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1. Introduction

In recent years there has been an intense activity into understanding the infrared behaviour of
the gluon and Faddeev-Popov ghosts of QCD. The reason for this is that it gives an insight into
colour confinement and thus the absence of free gluons in nature. From a theoretical point of view
Gribov indicated that the gauge fixed Lagrangian in non-abelian gauge theories led to an overcount-
ing of gauge field configurations in the path integral, [1]. In order to handle this Gribov introduced
a nonlocal Lagrangian which restricted the gauge fields to lie in a region of configuration space.
Consequently the propagators of Yang-Mills theory were modified in such a way that the gluon
was suppressed in the infrared whereas the Faddeev-Popov ghost was enhanced, [1]. Whilst this
was in a semiclassical approach a Lagrangian analysis in the full quantum theory was established
over a period of years by Zwanziger, [2 – 4]. This Gribov-Zwanziger Lagrangian was local and
renormalizable and meant that loop calculations could be performed. The predictions of a sup-
pressed gluon and an enhanced Faddeev-Popov ghost propagator were established as fundamental
properties of the gauge field restriction to a region of configuration space, [2 – 4]. However, with
the improvement of lattice algorithms, analyses and computing power it has been possible to probe
the propagators to smaller values of the momentum. The upshot is that it is generally accepted that
the gluon propagator is not suppressed but freezes and the ghost propagator behaves essentially as
a free particle. See, for instance, [5 – 7] and contributions to this meeting. To accommodate this
behaviour in the Gribov-Zwanziger context an additional dimension two BRST invariant operator
was included in the Lagrangian, [8]. This can mimic the infrared propagator behaviour observed
on the lattice. However, that analysis was not complete in that the most general colour structure
was not considered. This has been carried out now, [9], and we review that result here as well
as discussing latest work. This will include an alternative way of writing the original Gribov gap
equation defining the Gribov mass as the vacuum expectation value of purely localizing bosonic
ghost fields, [9].

Whilst the infrared properties of the propagators are interesting the overall structure of the
Green’s functions of QCD are also fundamental to understanding the strong interactions. For
instance, another analytic technique which allows one to probe the zero momentum limit is the
Schwinger-Dyson equations. This is a method to solve the tower of n-point Green’s functions.
Though in practice one has to make a truncation in order to have a manageable set of equations.
However, whether one uses the lattice or Dyson-Schwinger equations both approaches have to be
consistent with the ultraviolet structure of the Green’s functions. The second part of this article
therefore reviews recent activity into computing the 3-point vertex functions of QCD at the sym-
metric subtraction point analytically at two loops, [10]. It extends the original one loop momentum
subtraction scheme analysis of Celmaster and Gonsalves, [11]. So the full exact three loop MOM
β -functions and renormalization group functions are known exactly now as well as the full two
loop structure of the vertex amplitudes, [10, 12]. This extends the earlier numerical approxima-
tion carried out in [13] based on the use of MINCER, [14], in approximating the symmetric point
Feynman diagrams in an expansion in 2-point diagrams.

The article is organized as follows. We recall aspects of the Gribov-Zwanziger Lagrangian
in section 2 including the recent work on the infrared behaviour of the bosonic localizing ghost.
Properties of the theory when the most general dimension two BRST invariant localizing ghost
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operator is included are discussed in section 3 including the gap equation for the R channel and
the infrared structure of the bosonic localizing ghost propagator in that case. A summary of the
construction of the effective potential for the general ghost operator is provided in section 4 as well
as recent results on the gap equation. Section 5 deals with the two loop structure of the QCD 3-
point vertices at the symmetric point in conventional perturbation theory based on the non-Gribov
QCD Lagrangian. Concluding remarks are given in section 6.

2. Gribov-Zwanziger theory

The restriction of the gauge field, Aa
µ , in the Landau gauge to lie within the first Gribov region

means that the QCD Lagrangian in the path integral construction gets modified by additional non-
local terms, [1]. In [2, 3] Zwanziger managed to localize this Lagrangian by introducing additional
localizing ghost fields in such a way as to retain the horizon condition and not upset the accepted
ultraviolet structure of QCD. Specifically the renormalizable localized Lagrangian is

LGZ = LQCD +
1
2

ρab µ∂ ν (

Dνρµ
)ab

+
i
2

ρab µ∂ ν (

Dνξµ
)ab − i

2
ξ ab µ∂ ν (

Dνρµ
)ab

+
1
2

ξ ab µ∂ ν (

Dνξµ
)ab − ω̄ab µ∂ ν (

Dνωµ
)ab − 1√

2
g f abc∂ ν ω̄ae

µ (Dνc)b ρec µ

− i√
2

g f abc∂ ν ω̄ae
µ (Dνc)b ξ ec µ − iγ2 f abcAa µξ bc

µ − dNAγ4

2g2 (2.1)

where LQCD is the usual Landau gauge fixed Lagrangian with Nf massless quarks and Faddeev-
Popov ghosts. We have recorded the version where the real localizing ghosts, ξ ab

µ and ρab
µ , are used

together with their Grassmann counterparts, ωab
µ and ω̄ab

µ . The parameter γ is the Gribov mass,
g is the coupling constant, d is the spacetime dimension and NA is the dimension of the adjoint
representation. The mixed quadratic term means a more involved set of propagators which are

〈Aa
µ(p)Ab

ν(−p)〉 = − δ ab p2

[(p2)2 +CAγ4]
Pµν(p) , 〈Aa

µ(p)ξ bc
ν (−p)〉 =

i f abcγ2

[(p2)2 +CAγ4]
Pµν(p)

〈Aa
µ(p)ρbc

ν (−p)〉 = 0 , 〈ξ ab
µ (p)ξ cd

ν (−p)〉 = − δ acδ bd

p2 ηµν +
f abe f cdeγ4

p2[(p2)2 +CAγ4]
Pµν(p)

〈ξ ab
µ (p)ρcd

ν (−p)〉 = 0 , 〈ρab
µ (p)ρcd

ν (−p)〉 = 〈ωab
µ (p)ω̄cd

ν (−p)〉 = − δ acδ bd

p2 ηµν (2.2)

where Pµν(p) = ηµν − pµ pν/p2 and f abc are the colour group structure constants. The gluon
propagator is clearly suppressed in the infrared in keeping with Gribov’s analysis, [1]. Over a
period of years certain general properties of the propagators in the quantum theory have been
established. Aside from the Faddeev-Popov and localizing Grassmann ghost enhancement, it has
recently been shown that the bosonic localizing ghost enhances too, [15]. This has been explicitly
verified by one loop computations which relies on the gap equation being satisfied. Indeed unless
γ satisfies this gap equation one is not in the gauge theory as γ is not an independent parameter of
the theory. For verifying the enhancement one computes the one loop corrections to the 2-point
function matrix of the theory, imposes the gap equation and then inverts this matrix to deduce the
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zero momentum behaviour of the propagators. At one loop one has, in four dimensions, [16],

〈ξ ab
µ (p)ξ cd

ν (−p)〉 ∼ 4γ2

π
√

CA(p2)2a

[

δ adδ bc −δ acδ bd
]

ηµν +
8γ2

πC3/2
A

(p2)2a
f abe f cdePµν(p)

〈ρab
µ (p)ρcd

ν (−p)〉 ∼ − 8γ2

π
√

CA(p2)2a
δ acδ bdηµν (2.3)

as p2 → 0. One feature of Zwanziger’s general analysis, [15], was that the adjoint projection of
ξ ab

µ was not enhanced which can be seen from (2.3),

f apq f brs〈ξ pq
µ (p)ξ rs

ν (−p)〉 ∼ − δ ab

[

69πC2
Aa

128
√

CAγ2
+

p2

γ4

]

Pµν(p)

− δ ab

[

8CAγ2

π
√

CA(p2)2a
+

4
π2 p2a

]

Lµν(p) (2.4)

where Lµν(p) = pµ pν/p2. However, this adjoint colour projection does not vanish at zero momen-
tum in the transverse part because of the constant term. The enhancement in the longitudinal sector
accords with the expectation of [15]. The infrared behaviour of the transverse part of this spin-1
adjoint index object appears to be consistent with the non-suppressed gluon observed over many
years now on the lattice, [5 – 7]. Indeed if one takes the same projection in (2.2) then the original
propagator is

f apq f brs〈ξ pq
µ (p)ξ rs

ν (−p)〉 = − CA p2

[(p2)2 +CAγ4]
δ abPµν(p) − CA

p2 δ abLµν(p) . (2.5)

So the transverse term is suppressed similar to the original Aa
µ field of Gribov’s analysis. This

similarity is perhaps not surprising as ξ ab
µ is used to localize a non-local operator which depends

purely on Aa
µ . It may be that the behaviour of the ξ ab

µ , which is the remnant of the original Aa
µ field,

is being observed in lattice work. The three dimensional case is similar, [17]. However, this is not
a full explanation of lattice data as the Faddeev-Popov ghost enhancement is not seen. Though that
may be a case of not comparing the same quantities as the continuum analysis. This comment is
driven by the fact that Faddeev-Popov ghost fields are not constructed on the lattice and that the
object which is regarded as being the ghost propagator on the lattice is merely the inverse of the
Faddeev-Popov operator. This is driven by the Lagrangian construction and there appears to be an
assumption that this operator remains relevant in the infrared despite claims that BRST symmetry
is broken. Aside from this there have been Lagrangian approaches, [8], to try and understand what
is known as the decoupling solution. Though it transpires that that analysis was not complete, [9].

3. BRST invariant operator

To model the non-enhanced Faddeev-Popov ghost and frozen gluon propagators of the decou-
pling solution in the Gribov-Zwanziger context, a BRST invariant dimension two operator built
from the localizing ghost fields was included in the Lagrangian, [8]. The justification for the inclu-
sion of such an additional mass term is that it is dynamically generated through the condensation
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of the operator itself. This has been analysed using the local composite operator formalism, [8].
However, the construction of [8] was not comprehensive and did not take into account all possible
colour channels, [9]. Moreover it was shown in [9] that a non-enhanced Faddeev-Popov ghost and a
frozen gluon could be modelled in various colour channels which were different from that analysed
in [8]. Hence the construction of [8] was not unique. Specifically the most general BRST invariant
operator is

O =

[

µ2
Qδ acδ bd + µ2

W f ace f bde +
µ2

R

CA
f abe f cde + µ2

S dabcd
A +

µ2
P

NA
δ abδ cd + µ2

T δ adδ bc
]

O
abcd

(3.1)
where

O
abcd =

1
2

[

ρabρcd + iξ abρcd − iρabξ cd + ξ abξ cd
]

− ω̄abωcd (3.2)

and the parameters µ2
i label the different colour channels in the notation of [8]. With the inclusion

of (3.1) in (2.1) then one can study the structure of the propagators. It transpires that decoupling
behaviour emerges when one has non-zero Q, R, T or W masses in any combinations, [9]. Whilst
the Q sector was studied at length in [8] we focus on the R case for reasons which will be clear
later. With only µ2

R
non-zero the propagators are

〈Aa
µ(p)Ab

ν(−p)〉
R

= − δ ab[p2 + µ2
R

]

[(p2)2 + µ2
R

p2 +CAγ4]
Pµν(p) , 〈Aa

µ(p)ρbc
ν (−p)〉

R
= 0

〈Aa
µ(p)ξ bc

ν (−p)〉
R

=
i f abcγ2

[(p2)2 + µ2
R

p2 +CAγ4]
pµν(p) , 〈ξ ab

µ (p)ρcd
ν (−p)〉

R
= 0

〈ξ ab
µ (p)ξ cd

ν (−p)〉
R

= − δ acδ bd

p2 ηµν +
f abe f cde[µ2

R
p2 +CAγ4]Pµν(p)

CA p2[(p2)2 + µ2
R

p2 +CAγ4]
+

f abe f cdeµ2
R

Lµν(p)

CA p2[p2 + µ2
R

]

〈ρab
µ (p)ρcd

ν (−p)〉
R

= 〈ωab
µ (p)ω̄cd

ν (−p)〉
R

= − δ acδ bd

p2 ηµν +
f abe f cdeµ2

R

CA p2[p2 + µ2
R

]
ηµν . (3.3)

These are very similar to the Q case but there are massless poles in localizing ghost propagators.
With these one can analyse the zero momentum behaviour akin to (2.3). At one loop the

Faddeev-Popov ghost form factor is

dc(p2) = −
[

1 − CA

[

5
8
− 3

8
ln

[

CAγ4

µ4

]

+
3µ2

R

8
√

µ4
R
−4CAγ4

ln

[

µ2
+

µ2
−

]

+ O
(

p2)



a + o(a2)





−1

(3.4)

where we have set µ2
± = 1

2

[

µ2
R
±

√

µ4
R
−4CAγ4

]

, µ is the mass scale introduced in dimen-
sional regularization, which we use throughout, to ensure the coupling constant is massless and
a = g2/(16π2). The gap equation satisfied by γ is deduced from the horizon condition and to one
loop is, [9],

1 = CA





5
8
− 3

8
ln

[

CAγ4

µ4

]

− 3µ2
R

8
√

µ4
R
−4CAγ4

ln

[

µ2
+

µ2
−

]



a + O(a2) . (3.5)
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The sign difference in the last terms of the previous two equations means that there is no Faddeev-
Popov ghost enhancement for non-zero µ2

R
. This can be traced through the actual computation

and if, for instance, the gluon propagator was suppressed and not frozen then there would be ghost
enhancement. This appears to be a general feature when one analyses other colour channels with a
frozen gluon propagator, [9]. Whilst this part of the R case is the same as that for the Q channel
the bosonic ghost sector is different due to the massless poles in (3.3). Repeating the calculation
which led to (2.3) for the R case we find the zero momentum limit for the localizing ghosts is

〈ξ ab
µ (p)ξ cd

ν (−p)〉
R

∼ 1
2Q0 p2a

[

δ acδ bd − δ adδ bc − 2
CA

f abe f cde
]

ηµν

〈ρab
µ (p)ρcd

ν (−p)〉
R

∼ 1
2Q0 p2a

[

δ acδ bd − δ adδ bc − 2
CA

f abe f cde
]

ηµν (3.6)

where

Q0 =

[

1
8

√

µ4
R
−4CAγ4 ln

[

µ2
+

µ2
−

]

− 1
8

ln

[

CAγ4

(p2)2

]

− 11
24

]

µ2
R

CAγ4 +
1

4
√

µ4
R
−4CAγ4

ln

[

µ2
+

µ2
−

]

(3.7)
and is equivalent to that of the Faddeev-Popov ghost factor. So whilst there is no enhancement,
in contrast to the Q case, the propagator does not freeze. Moreover, it is similar to the Faddeev-
Popov ghost behaviour. Interestingly the same colour structure as the pure Gribov-Zwanziger case
emerges. Hence the adjoint projection freezes to zero or a finite value. This differing behaviour in
the localizing ghost sector therefore represents a potential test for lattice simulations if one wished
to resolve which of the two cases if either was correct. Though in either situation one would have
to construct fields on the lattice which corresponded to ξ ab

µ and ρab
µ as these are inherently part

of the Gribov-Zwanziger construction. In the interim one can study which colour channel is more
energetically favourable by applying the local composite operator formalism to (3.1).

4. Effective potential

To determine which of the colour channels or combinations of colour channels is energetically
favourable, we have computed the one loop effective potential for the operator O abcd , [18]. As
we are interested in the colour tensor which leads to a non-zero expectation value the potential
is constructed by summing all one loop multi-leg Feynman diagrams with the operator O abcd as
the tag on the external leg. However this is not a simple procedure purely because of the set of
free colour indices attached to each leg. Instead we use the colour contracted operator O which
is a colour singlet and then extract the condensation of O abcd at the end. Due to the structure of
the propagators and vertices of (2.1) we have summed the 3 one leg, 4 two leg, 10 three leg, 54
four leg and 408 five leg graphs into logarithms which is the expected structure of the effective
potential at one loop. This was then expanded out to the six leg term and shown to agree with the
explicit calculation of the 3960 six leg graphs. Performing the Feynman integral and applying the
local composite operator formalism the minimum of the potential is located at the combination of
parameters

NACA

[

µ2
Q +

CA

2
µ2

W + µ2
R −µ2

T

]

. (4.1)
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It is straightforward to check that this combination is proportional to the contraction of f abg f cdg

with the colour tensor term inside the square brackets of (3.1). Hence,

〈Oabcd〉 ∝ f abe f cde (4.2)

which corresponds to the R channel rather than the Q. This condensation direction appears to be
consistent with the original propagators, (2.2). For instance, integrating over the momentum of the
mixed propagator produces the gap equation whilst that for the Aa

µ field indicates that there is a
non-zero vacuum expectation value for 1

2 Aa
µAa µ . Repeating this for the ξ ab

µ propagator which has
Q and R colour tensors, it is the term with the R tensor which survives due to the presence of a
Gribov mass in the denominator factor.

If the R condensation direction is correct then the propagator analysis we reviewed earlier
indicates that there is a natural test. However, as it rests on lattice data for the ξ ab

µ propagator, we
need to address how one can mimic that field. A clue resides in the gap equation and its definition
in terms of the horizon condition. The original definition in Gribov’s construction, [1], is

〈

Aa
µ(x)

1
∂ νDν

Aa µ(x)

〉

=
dNA

CAg2 (4.3)

which translates to

f abc
〈

Aa µ(x)ξ bc
µ (x)

〉

=
idNAγ2

g2 (4.4)

for the Gribov-Zwanziger Lagrangian, (2.1). The former is expressed solely in terms of Aa
µ fields

and is non-local whilst the latter is local and depends on the localizing ghost as well as Aa
µ . These

two definitions can be replaced by a third, [17], which has no explicit Aa
µ dependence. Using the

relation

Aa
µ = − i

CAγ2 f abc (

∂ νDνξµ
)bc

(4.5)

and solving it recursively in perturbation theory for Aa
µ , we can rewrite (4.4) as

f abcd
4

〈

∂ νξ ab µ
[

∂νξ cd
µ − ig

CAγ2 f c f rs
4 (∂ σ ∂σ ξ rs

ν )ξ f d
µ − g2

C2
Aγ4 f c f rs

4 f rqmn
4 ∂ σ [(

∂ ρ∂ρξ mn
σ

)

ξ qs
ν

]

ξ f d
µ

+ O(g3)
]〉

=
dCANAγ4

g2 (4.6)

with f abcd
4 = f abp f cd p. This is also a local expression but is an infinite series. Indeed in some

sense it is dual to Gribov’s original definition and is similar to the expansion of the geometric
series. As a check on whether this is in fact equivalent to the gap equation for γ we have evaluated
(4.6) by computing all the two loop diagrams for the vacuum expectation value, [17]. It agrees
exactly with that derived from (4.4), [19]. As a further check on the relation of Aa

µ and ξ ab
µ ,

(4.5), we have explicitly verified that replacing Aa
µ in 1

2〈Aa
µAa µ〉 with the expression in terms of ξ ab

µ
defined implicitly in (4.5) that one obtains precisely the same algebraic expression for both vacuum
expectation values to two loops. This suggests that (4.5) is key to deriving a non-local projection
of Aa

µ which could be used on the lattice to obtain data for the ξ ab
µ field and hence test what its

infrared behaviour is in relation to the analysis here and in [9].
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5. QCD vertices

We now turn to a completely separate area of (massless) QCD and that is the structure of
the 3-point vertices at the symmetric subtraction point which corresponds to a non-exceptional
momentum configuration. The original work by Celmaster and Gonsalves at one loop led to the
set of MOM subtraction schemes, [11]. However, with the need for more precision it is of in-
terest to extend this to the next order analytically which has recently been performed in [10]. A
numerical estimate of the two loop vertex structure was given in [13]. Whilst knowledge of the
exact three loop MOM β -functions will be of use for precision, having information on the full ver-
tex amplitudes will aid lattice matching of the same Green’s function. Moreover, in the symmetric
subtraction point approach one avoids potential infrared problems which can occur in the extraction
of the amplitudes at the asymmetric point, for instance. Here we will briefly summarize highlights
of [10] to provide a flavour of the issues and the results. As with the work reviewed earlier we
use the symbolic manipulation language FORM, [20], with all diagrams for each 3-point vertex
generated by QGRAF, [21]. Unlike the approach used by [13] to approximate the 3-point vertices
at the symmetric point and for the asymmetric subtraction, the MINCER algorithm, [14], cannot be
applied for the exact symmetric point calculation. Instead we used the Laporta algorithm, [22], to
build a database of relevant integration by parts relations between all the integrals contributing to
the Feynman diagrams. Specifically we used the REDUZE package, [23], encoding of the Laporta
algorithm where REDUZE is written in C++ using the underlying GINAC computer algebra system,
[24].

For reference here we will focus on the triple gluon vertex with the Green’s function defined
by, [10],

〈

Aa
µ(p)Ab

ν(q)Ac
σ (−p−q)

〉∣

∣

∣

p2=q2=−µ2
= f abc Σggg

µνσ (p,q)
∣

∣

∣

p2=q2=−µ2
(5.1)

where the structure constants have been factored off and the Lorentz scalar amplitudes, Σggg
(k)

(p,q),
are given by

Σggg
µνσ (p,q)

∣

∣

∣

p2=q2=−µ2
=

14

∑
k=1

P
ggg
(k)µνσ (p,q)Σggg

(k)
(p,q) (5.2)

and Pggg
(k)µνσ

(p,q) are the tensors of the basis at the symmetric point. The explicit forms are given
in [10]. Applying the Laporta algorithm and computing the 8 one loop and 106 two loop graphs
the numerical version of the exact amplitudes are

Σggg
(1)

(p,q)
∣

∣

∣

MS
= Σggg

(2)
(p,q)

∣

∣

∣

MS
= − 1

2
Σggg

(3)
(p,q)

∣

∣

∣

MS

= − Σggg
(4)

(p,q)
∣

∣

∣

MS
=

1
2

Σggg
(5)

(p,q)
∣

∣

∣

MS
= − Σggg

(6)
(p,q)

∣

∣

∣

MS

= − 1 −
[

1.1212444−3.7618956α −1.2890232α 2 +0.1250000α3 −0.0417366Nf

]

a

+
[

29.7530676+16.4600770α −9.7794300α 2 −3.2060809α3 −1.6522848α4 +0.2812500α5

− [11.5677203−0.9686976α −0.9112399α 2 +0.4166667α3]Nf

]

a2 + O(a3) (5.3)

where α is the linear covariant gauge parameter. The explicit analytic forms are too large to record
here. Indeed an indication of their analytic structure can be gained from the two loop mapping of
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the coupling constant in the MOMggg scheme to that in the MS scheme. For instance, [10],

aMOMggg = a
MS

+
[

[

69ψ ′( 1
3)−46π2 +1188

]

CA +
[

128π2 −192ψ ′( 1
3)−432

]

TFNf

] a2
MS

162
+

[[

19044(ψ ′( 1
3))

2 −25392π2ψ ′( 1
3)−6938784ψ ′( 1

3)−100602ψ ′′′( 1
3)

− 72643392s2(
π
6 )+145286784s2(

π
2 )+121072320s3(

π
6 )−96857856s3(

π
2 )

+ 276736π4 +4625856π2 −113724Σ+8301852ζ (3)+40126833

− 504468
ln2(3)π√

3
+6053616

ln(3)π√
3

+541836
π3
√

3

]

C2
A

+
[

141312π2ψ ′( 1
3)−105984(ψ ′( 1

3))
2 −2960064ψ ′( 1

3)+33592320s2(
π
6 )

− 67184640s2(
π
2 )−55987200s3(

π
6 )+44789760s3(

π
2 )−47104π4

+ 1973376π2 +2239488Σ−8957952ζ (3)−26695008

+ 233280
ln2(3)π√

3
−2799360

ln(3)π√
3

−250560
π3
√

3

]

CATFNf

+
[

124416ψ ′′′( 1
3)−1492992ψ ′( 1

3)−331776π4 +995328π2

− 4478976Σ+6718464ζ (3)−7138368]CFTFNf

+
[

147456(ψ ′( 1
3))

2 −196608π2ψ ′( 1
3)+2322432ψ ′( 1

3)+65536π4

− 1548288π2 +2923776
]

T 2
F N2

f

]
a3

MS
419904

+ O
(

a4
MS

)

(5.4)

in the Landau gauge. The arbitrary linear covariant gauge expression is significantly larger than
this. Here sn(z) is related to the polylogarithm and Σ is a combination of harmonic polylogarithms.
Indeed this mapping means that the three loop MOMggg β -function can be determined analytically
for arbitrary α , [10]. Again space does not permit the full analytic form but numerically for non-
zero α we have, [10],

β MOMggg(a,α) = − [11.0000000−0.6666667Nf ]a
2

−
[

102.0000000+19.6546434α −0.2710840α 2 −5.8591391α3

+1.1250000α4

−
[

12.6666667+2.0158609α +0.4373952α 2 −0.5000000α3]Nf

]

a3

−
[

1570.9843804+658.0709292α +269.2238338α 2 +43.0029610α3

−99.2797189α4 +14.8550247α5 +5.3345924α6 −0.7031250α7

+
[

0.5659290−43.2393672α −22.7471960α 2 −19.8709555α3

+14.8347569α4 +0.9764184α5 −0.2812500α6]Nf

−
[

67.0895364+4.6479610α +0.8898051α 2 −2.3056953α3]N2
f

+ 2.6581155N3
f

]

a4 + O(a5) . (5.5)

This together with the expressions for the MOMh and MOMq β -functions at three loops agree very
closely with the numerical estimates given in [13].
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6. Discussion.

We have reviewed recent work, [9], on the structure of the Gribov-Zwanziger Lagrangian with
the inclusion of the most general BRST invariant dimension two operator built from the localizing
ghost fields. From the analysis it appears that the natural colour channel for the operator to con-
dense in is that corresponding to R rather than Q. Indeed the former case is in accord with what
one would expect from the original propagators of the Gribov-Zwanziger Lagrangian. Moreover
the infrared behaviour of the bosonic localizing ghost propagator has been deduced at one loop
after the implementation of the gap equation for the Gribov mass. In the R case there are massless
modes which survive in the non-perturbative region unlike the Q case. In addition the residue of the
zero momentum behaviour is in one-to-one correspondence with that of the Faddeev-Popov ghost
propagator behaviour in the same limit. For this reason it would be interesting if the lattice could
derive data for the localizing ghost propagator at zero momentum as, aside from providing more
information on the structure of the theory, it would give insight into the full ghost sector. This is
important due to the fact that one cannot include Faddeev-Popov ghosts on the lattice. The second
part of the article concentrated on the ultraviolet behaviour of QCD at the symmetric subtraction
point of the 3-point vertices of the theory in an arbitrary linear covariant gauge, [10]. This is useful
for lattice computations of the Green’s functions as one can now match onto the ultraviolet region
with more precision due to the provision of the amplitudes to two loops. Moreover, the original
one loop construction of the momentum subtraction schemes of Celmaster and Gonsalves, [11],
has now been extended to two loops analytically, [10].
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