F1−Q2/(4M2

N)F2 and GM = F1 +F2. The current matrix element
is given by

Jµ = iΛ+
f

[
F1(Q2)γ

µ −F2(Q2)
σ µνQν

2MN

]
Λ
+
i , (3.1)

where Q = Pf −Pi is the photon momentum and Λ
+
i, f =

1
2

(
1+ /̂Pi, f

)
are positive-energy projectors.

In the static limit one retrieves the nucleons’ anomalous magnetic moments κ = F2(0) as well as
their Dirac and Pauli radii r2

1 = −6F ′1(0) and r2
2 = −6F ′2(0)/F2(0). The isoscalar (isovector) form

factors are the sum (difference) of proton and neutron form factors: Fs,v
i = F p

i ±Fn
i .

Results for the pion-mass dependence and Q2−evolution of various nucleon electromagnetic
form factors are shown in Figs. 3 and 4. The bands correspond to a variation of the infrared prop-
erties in the quark-gluon interaction α(k2) and measure the model uncertainty. As anticipated, the
absence of pion-cloud contributions in the chiral and low-momentum region is recovered in the
results. All form factors are in reasonable agreement with experimental data at larger momentum
transfer where the nucleon is probed at small length scales and the pion cloud becomes irrele-
vant. Missing structure mainly appears in the low-momentum region Q2 . 2 GeV2. The calculated
charge radii, such as the isovector Dirac radius in the left panel of Fig. 3, underestimate their ex-
perimental values but converge with lattice data at larger quark masses. Pion loops would increase
the charge radii toward the chiral limit where they would diverge.

Chiral effective field theory predicts that leading-order chiral corrections to proton and neutron
anomalous magnetic moments carry an opposite sign; their magnitude is therefore enhanced in the
isovector combination κv = κ p−κn and cancels in the isoscalar case κs = κ p +κn. The isoscalar

6
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Figure 4: Nucleon electromagnetic Sachs form factors as functions of the photon momentum trans-
fer and in comparison with experimental data. The proton’s electric form factor in the top left panel
is normalized by the standard dipole. Figure adapted from Ref. [5].

magnetic moment is quite accurately reproduced by the Faddeev calculation: κs =−0.12(1), com-
pared to the experimental value κs

exp =−0.12 [5]. The calculated values of κs and κv correspond to
an underestimation of 20%−30% in the proton and neutron magnetic moments Gp,n

M (0), visible in
the bottom panels of Fig. 4. Another example is the neutron electric form factor Gn

E(Q
2) in Fig. 4

which agrees with recent measurements at larger Q2 but misses the characteristic bump at low Q2.
These observations suggest to identify the rainbow-ladder truncated nucleon with the ’quark core’
in chiral effective field theories.

The large–Q2 behavior of form factors is of great theoretical and experimental interest as
well. The experimental falloff of the proton’s form factor ratio Gp

E/Gp
M has been attributed to

orbital angular-momentum correlations in the nucleon wave function which modify the perturbative
scaling behavior and entail a zero crossing in Gp

E(Q
2). Quark orbital angular momentum in terms

of s, p and d waves appears in the Dirac-Lorentz structure of the nucleon’s rest-frame Faddeev
amplitude. While nucleon and ∆ baryons are dominated by s waves, p waves play an important
role as well: they contribute ∼ 30% to the nucleon’s canonical normalization and diminish only
slowly with increasing current-quark masses. The contribution from d waves, on the other hand, is
below 1%. At large Q2, the form-factor results from the Faddeev calculation become sensitive to
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the numerics; nevertheless, a decrease of Gp
E compared to the dipole form is visible in Fig. 4 and

implies a zero crossing as well.
Another remark concerns the timelike behavior of the form factors and the vector-meson dom-

inance property which is a consequence of the underlying dynamics. The electromagnetic current
is microscopically represented by the quark-photon vertex which can be separated in two terms: a
Ball-Chiu part that satisfies electromagnetic gauge invariance, and another purely transverse term
that includes vector-meson poles in the JPC = 1−− channel [16, 17]. Since the rainbow-ladder
truncation does not dynamically develop hadronic decay widths, the poles that are generated in
the self-consistent calculation of the quark-photon vertex are timelike and real. The decomposi-
tion into ’Ball-Chiu’ and ’ρ-meson’ contributions can be made in all electromagnetic hadron form
factors which therefore possess poles at Q2 = −m2

ρ and further 1−− excited-state locations. The
transverse term is negative at spacelike Q2 and, in the case of electric form factors, vanishes at
Q2 = 0, i.e., the Ball-Chiu part alone satisfies charge conservation Gp

E(0) = 1. The ρ−meson term
contributes roughly∼ 50% to the nucleon’s squared charge radii throughout the current-mass range
but has only a minor impact on its magnetic moments whose overall contribution comes from the
Ball-Chiu term.

We note that a reduction of the Faddeev equation to a quark-diquark description, where scalar
and axialvector diquark correlations are calculated from the same quark-gluon input, yields quite
similar results for the form factors [18]. The model dependence is however larger, especially at
large Q2, and the corresponding bands in Fig. 4 become sizeable; cf. also Fig. 6 below. Neverthe-
less, these results imply that the interaction of quarks with scalar and axialvector diquarks provides
the overwhelming contribution to the nucleon’s binding.

4. Nucleon axial form factors

In Ref. [6], the Faddeev approach has been further applied to compute the nucleon’s axial and
pseudoscalar form factors. The respective current matrix elements are specified by the axial form
factor GA(Q2), the induced pseudoscalar form factor GP(Q2), and the pseudoscalar form factor
G5(Q2):

Jµ

5 = Λ
+
f γ5

[
GA(Q2)γ

µ +GP(Q2)
iQµ

2MN

]
Λ
+
i , J5 = G5(Q2)Λ

+
f iγ5 Λ

+
i . (4.1)

Their microscopic decomposition in the Faddeev framework is identical to Fig. 2 except for the
type of qq̄ vertices that are involved: the structure γµ that enters the self-consistent calculation
of the quark-photon vertex is replaced by γ5γµ and γ5, respectively. Again, the pole structure of
the resulting axial and pseudoscalar vertices allows to extract information on the timelike behav-
ior and identify the relevant scales in the form factors. GA is dominated by the 1++ axialvector
meson a1(1260) and its excitations whereas GP and G5 are governed by the pion pole. The pion-
nucleon form factor GπNN is the residue of G5 at the pion pole and thus related to the π(1300)
and further 0−+ excitations. The Goldberger-Treiman relation GA(0) = fπ GπNN(0)/MN follows
as a consequence of the axialvector Ward-Takahashi identity and analyticity which are satisfied
microscopically.

8
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Figure 5: Left panel: Quark-mass dependence of the nucleon’s axial charge gA, compared to lattice
results and the chiral expansion of Ref. [19]. Right panel: Q2−evolution of the axial form factor
GA(Q2), compared to lattice data and the experimental dipole form. Figure adapted from Ref. [6].

The (isovector) axial and pseudoscalar form factor results exhibit various similarities with
their electromagnetic counterparts, see Fig. 5. The axial charge gA = GA(0) underestimates the
experimental value by 20%− 25%; it falls below recent lattice data in the low quark-mass region
and approaches the chiral expansion at larger pion masses. On the other hand, GA(Q2) is consistent
with the phenomenological dipole form at larger Q2. Analogous results are obtained for the remain-
ing pseudoscalar form factors. This suggests once again that these features are signals of missing
pion-cloud effects. Such an interpretation was also proposed to explain the volume dependence of
lattice results for gA [20].

5. Electromagnetic N→ ∆ transition

Finally, the approach can be applied for the calculation of ∆(1232) and N→ ∆ transition form
factors as well. Since a solution for the ∆ bound-state amplitude from the Faddeev equation has be-
come available only recently [21], we will restrict our discussion to the quark-diquark model. The
derivation that leads to the diagrams in Fig. 2 yields analogous expressions in the quark-diquark
approach [22, 9], where the diquark ingredients can be computed self-consistently from the same
quark-gluon input. Form-factor results in that framework exist for nucleon and ∆ electromagnetic
form factors [18, 23] and the ∆Nπ pseudoscalar transition [24], and in the following we will sum-
marize recent results for the electromagnetic N∆γ transition [7].

The N∆γ transition is characterized by the three Jones-Scadron form factors G?
M(Q2), G?

E(Q
2)

and G?
C(Q

2) which are related to the pion electroproduction multipole amplitudes at the ∆−resonance
position [25, 26]. The respective current Jµ,ρ is decomposed as follows:

Jµ,ρ = bPρα

f iγ5

[
iω

2λ+
(G?

M−G?
E)γ5 ε

αµγδ KγQ̂δ −G?
E T αγ

Q T γµ

K −
iτ
ω

G?
C Q̂αKµ

]
Λ
+
i . (5.1)

Instead of the incoming and outgoing momenta Pi and Pf , we used the orthonormal four-momenta
Q̂µ and Kµ = P̂T

µ

, where a hat denotes normalization, P = (Pf +Pi)/2 is the average momentum

9
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Figure 6: Q2−dependence of the electric and Coulomb quadrupole form-factor ratios REM and RSM

compared to experimental data. Figure adapted from Ref. [7].

and PT its component transverse to the photon momentum. The Rarita-Schwinger projector for the
∆−baryon reads

P
ρα

f = Λ
+
f T ρσ

Pf

(
δ

σβ − γ
σ

γ
β

)
T βα

Pf
, (5.2)

and the transverse projectors T µν

Pf
, T µν

Q and T µν

K are defined in the same way as in the gluon case
below Eq. (2.10). The remaining dimensionless variables in (5.1) are given by:

τ :=
Q2

2(M2
∆
+M2

N)
, λ± :=

(M∆±MN)
2 +Q2

2(M2
∆
+M2

N)
, ω :=

√
λ+λ− , b :=

√
3
2

(
1+

M∆

MN

)
. (5.3)

The N∆γ transition has been accurately measured over a wide momentum range [26, 27].
It is dominated by a magnetic dipole transition which, in a quark-model picture, amounts to the
spinflip of a quark and is related to the form factor G?

M(Q2). The remaining electric and Coulomb
quadrupole form factors are much smaller and expressed by the ratios REM(Q2) and RSM(Q2) which
encode the deformation in the transition. In non-relativistic quark models, non-zero values for these
ratios would require d−wave components in the nucleon and ∆ wave functions. On the other hand,
the analysis of pion electroproduction data via dynamical reaction models suggests that REM and
RSM are almost entirely dominated by the pion cloud [28].

In contrast, the quark-diquark results which are plotted in Fig. 6 reproduce the experimental
data for REM and RSM quite well, even without the inclusion of pion-cloud corrections. In the case
of REM, this behavior originates from p−wave contributions in the nucleon and ∆ wave functions
which are a consequence of Poincaré covariance. The removal of p waves results in a ratio that
is overall positive and grows with increasing Q2, cf. Fig. 7, with a trend towards the perturbative
prediction REM → 1 for Q2→ ∞ [27]. The impact of d waves is almost negligible.

On the other hand, the result for the magnetic dipole transition form factor G?
M(Q2) in Fig. 7

follows the characteristics of the previously discussed magnetic and axial form factors: it agrees
with experimental data at larger Q2 and underestimates them by ∼ 25% at Q2 = 0. This is consis-
tent with the quark-model result and the expected behavior of the pion cloud from coupled-channel
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Figure 7: Left panel: Q2−dependence of the magnetic dipole transition form factor G?
M(Q2) com-

pared to experiment. Right panel: decomposition of REM(Q2) according to the orbital angular-
momentum content in the nucleon and ∆ wave functions. Figure adapted from Ref. [7].

analyses. Moreover, neither G?
M nor RSM are sensitive to the addition of p and d waves but domi-

nated by s−wave elements alone.

6. Conclusions and outlook

We have discussed several recent nucleon and ∆ form factor results in the Dyson-Schwinger
approach, obtained either directly from the covariant Faddeev equation or in a quark-diquark sim-
plification. All calculations share the same quark-gluon input and the results display consistent
features. Quark-quark correlations, which are mediated by a rainbow-ladder gluon-exchange inter-
action, can account for the overall properties of the nucleon and ∆ quark core and justify a quark-
diquark picture for these baryons. Dynamical chiral symmetry breaking and Poincaré covariance
have important consequences for the behavior of the form factors. Their timelike structure is dom-
inated by meson poles in the underlying quark-antiquark vertices. The admixture of quark orbital
angular momentum via p waves, even in s−wave dominated ground states such as the nucleon
and ∆−baryon, is crucial for the N∆γ electric quadrupole form factor and the large–Q2 behavior
of electromagnetic form factors. The main missing ingredients in a rainbow-ladder approach are
pion-cloud contributions at low momenta and small pion masses.

The combination of Dyson-Schwinger and covariant bound-state equations provides valuable
tools for investigating the internal structure of hadrons. Its applications are still at an early stage,
and it is desirable to extend the framework to study more sophisticated systems and reactions such
as baryon excitations and nucleon-to-resonance transition form factors, virtual Compton scattering,
pion electroproduction, pion-nucleon scattering, or timelike pp̄ annihilation processes. At the same
time, these efforts must be complemented by technical improvements, such as residue calculus to
provide kinematic access to truly large Q2, or the implementation of pion-cloud corrections and
hadronic decay channels via truncations beyond rainbow-ladder.
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