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1. Introduction

The Hamiltonian formulation of Yang-Mills (YM) theory in the Schrödinger picture, although
not particularly efficient in the perturbative domain, offers considerable benefits when addressing
nonperturbative issues. Among its attractive features are the explicit representation of the vacuum
state which invokes quantum mechanical intuition [1], the ability to treat genuinereal-time prob-
lems (including non-equilibrium processes) as well as the transparent description of topological
effects [2]. In particular, however, it makes gauge theories accessible to a variational treatment
[1, 3], i.e. to one of the few approximation schemes currently available for strongly coupled quan-
tum field theories.

Variational calculations in Yang-Mills theories are often performed in a fixedgauge, most no-
tably in Coulomb gauge [4]. In the following we will report on our complementary explorations
[5] of a manifestly gauge-invariant formulation of the variational problem [6]. This framework
renders fundamental infrared (IR) physics, including dimensional transmutation and the genera-
tion of a mass gap, particularly transparent. Moreover, it preserves thefull topological structure
of the gauge group. The latter is particularly relevant since topological properties are likely ro-
bust enough to survive limitations of the restricted trial functional basis which keeps the approach
analytically manageable. Another attractive feature of the gauge-invariant formulation is that the
infrared dynamics can be re-expressed in terms of gauge-invariant collective fields which subsume
contributions from whole gauge-field orbit families. After performing an IRimproved variational
analysis [5], we will make use of this feature to identify gauge-invariant and universal IR degrees
of freedom of the gauge dynamics [7]. More details can be found in Refs. [5, 7].

2. Gauge-invariant vacuum wave functionals

Starting from an approximate and hence typically gauge-dependent “core” functionalψ0

[

~A
]

of the static gauge fields (i.e. of half of the canonical variables), we imposegauge invariance by
averaging over the gauge group. The result is a trial vacuum wave functional (VWF) of the form

Ψ0

[

~A
]

= ∑
Q∈Z

eiQθ
∫

Dµ
[

U (Q)
]

ψ0

[

~AU (Q)
]

=:
∫

DUψ0

[

~AU
]

(2.1)

wheredµ is the Haar measure of the SU(Nc) gauge group,Q the topological (homotopy) charge of
the group elementU (Q), andθ the vacuum angle. Since the vacuum wave functional is nodeless [1],
one may writeψ0

[

~A
]

= N −1exp
(

−Φ
[

~A
])

and expand the real functionalΦ into a power series.
The constant term is absorbed intoN and the term linear inA is generally discarded (coherent
gluon vacuum states are known to be unstable [8]).

The next term is quadratic inA and plays several crucial roles. First, it removes the ambiguity
in Ψ0 [9] due to the invariance of the Haar measure in Eq. (2.1) under group transformations.
Furthermore, this term can incorporate asymptotic freedom and thus render the VWF exact in the
ultraviolet. Finally, and from the practical perspective most importantly, functionals resulting from
a quadratic term can be integrated overA analytically. Hence one generally truncates the series for
Φ after the quadratic term, which leads to the “squeezed” core functional

ψ(G)
0

[

~A
]

=
1

NG
exp

[

−1
2

∫

d3x
∫

d3yAa
i (~x)G−1ab

i j (~x−~y)Ab
j (~y)

]

(2.2)
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with the normalization factorN −1
G = [det(G/2)]−1/4 and a real “covariance”G−1.

2.1 Gluon dispersion: asymptotic freedom and IR generality

We now have to specify the properties of the functionG−1 in the trial functional family (2.2).
Translational invariance was already anticipated in Eq. (2.2). We will further restrict ourselves to
a purely transverse covariance with the Fourier transform [6]

G−1,ab
i j (k) = δi j δ abG−1(k) (2.3)

(cf. Ref. [5] for a discussion of this choice and Refs. [10, 11] for the impact of longitudinal
contributions). The normalizability of physical wave functionals then demands G−1(k) > 0 and
further ensures vacuum stability and a positive energy spectrum. In order to implement the correct
UV behavior, we factorize the core functionals (2.2) asψ(G)

0

[

~A
]

= ψ(G<)
0

[

~A<

]

ψ(G>)
0

[

~A>

]

by

splitting the~k integration domain in their exponentials into soft/hard momentum regions with
∣

∣

∣

~k
∣

∣

∣
≷

µ. The separation scaleµ will be determined below. Asymptotic freedom requiresG to approach
the non-interacting, massless static vector propagatorG0(k) = 1/k for k → ∞. As long asµ �
ΛYM (whereΛYM is the Yang-Mills scale) perturbative hard-mode corrections remain small, which
allows us to approximate

G−1
> (k) = G−1

0 (k) = k. (2.4)

The unknown IR covarianceG−1
< (k), on the other hand, will be determined variationally. In Ref.

[6] the minimal one-parameter trial functionG−1
<,KK (k) = µ was adopted. We have implemented a

far more comprehensive parametrization [7], based on the under reasonable analyticity assumptions
general and controlled gradient expansion

G−1
< (~x−~y) = mg

[

1+c1
∂ 2

x

µ2 +c2

(

∂ 2
x

µ2

)2

+c3

(

∂ 2
x

µ2

)3

+ ...

]

δ 3
< (~x−~y) . (2.5)

Eq. (2.5) can be efficiently truncated to maintain an analytically manageable trialbasis for the
soft-mode physics. Besidesµ, the variational parameter space now contains the IR gluon mass
mg > 0 and a few low-momentum constantsci which characterize dispersive gluon properties in

the vacuum. The regularized delta functionδ 3
< (~x−~y) :=

∫

d3k/(2π)3 θ
(

µ2−~k2
)

ei~k(~x−~y) encodes

the slow variation‖∂A<‖/‖A<‖ ≤ µ of the soft modes and ensures that the higher-order terms in
Eq. (2.5) are parametrically suppressed.

As a consequence ofG−1(k) > 0, the low-momentum constants are subject to the bounds
c1 < 1, c2 > −1, etc. (formg > 0). Requiring continuity ofG−1(k) at the matching pointk = µ,
furthermore, fixesmg as a function of the other variational parameters. When truncating toci≥2 = 0,
for example, one has

mg(µ,c1) =
µ

1−c1
. (2.6)

Note that the requirement of a non-negative IR gluon mass restricts thec1 domain toc1 < 1, in
agreement with the above bound fromG−1(k) > 0. The VWF (2.1) together with the core func-
tional (2.2) and the covariance (2.4), (2.5) (possibly with perturbative corrections) appears to be
the “richest” gauge-invariant trial functional family whose matrix elements can be calculated ana-
lytically by currently available techniques.
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3. Variational analysis

One the basis of the trial functional family (2.1) discussed above, the variational analysis
amounts to minimizing the expectation value

〈H (A,E)〉 =

∫

D~AΨ∗
0

[

~A
]

H

(

~Aa,~Ea
)

Ψ0

[

~A
]

∫

D~AΨ∗
0

[

~A
]

Ψ0

[

~A
] (3.1)

of the Yang-Mills Hamiltonian density

H =
1
2

(Ea
i Ea

i +Ba
i Ba

i ) (3.2)

(in temporal gauge, with~Ea = iδ/δ~Aa) with respect to the parameters appearing inG−1. After
inserting the wave functional (2.1) into Eq. (3.1) and interchanging the order of integration over
fields and group elements, the gauge invariance of the~A integral allows to factor out a gauge group
volume. Eq. (3.1) can thus be rewritten as

〈H (A,E)〉 =

∫

DU
∫

D~Aψ0

[

~AU
]

H

(

~Aa, iδ
δ~Aa

)

ψ0

[

~A
]

∫

DU
∫

D~Aψ0

[

~AU
]

ψ0

[

~A
] (3.3)

(whereDU is the functional SU(Nc) measure as defined in Eq. (2.1)). After evaluating the func-
tional derivatives contained inH , the Gaussian integration overA can be performed exactly, re-
sulting in

〈H 〉 =

∫

DU 〈〈〈H 〉〉〉exp{−Γb [U ]}
∫

DU exp{−Γb [U ]} (3.4)

where we introduced the notation
〈〈〈

~A...~A...~E...~E
〉〉〉

exp{−Γb [U ]} ≡
∫

D~Aψ0

[

~AU
]

~A...~A...
iδ
δ~A

...
iδ
δ~A

ψ0

[

~A
]

(3.5)

for matrix elements betweenU-rotated and unrotated core VWFs. The above expression defines, in
particular, the effective bare actionΓb [U ] = − ln

∫

D~A ψ∗
0

[

~AU
]

ψ0

[

~A
]

which describes dynamical
correlations generated by the gauge projection. This action gathers all those gauge-field contribu-
tions to the generating functional whose approximate vacuaψ0 at t =±∞ differ by a relative gauge
orientationU . Hence the gauge-invariant “variable”U represents the contributions from all such
gluon field orbits to the vacuum overlap. Explicitly, one finds [5]

Γb [U ] =
1

2g2
b

∫

d3x
∫

d3yLa
i (~x)Dab(~x−~y)Lb

i (~y) (3.6)

with Li =U†∂iU =: La
i λ a/(2i) andDab=

[

(

G+GU
)−1

]ab
' 1

2G−1δ ab+... whereGU = Gab(~x−~y)

U†(~x)(λ a/2)U (~x)⊗U (~y)
(

λ b/2
)

U†(~y).
After splittingU (~x) = U< (~x)U> (~x) with U> (~x) = exp(−igφa(~x)λ a/2) into hard- and soft-

mode contributions and integrating over the hard modesφa perturbatively [6], furthermore, one
arrives at

〈H 〉 =

∫

DU<
∫

Dφ 〈〈〈H 〉〉〉exp{−Γb [φ ,U<]}
∫

DU<
∫

Dφ exp{−Γb [φ ,U<]} . (3.7)

4
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With the additional definition

〈〈O〉〉exp{−Γ< [U<]} :=
∫

Dφ 〈〈〈O〉〉〉exp{−Γb [φ ,U<]} , (3.8)

which contains the effective soft-mode action

Γ< [U<] := − ln
∫

Dφ exp{−Γb [φ ,U<]} (3.9)

(i.e. the RG evolved bare action (3.6)), we can finally rewrite the matrix element(3.1) solely in
terms of theU< field dynamics, i.e.

〈H 〉 =

∫

DU< 〈〈H 〉〉exp{−Γ< [U<]}
∫

DU< exp{−Γ< [U<]} . (3.10)

Since the “reduced” (i.e., fixedU<) matrix element〈〈H 〉〉 is a nonlocal functional of the soft
modesU<, the evaluation of Eq. (3.10) amounts to calculating (equal-time) soft-mode correlation
functions [5].

3.1 Vacuum phases

In integrals over theU< fields (such as those in Eq. (3.10)) the unitarity constraintU†
<U< = 1

can be resolved by inserting a delta functional which is then written as an additional integral over
a hermitean auxilary fieldΣ. In Eq. (3.10) the integration over the then unconstrainedU< becomes
Gaussian and can be done analytically. In the mean-field approximation, the expression for〈〈H 〉〉
is then evaluated at the saddle pointΣ̄ =:

(

µξ̄
)2

of theΣ integral, i.e. at the minimal-action solution
of the gap equation

〈

U†
<,AB(~x)U<,BC(~x)

〉

= δAC (3.11)

which reintroduces unitarity in the mean. After adopting the one-loop Yang-Mills couplingγ (µ) =

g2
YM (µ)Nc/π2 Nc=3

= 24/(11lnµ/ΛYM ), the solutionsξ̄ of Eq. (3.11) depend on two variational
parameters, the RG scaleµ ≥ 0 andc1 < 1. The critical lineµc(c1), i.e. the parameter subspace
where the (dis-)order parameterξ̄ (µc(c1) ,c1) vanishes and the phase transition takes place, can be
found analytically as the combination of the two curves

µc,1,2(c1)

ΛYM
= exp





48
11

(1−c1) [1− ı̃(c1)] [1+(1−c1) ı̃(c1)]

(1−c1) ı̃(c1)±
√

5ı̃2(c1)(1−c1)
2−4(1−c1) [1−c1ı̃(c1)]



 (3.12)

(ı̃(c1) := arctanh
√

c1/
√

c1). We plot this closed phase boundary in Fig. 1. It limits the parameter
ranges to 0.5 . µc

ΛYM
. 8.86 and−0.48 . c1 < 1 and thus prevents the minimal-energy solution

ξ̄ ∗ from attaining unacceptably large values ofµ and|c1|. Nonzero solutions of the gap equation
exist only when the gauge coupling exceeds a critical value, i.e. forg2(µ) > g2

c (c1) , as expected
on physical grounds. The (dis-)order parameter goes to zero continuously, furthermore, i.e. the
disorder-order transition is of second order (which may be an artefactof the mean-field approxi-
mation [5]).

5
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Figure 1: The vacuum phase diagram. Inside the plotted phase boundaryµc (c1)/ΛYM the theory is in its
strongly-coupled disordered phase. (The underlying approximations are reliable forµ & 4ΛYM andc1 ∈
{−0.5,0.5}).

3.2 Vacuum energy density

Working with the Poincaré-invariant trial states (2.1) and taking only one-loop corrections
from the hard modes into acccount, it is sufficient to regularize Eq. (3.1) by a momentum cutoff
ΛUV [6]. Separating the complete vacuum energy densityε = E/V = 〈HYM 〉 into hard and soft
contributions,

ε
(

µ,c1,ζ ; ξ̄
)

= 〈HYM 〉 = ε> (µ)+ ε<

(

µ,c1,ζ ; ξ̄
)

, (3.13)

(ζ ≡ mg/µ) the cutoff dependence resides solely in

ε> (µ) =
N2

c −1
8π2

(

Λ4
UV −µ4) . (3.14)

As expected, this is the (regularized) zero-point energy density of two transverse,masslessvector
modes in the adjoint representation of SU(Nc) with energyω (k) = k. Simple normal-ordering thus
subtracts theΛUV dependent term. Forci≥2 = 0 one then finds the total energy densityε̄ (µ,c1) :=
ε
(

µ,c1,ζct(c1) ; ξ̄ (µ,c1)
)

in the disordered phase as

ε̄ (µ,c1) =− N2
c

4π2 µ4
[

4c3
1 +10c2

1−50c1 +30

30c2
1(1−c1)

− 1−c1

c2
1

arctanh
√

c1√
c1

+
ı̃2−2c1ı̃3 +c2

1ı̃4 +2γc1(1−c1) ı̃2
(

j̃3−2c1 j̃4 +c2
1 j̃5

)

1−c1

]

(3.15)

where the integrals ˜ın(ξ ,c1) , j̃n(ξ ,c1) are defined in Ref. [5] and evaluated atξ̄ (µ,c1). This
energy density is plotted in Fig. 2.

In the ordered phase, i.e. forµ ≫ ΛYM whereg2(µ)� 1, the energy density can be calculated
perturbatively (ing2). Since fluctuationsϕa

< aroundU< ∼ 1 are small in this phase, one may
approximateU< = exp(igϕa

<λ a) = 1+ igϕa
<λ a+O

(

g2
)

. After adding the hard-mode contribution
(3.14) and discarding the zero-point contribution, this results in

ε (µ,c1) =
N2

c −1
4π2 µ41−c1

c2
1

[

−c3
1 +15c2

1−50c1 +30

30(1−c1)
2 +

arctanh
√

c1√
c1

]

. (3.16)

6
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Figure 2: The energy densitȳε (µ ,c1) of the vacuum field solution̄ξ (µ ,c1) in the disordered phase. (The
plot shows the parameter rangesµ ∈ {4,9}ΛYM andc1 ∈ {−0.5,0.8} .) Note the minimum of the energy
surface atc1 ' 0.15.

It is reasonable to expect that this perturbative result remains qualitatively reliable down to the
phase transition atµc [6]. The singularity of the energy density atc1 → 1 encodes the vacuum
instability forc1 ≥ 1 and thus automatically ensures that the wave functional remains normalizable
during the variational analysis.

The most important lesson of the above analysis is thatε (µ,c1) increasesmonotonically with
µ andc1 (for −2 < c1 < 1) in the ordered phase while the energy density (3.15) in the strongly-
coupled disordered phase monotonicallydecreaseswith µ andc1, up to the phase transition. This
indicates that the vacuum energy density becomes minimal at the phase boundary in the disordered
phase, i.e. at̄ξ = 0+ (where the number of massless particles becomes maximal [5]). The pre-
cise minimum,ε̄ (µ∗,c∗1) ' −210.59Λ4

YM , is reached atc∗1 ' 0.15 with µ∗ = µc(c∗1) = 8.61ΛYM .

These values justify the perturbative treatment of the hard modes and of the4U contributions. The
c1 corrections reduce the vacuum energy density by about 11% and provide a rather substantial
improvement of the wave functional.

3.3 Gluon condensate and quasigluon kinetic mass

At the physical parameter values, i.e. at the border of the disordered phase where the energy
is minimal, the gluon condensate becomes

〈

F2〉 = −N2
c −1
π2 µ4

[

7c3
1−20γ∗c3

1 +15c2
1 +20γ∗c2

1−50c1 +30

30c2
1(1−c1)

−
(

1−c1

c2
1

+
2γ∗

3

)

arctanh
√

c1√
c1

]

(3.17)
(γ∗ = g2(µ∗)Nc/π2 ' 1.012). Numerically, this implies

〈α
π

F2
〉

= 20.87Λ4
YM ' 0.011 GeV4 (3.18)

(for ΛYM ' 0.15 GeV), i.e. an about 25% larger value than in the uncorrectedc1 = 0 case. The re-
sult (3.18) lies comfortably within the standard range

〈

(α/π)F2
〉

= 0.0080−0.024 GeV4 obtained
from QCD sum rules [12].

7



P
o
S
(
Q
C
D
-
T
N
T
-
I
I
)
0
2
2

Exploring Gauge-Invariant Vacuum Wave Functionals for Yang-Mills Theory Hilmar Forkel

Our finite and positive result forc1 has further interesting consequences since it reshapes the
composition and dispersion of the vacuum field population. Indeed, the attractive IR interactions
generated byc1 > 0 deplete the density of ultralong-wavelengthk → 0 modes and populate the
k∼ µ modes more strongly. This is consistent with the expected average wavelength λ ∼ Λ−1

YM of
the vacuum fields. SinceG−1(k) describes the dispersion relationω (k) of “quasigluon” modes in
the vacuum, furthermore, one may relatec1 to the modulus of the dimensionless quasigluon group
velocity~v

(

~k
)

= ∂G−1
<

(

~k
)

/∂~k atk = µ [5],

|c1| =
v(µ)

v(µ)+2
. (3.19)

For 0> c1 > 1 (as in our case), furthermore, the “effectivekineticgluon mass”mg, which relates
velocity and momentum as~k = mg~v, is negative. Hence~v is opposite to the momentum, causing
the “quasigluons” in the vacuum to decelerate when an external force is applied. (Such dispersions
are encountered in several condensed-matter systems and are in stark contrast to the behavior of
free gluons.) Hence quasigluons (with their small scattering amplitudes) may show a negative
differential color resistance.

4. Infrared degrees of freedom

Our above representation of the vacuum dynamics in terms of thegauge-invariantlow-energy
fieldsU< provides the opportunity to search for specificU< which may play a particularly impor-
tant or even dominant role in the generating functional (and hence universally in all low-energy
amplitudes) [13]. If such fields exist, they can be regarded as universal infrared degrees of freedom
(IRdofs). In contrast to other proposed IRdof candidates (e.g. classical gauge-field solutions like
instantons [14], or monopole and vortex configurations), the IRdofs expressed in terms ofU< are
gauge invariant and contain crucial quantum effects (e.g. those which stabilize the instanton size,
see below). From a practical perspective, these IRdofs will be useful as well since many technical
problems encountered when dealing with gauge-dependent fields are avoided from the outset. Be-
low we will show that large classes of such IRdofs indeed exist and review how their stability and
topology emerges. We then construct important IRdof classes explicitly anddiscuss their properties
and physical interpretation.

4.1 Gauge-invariant saddle point expansion

We start from the vacuum overlap matrix element, i.e. the functional integral

Z =
∫

DU< exp(−Γ [U<]) (4.1)

over the soft modes, with the actionΓ given by Eq. (3.9). (Sources can be included when needed.)
A steepest descent approximation forZ can be set up by expandingU< around the saddle point
fieldsŪi (~x), i.e. the local minima of the soft-mode action (3.9) which solve

δΓ [U<]

δU< (~x)

∣

∣

∣

∣

U<=Ū (Q)
i

= 0. (4.2)

8
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(Different topological charges (see below) are summarily denoted byQ since the action is varied
in each topological sector separately.) To leading order, the saddle pointexpansion forZ is then a
weighted sum (or integral – the symbolic labeli becomes continuous when the saddle points form
continuous families) over the contributions from all relevant solutionsŪ (Q)

i ,

Z ' ∑
Q∈Z,i

Fi

[

Ū (Q)
i

]

exp
(

−Γ
[

Ū (Q)
i

])

, (4.3)

where nontrivial pre-exponential factorsFi are typically generated by zero-mode contributions.
For the general analysis and explicit solution of Eq. (4.2) we adopt the parametrization

U< (~x) = exp[φ (~x) n̂a(~x)λ a/(2i)] of the SU(Nc) elements and work directly with theN2
c −1 in-

dependent degrees of freedom ofU<, i.e. the unit vector field ˆna and the spin-0 fieldφ . For
simplicity, we will also specialize toNc = 2 and use the first two terms in the expansion (2.5) of
the inverse finite-mass gluon propagatorG−1(k) =

√

k2 + µ2 as a template for the covariance [7].
The soft-mode Lagrangian can can then be written as a sum of two- and four-derivative terms,

L (U<) = L2d (φ , n̂)+L4d (φ , n̂) . (4.4)

(For the explicit expressions see Ref. [7].) The saddle point equation (4.2), when specialized to
variations with respect toφ andn̂a, becomes a system of four nonlinear partial differential equa-
tions. Its localized solutions can be shown to be stable under scale transformations, due to the virial
theoremΓ2d (1) = Γ4d (1) [7]. (Clearly the four-derivative termΓ4d is crucial here – truncation of
the gradient expansion (2.5) to two powers of∂U</µ is therefore the minimal approximation
which supports stable saddle points.) The origin of this stability can be traced tothe mass scaleµ
emerging from the out-integrated short-wavelength quantum fluctuations.

An already mentioned, crucial benefit of the gauge-projected wave functionals (2.1) is that
they fully implement the nontrivial topology of the gauge group and fields. TheU< fields thereby
inherit three integer topological quantum numbers [7]: a winding numberQ[U<] (characterizing
the homotopy groupπ3

(

S3
)

= Z), a monopole-type degreeqm[n̂] based onπ2
(

S2
)

= Z and finally a
linking numberqH [n̂] in the Hopf bundleπ3

(

S2
)

= Z which classifies knot solutions. This topology
entails two lower action bounds [7] of Bogomol’nyi type,

Γ [U<] ≥ 12π2

g2(µ)
|Q[U<]| , Γ [φk = (2k+1)π, n̂] ≥ 29/233/8π2

g2(µ)
|qH [n̂]|3/4 , (4.5)

which ensure that contributions to soft amplitudes from saddle points in high charge sectors can
generally be neglected. This allows for practicable truncations of the saddle-point expansion.
(Saturation of the first bound requires the fields to solve the Bogomol’nyi-type equation∂iL j =

∓µεi jkLk, incidentally, which can be considered as the analog of the self-(anti)-duality equation in
Yang-Mills theory.)

4.2 Important examples of gauge-invariant infrared degrees of freedom

In general, the saddle-point solutions have to be found numerically. Amongthe exceptions are
the translationally invariant vacuum solutionsUc = const. (which are the absolute action minima
Γ [Uc] = 0) and several nontrivial solution classes which can be found analytically. In addition,
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important and sufficiently symmetric solutions classes can often be obtained by solving substan-
tially simplified field equations [7]. (The typically smaller action values of solutionswith higher
symmetry generate a stronger impact on the matrix elements, furthermore.)

As an example for nontrivial analytical solutions, we considerU< fields with constant ˆna for
which the saddle point equation becomes linear:∂ 2

(

∂ 2φ −2µ2φ
)

= 0. The general solution does
not carry any topological charge and was found in Ref. [7]. The subset of spherically symmetric
solutions with finite action, in particular, is

φ̄ (n̂=c) (r) = c1 +
c2√
2µr

(

1−e−
√

2µr
)

(4.6)

with the actionΓ
[

φ (n̂=c), n̂c
]

= c2
2π/

(√
2g2(µ)

)

. Since Eq. (4.6) is not subject to topological
bounds, it continuously turns into one of the vacuum solutions forc2 → 0.

A particularly important saddle-point solution class consists of topological solitons of “hedge-
hog” type,

n̂a(~x) = x̂a, φ (~x) = φ (hh) (r) (4.7)

(x̂a ≡~x/r, r ≡ |~x|). Well-defined hedgehog fields must satisfy the boundary conditionφ (hh) (0) =

2k1π (regularity at the origin further requiresφ ′′ (0) = 0) and finite-action fields additionally have
φ (hh) (∞) = 2k2π wherek1,2 and the chargeQ = k1− k2 are integers. The more general boundary
conditions

φ (hh) (0) = nπ, φ (hh) (∞) = mπ, Q
[

φ (hh)
]

=
n−m

2
(4.8)

(n,m integer) additionally admit infinite-action solutions with half-integer winding numbersQ (for
eithermor n odd). All hedgehog fields further carry the monopole-type chargeq(hh)

m := qm[x̂] =±1.
Due to the periodicity inφ , it is sufficient to consider boundary values in the rangeφ (0) ∈ ]0,2π].
The dynamics ofφ (r) is governed by the radial Lagrangian

L
(hh) (r) =

π
g2(µ)µ

[

1
2

(

rφ ′′)2
+

(

3+ µ2r2)(

φ ′)2
+4µ2(1−cosφ)

]

. (4.9)

The hedgehog saddle points, found numerically in Ref. [7], turn out to comprise mainly contribu-
tions from and around the gauge orbits of the classical Yang-Mills solutions, i.e. (multi-) instantons
and (multi-) merons. The potential term in Eq. (4.9) is analogous to that of a one-dimensional pen-
dulum in a gravitational field, with stable (unstable) equilibrium positions atφ = π (φ = 0), modulo
multiples of 2π.

We first discuss the regular hedgehog solutions. Their three boundaryconditionsφ (0) = 2π,

φ ′′ (0) = 0 andφ (∞) = 2π (1−Q) imply that for a givenQ all of them can be found by varying
the initial slopeβ := φ ′ (0). (For the irregular solutions withφ (0) = π see Ref. [7].) The reg-
ular solutions turn out to contain onefinite-actionsolution for eachQ, denoted as the “|Q| (anti)
instanton class”, and the remaining, continuous (inβ ) infinite-action families, the “2|Q| (anti)
meron classes”. The 1-instanton class solution is depicted in Fig. 3. Its relative gauge orienta-
tion U = U−1

− U+ is even quantitatively close to that of the Yang-Millsinstanton[14] (orbit) (see
dashed curve in Fig. 3). This confirms that the|Q| instanton classes indeed primarily summa-
rize Yang-Mills instanton contributions. However, they also contain crucial,dilatation-breaking
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Figure 3: The 1-instanton class solution. The dashed line corresponds to the Yang-Mills instanton.

quantum corrections which dynamically stabilize the instanton size at aboutρ ' 2µ−1, compat-
ible with instanton liquid model [14] and lattice [15] results, and thus overcome the chronic IR
instabilities of classical Yang-Mills instanton gases. Since instanton effects play important roles
in Yang-Mills theory (e.g. in theθ vacuum [16] and in spin-0 glueball physics [12, 14, 17]), it is
crucial that they are (at least partly) included in the vacuum functional (2.1). In fact, approximate
non-hedgehog solutions corresponding dominantly to ensembles of instantons and anti-instantons
should also exist and play prominent roles (since they would be enhancedby a large “entropy”, as
in phenomenologically successful “instanton liquid” models [14]).

All remaining regular (i.e.φ (0) = 2π) hedgehog solutions, with initial slopesβ between the
discrete instanton-class valuesβI ,Q, form the 2|Q| (anti-) meron classes. Those approach one of
the valuesφM (∞) = (2k+1)π at spacial infinity and therefore have infinite action, as the Yang-
Mills merons [16]. Moreover, solutions withφ (∞) = (2k+1)π, corresponding to an odd number
of merons, carry the half-integer topological chargeQ of their Yang-Mills meron counterparts. In
addition, quantum effects ensure that our meron-class solutions acquirea finite size and therefore
remain nonsingular. Since the 2|Q|-meron classes appear in continuous families (parametrized
by their “size” β−1), furthermore, their large entropy will help to overcome their infinite-action
suppression in functional integrals. As in Yang-Mills theory, merons couldthen play a physical
role, e.g. in the confinement mechanism [16].

We conclude our discussion of selected saddle-point solutions with one ofthe most intriguing
classes, consisting of (solitonic) links and knots. Those emerge from a generalization of Faddeev-
Niemi theory [18],

L
(φk) (~x) =

µ
g2(µ)

[

(∂i n̂
a)2 +

1
µ2

(

εabc∂i n̂
b∂ j n̂

c
)2

+
1

2µ2

(

εabcn̂b∂ 2n̂c
)2

]

, (4.10)

which is included in our soft-mode Lagrangian for constantφk = (2k+1)π. The corresponding
solution classesU< (n̂) describe twists, linked loops and knots made of closed color fluxtubes.
Since Eq. (4.10) follows uniquely from the VWF (2.1) and the Yang-Mills dynamics, our approach
provides a new framework and physical interpretation for such solutions. In fact, they remerge
as gauge-invariant IR degrees of freedom representing sets of gauge-field orbits with a collective
Hopf charge. While the ˆn field of the Faddeev-Niemi model is interpreted as a gauge-dependent
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local color direction in the vacuum, in particular, our ˆn is manifestly gauge-invariant. This may put
the tentative interpretation of such knot solutions as glueballs on a firmer basis.

5. Summary and conclusions

We have studied gauge-invariant wave functionals for the Yang-Mills vacuum which incorpo-
rate asymptotic freedom and ana priori general dispersion for the infrared gluons in Gaussian core
functionals. In this at present probably richest analytically manageable and gauge-invariant trial
functional basis, we have then variationally determined several vacuum properties. Dimensional
transmutation, dynamical mass generation and gluon condensation emerge transparently and gen-
erate mass scales consistent with other approaches. In addition, the improved vacuum description
in the infrared predicts a negativekinetic mass of the soft gauge-field modes and thus suggests a
negative differential color resistance of the Yang-Mills vacuum.

Another benefit of the gauge-invariant framework is that the dynamics can be reformulated as
an effective theory which represents sets of gluon orbits as gauge-invariant matrix fields subject
to higher-gradient interactions. In this effective theory we have set upa saddle-point expansion to
determine the collective fields with maximal impact on functional integrals. Thesesaddle points
play the role of gauge-invariant infrared degrees of freedom. They are stabilized by the dynamical
mass generation mechanism and inherit a rich topological structure (three topological charges and
action bounds of Bogomol’nyi type) from the Yang-Mills gauge group. Moreover, they provide
the principal input for a systematic saddle-point expansion of soft amplitudes (such as glueball
correlators).

Several of the more symmetric and important saddle-point solution classes have been found
explicitly. Among them are topological solitons related to the classical Yang-Mills(multi-) pseu-
doparticle solutions which mediate tunneling processes in the vacuum. Those generate a gauge-
invariant representation of instanton and meron effects which includes quantum fluctuations. The
latter stabilize the pseudoparticle sizes dynamically, in particular, and therebycure the notorious
infrared deseases encountered in dilute instanton ensembles. Similar solutions with other types of
topological charges exist as well but seem to have no obvious counterparts in classical Yang-Mills
theory. One of the most intriguing solution classes, finally, consists of solitonic links and knots.
Those emerge from a generalization of Faddeev-Niemi theory which turnsout to be embedded in
our soft-mode dynamics. Hence in our framework the knot solutions find a new and in particular
gauge-invariant physical interpretation, potentially related to glueballs.
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