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1. Introduction

For quark confinement, the most well known and natural criterion is the Wilson criterion:
the area law for the Wilson loop average, which means a linear static potential between a pair of
quark and antiquark. The Wilson criterion for quark confinement is a gauge-invariant statement,
which is independent from the gauge fixing chosen in quantizing the Yang-Mills theory. For gluon
confinement, such criterion is not yet known as far as I know.

For color confinement, there are at least two known approaches of Kugo–Ojima (KO) [1] and
Gribov–Zwanziger (GZ) [2]. In these approaches, the criteria for color confinement are attributed
to the deep infrared behavior of specific Green functions. However, the Green functions depend on
the gauge. Therefore, color confinement has been studied so far gauge by gauge, e.g., the Lorenz
gauge, Coulomb gauge, the maximally Abelian (MA) gauge, etc. In the Lorenz-Landau gauge,
especially, the KO criterion for color confinement is reduced to the infrared behavior of the ghost
propagator [1].

Recent investigations show that gloun and ghost propagators in the most common Landau
gauge are classified into two types according to their behaviors in the infrared region:

• scaling solution (IR suppressed gluon propagator and enhanced ghost propagator)
Schwinger-Dyson equation (SDE) [von Smekal, Hauck & Alkofer,1997,1998 [3]]...

• decoupling solution (IR finite gluon propagator and tree-like ghost propagator)
SDE [Boucaud et al.,2008 [4]] [Aguilar,Binosi, & Papavassiliou,2008 [5]]...
Lattice simulations [Bogolubsky et al., 2009 [6]] [Cucchieri & Mendes, 2008 [7]] [Sternbeck,
von Smekal, Leinweber, Williams, 2007 [8]]...

The scaling solution fulfills the KO/GZ criterion, while this is not the case for the decoupling
solution. The decoupling solution is supported by recent results of numerical simulations on the
lattice with very large volumes [6, 7, 8]. It is still under active debate to discriminate two different
types of propagators.

No one has found a gauge-independent criterion for color confinement! Therefore, quark
confinement in the Wilsonian sense cannot be derived at present as a special case of these color
confinement scenarios. In fact, the relationship between quark confinement and the Green functions
in the infrared regime is not yet clarified.

Nevertheless, it has been shown that both scaling and decoupling solutions exhibit quark con-
finement and gluon confinement:

• quark confinement, i.e. the vanishing of the Polyakov loop average at finite temperatureT
for 0< T < Tc below the critical temperatureTc.
functional renormalization group (FRG) [Marhauser & Pawlowski, 2008 [11]] [Braun, Gies
and Pawlowski, 2010 [10]] [Kondo, 2010 [12]]

• gluon confinement, i.e., violation of reflection positivity was demonstrated

for scaling solutions: SDE [Alkofer and von Smekal, 2001 [3]]
for decoupling solutions: SDE,FRG [Fischer, Maas and Pawlowski, 2009 [9] ] Lattice simu-
lations [Bowman et al., 2007]
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The purpose of this talk is to discuss how quark confinement and gluon confinement are related to
the infrared behavior of the gluon propagator in the Lorentz covariant gauge based on [13].

(1) We derive a novel low-energy effective model ofSU(2) Yang-Mills theory without fixing the
original gauge symmetry. The resulting effective gluon propagator belongs to the Gribov-
Stingl type,irrespective of the gauge choice:

D̃aa(p) =
d0+d1p2

c0+c1p2+c2p4 .

(2) In MA gauge, we show that the model exhibits both quark confinement and gluon confine-
ment simultaneously in the following sense:

• quark confinement: The Wilson loop average satisfies the area law.

• gluon confinement: A Schwinger function (Euclidean Green’s functions) for the effective
gluon propagator violates the reflection positivity.

(3) However, for the effective gluon propagator to agree exactly with the Gribov-Stingl form
c0 ̸= 0, one must include either (a) a gauge-invariant nonlocal “mass term” or (b) a “mass
term” that breaks nilpotency of the BRST symmetry. Otherwise, we havec0 = 0.

(4) We argue that quark and gluon confinement can be obtained even in the absence of such a
mass term.

In the follows, we consider only theSU(2) gauge group [18, 19, 20] and the extension to
SU(N) based on [21] will be given elsewhere.

2. Reformulating the Yang-Mills theory in terms of new variables

(Step 1) We transform the original variablesAµ to the new variablesnnn,cµ , Xµ :

old variables :A A
µ (x) =⇒ new variables :(nnnβ (x),cµ(x),X

b
µ (x)),

according to [18, 19, 20]

nnn(x) = nA(x)TA (A= 1,2,3)

cµ(x) = Aµ(x) ·nnn(x),
Xµ(x) = ig−1[Dµ [A ]nnn(x),nnn(x)], (2.1)

wherennn(x) is the Lie-algebrasu(2)-valued field with a unit length, i.e.,nA(x)nA(x) = 1. The so-
called color direction fieldnnn is obtained in advance as a functional of the original variableAµby
solving the reduction condition [18], e.g.,[nnn(x),Dµ [A ]Dµ [A ]nnn(x)] = 0.

If the original Yang-Mills fieldAµ(x) = A A
µ (x)TA is decomposed into two pieces:Aµ(x) =

Vµ(x)+Xµ(x), then the new variableVµ =Aµ −Xµ is a Lie-algebrasu(2)-valued fieldsVµ(x) =
V A

µ (x)TA (A= 1,2,3) given by

Vµ(x) = cµ(x)nnn(x)+ ig−1[nnn(x),∂µnnn(x)]. (2.2)

The variablesVµ(x) satisfy the properties:

3
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(i) Vµ has the same gauge transformation as the original fieldAµ , i.e.,Vµ(x)→Ω(x)Vµ(x)Ω(x)†+

ig−1Ω(x)∂µΩ(x)† and hence its field strengthFµν [V ] := ∂µVν − ∂νVµ − ig[Vµ ,Vν ] trans-
forms in the adjoint way:Fµν [V ](x)→ Ω(x)Fµν [V ]Ω(x)†,

(ii) Fµν [V ] is proportional tonnn, i.e.,Fµν [V ](x) := nnn(x)Gµν(x).

Consequently,Gµν = nnn·Fµν [V ] is gauge-invariant, since the fieldnnn is constructed so that it trans-
forms asnnn(x) → Ω(x)nnn(x)Ω(x)†. Remarkably,Gµν has the same form as the ’t Hooft-Polyakov
tensor for magnetic monopole:

Gµν = ∂µcν −∂νcµ + ig−1nnn· [∂µnnn,∂νnnn]. (2.3)

(Step 1’) In order to obtain the dual effective theory for examining the dual superconductivity
[45], we introduce agauge-invariantantisymmetric tensor field(∗B)µν of rank 2 by inserting a
unity into the path-integral [22, 23, 24]:

1=
∫

DBexp
[
−

∫
dDx

γ
4
{(∗B)µν − (αnnn·Fµν [V ]−βnnn· ig[Xµ ,Xν ])}2

]
, (2.4)

where∗ is the Hodge dual operation. Here (too many) parametersγ,α,β are introduced to see
effects of each term. Puttingγ = 0 is a simple way of reproducing the original theory without
the antisymmetric tensor fieldB. Whenβ = γ−1 = G̃ andα = 0, indeed,(∗B)µν is regarded as
a collective field for the composite operatornnn · ig[Xµ ,Xν ] with the propagator̃G obtainable in a
self-consistent way [28] according to the Wilsonian renormalization group (RG) [29].

Then the Euclidean Yang-Mills LagrangianLYM [A ] = 1
4(F

A
µν [A ])2 is rewritten and modified

into

LYM [V ,X ,B]

=
1+ γα2

4
G2

µν +
γ
4
(∗B)2

µν −
γα
2
(∗B)µνGµν +

1
2
X µAQAB

µνX νB+
1+ γβ 2

4
(ig[Xµ ,Xν ])

2, (2.5)

where we have defined

QAB
µν :=SABδµν +(2+ γαβ )gεABCnCGµν − γβgεABCnC(∗B)µν ,

SAB :=− (Dρ [V ]Dρ [V ])AB, (2.6)

with the covariant derivativeDµ in the adjoint representation withVµ := V C
µ TC, (TC)

AB = i f ACB:
DAB

µ := ∂µδ AB−g fABCV C
µ = [∂µ1− igVµ ]

AB.

3. Deriving an effective model by eliminating high-energy modes

(Step2’) We identifyXµ with the “high-energy” mode in the rangep2 ∈ [M2,Λ2] and proceed
to integrate out the “high-energy” modesXµ . HereM is the infrared (IR) cutoff andΛ is the
ultraviolet (UV) cutoff as the initial value for the Wilsonian RG.

In the derivation of our effective model, we neglect quartic self-interactions amongXµ , i.e.,
(ig[Xµ ,Xν ])

2. However, we can take into account an effect coming from the quartic interaction,

4
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which influences our effective model. In fact, it is shown [20, 35] that the quartic gluon interaction
(ig[Xµ ,Xν ])

2 amongXµ gluons can induce a contribution to the mass term

1
2

M2XµXµ (3.1)

through a gauge-invariant vacuum condensation of “mass dimension-2" (the BRST-invariant ver-
sion was proposed in [30]), ⟨

X B
ν (x)X B

ν (x)
⟩
̸= 0, (3.2)

which leads to the mass term (3.1) with M2 ≃
⟨
X B

ν (x)X B
ν (x)

⟩
up to a numerical factor. This

result is easily understood by a Hartree-Fock argument. This effect is included in the heat kernel
calculation through the infrared regularization [13, 45].

The correlation functions for new variables have been computed on a lattice by numerical
simulations using the Monte-Carlo method in [38] based on [36, 37]. This justifies the identification
of Xµ as the high-energy mode negligible in the low-energy regime belowM ≃ 1.2GeV. Here the
Landau gauge∂ µAµ = 0 was adopted, since we need to fix the gauge to obtain the propagator or
correlation functions.1

In these approximations, we can integrate outXµ by the Gaussian integration and obtain a
gauge-invariantlow-energy effective actionSeff

YM [V ,B]

Seff
YM [V ,B] =

∫ [1+ γα2

4
G2

ρσ +
γ
4
(∗B)2

ρσ − γα
2
(∗B)ρσ Gρσ

]
+

1
2

lndetQAB
ρσ − lndetSAB, (3.3)

where
∫
=

∫
d4x, the functional logarithmic determinant1

2 lndetQAB
ρσ comes from integrating out

theX field, and the last term comes from the FP-like determinant term [19] associated with the
reduction condition [18]. We can obtain (see a subsequent paper [45] for details of calculations)

1
2

lndetQAB
ρσ − lndetSAB =

∫ g2 ln µ2

M2

(4π)2

[
1
6

G2
ρσ − 1

2
{(2+ γαβ )Gρσ − γβ (∗B)ρσ}2

]
+

∫
g2

(4π)2

1
M2

1
6
(∂λ{(2+ γαβ )Gρσ − γβ (∗B)ρσ})2+O(∂ 4/M4). (3.4)

The gauge fixing is unnecessary in this calculation. Indeed, the resulting effective action (3.3) with
(3.4) is manifestly gauge-invariant. This is one of main results. The correct RGβ -function at the
one-loop levelβ (g) := µ dg(µ)

dµ =−b1g3+O(g5), b1 =
22
3 /(4π)2 is reproduced in a gauge-invariant

way whenγαβ = 0 which follows from e.g.α = 0 (a choice mentioned above) orγ = 0 (in the
case of noBµν field).

Thus we obtain the following effective actionSeff
YM [G,B] up to terms quadratic in the fields,

Seff
YM [G,B] =

1
2
(G,

[
f0+ f1∆

]
G)+

1
2
(∗B, [d0+d1∆ ] ∗B)+(G,

[
h0+h1∆

]
∗B)+O(

1
M4), (3.5)

1In the MA gauge, it has been shown in an analytical way [39] that the off-diagonal gluon mass generation can
follow from the off-diagonal gluon-ghost condensation of mass dimension 2,

⟨
g2O

⟩
,O := 1

2Aa
µ Aµa+αC̄aCa which has

been proposed in [30].

5
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where

d0 =γ −
g2 ln µ2

M2

(4π)2 2γ2β 2, d1 =
g2

(4π)2

1
M2

γ2β 2

3
,

f0 =1+ γα2−
g2 ln µ2

M2

(4π)2

2−6(2+ γαβ )2

3
, f1 =

g2

(4π)2

1
M2

(2+ γαβ )2

3
,

h0 =− γα +
g2 ln µ2

M2

(4π)2 2(2+ γαβ )γβ , h1 =− g2

(4π)2

1
M2

(2+ γαβ )γβ
3

. (3.6)

We will see that the exact Gribov-Stingl form of the gluon propagator is obtained, if one
introduces a gauge-invariant, but nonlocal “mass term”:

Smass
YM [G] =

1
2

(
G,m2∆−1G

)
, (3.7)

or, if one introduces a non gauge-invariant mass term

Smass
YM [G] =

1
2

(
a,m2a

)
. (3.8)

for the gauge fielda related to the field strengthG by

G= da, (δa= 0). (3.9)

Even after taking specific gauges, the BRST invariance is also broken by including this mass term.
However, we can modify the BRST such that the modified BRST is a symmetry of the Yang-Mills
theory with the mass term at the cost of nilpotency. In other words, the requirement of nilpotency
of the BRST excludes such a gluon mass term.

4. The Gribov-Stingl form for gluon propagator

We can integrate outB by the Gaussian integration. Then we obtain the effective action in
terms ofG:

Seff
YM [G] =

1
2

(
G,D−1

GGG
)

(4.1)

If we include the mass term (3.7), the inverse effective propagators for the field strengthG reads

D−1
GG =[m2∆−1+ f0+ f1∆ ]− [d0+d1∆ ]−1[h0+h1∆ ]2

=
[d0+d1∆ ][m2∆−1+ f0+ f1∆ ]− [h0+h1∆ ]2

d0+d1∆
. (4.2)

Then we obtain the effective propagatorD−1
aa for the fielda defined byG= da:

D−1
GG = ∆−1D−1

aa , D−1
aa =

c0+c1∆+c2∆2

d0+d1∆
, (4.3)

where

c0 =m2d0, c1 = d0 f0−h2
0+m2d1, c2 = d0 f1+ f0d1−2h0h1. (4.4)

6
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We observe that the effective gluon propagatorDaa has the Gribov-Stingl form whenc0 ̸= 0:

D̃aa(p) =
1+d1p2

c0+c1p2+c2p4 . (4.5)

Thus, we have found that the effective propagator has the Gribov-Stingl form [14]. Note thatd1

comes from the induced kinetic term for theB field which was introduced in the beginning as an
auxiliary field without the kinetic term.

5. Converting the Wilson loop to the surface-integral

(Step 3) We use a non-Abelian Stokes theorem [25, 26, 27] to rewrite a non-Abelian Wilson
loop operator

WC[A ] :=tr

[
P exp

{
ig
∮

C
dxµAµ(x)

}]
/tr(1), (5.1)

into the area-integral over the surfaceΣ (∂Σ =C):

WC[A ] =
∫

dµΣ(ξ )exp

[
ig

1
2

∫
Σ:∂Σ=C

G

]
, dµΣ(ξ ) := ∏

x∈Σ
dµ(ξx), (5.2)

wheredµ is an invariant measure onSU(2) normalized as
∫

dµ(ξx) = 1, ξx ∈ SU(2). In the two-
form G := 1

2Gµν(x)dxµ ∧dxν , Gµν agrees with the field strength (2.3) under the identification of
the color fieldnnn(x) with a normalized traceless field (See also [34])

nnn(x) := ξx(σ3/2)ξ †
x . (5.3)

Using the vorticity tensorΘΣ with the support on the surfaceΣ whose boundary is the loopC:

Θµν
Σ (x) =

∫
Σ

d2Sµν(x(σ))δ D(x−x(σ)), (5.4)

the surface integral is cast into the volume integral and the Wilson loop operator is rewritten as

WC[A ] =
∫

dµΣ(ξ )exp

[
ig

1
2
(ΘΣ,G)

]
, (ΘΣ,G) =

∫
dDx

1
2

Θµν
Σ (x)Gµν(x), (5.5)

where(·, ·) is theL2 inner product for two differential forms.

6. Calculating the Wilson loop average to show area law: quark confinement

(Step 4) We proceed to evaluate the Wilson loop averageW(C) = ⟨WC[A ]⟩YM by using the
effective actionSeff

YM [G,B], i.e.,⟨WC[A ]⟩YM ≃ ⟨WC[A ]⟩eff
YM with the aid of (5.5).

We demonstrate that the simplest way to obtain the area law is to use the low-energy effective
actionSeff

YM [G,B] retained up to terms quadratic and bilinear inG andB.
In what follows, we take the unitary-like gauge

nA(x) = δA3, (6.1)

7
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which reproduces the same effect as taking the MA gauge [40] in the original Yang-Mills theory.
In this gauge,X A

µ (x) reduces to the off-diagonal componentAa
µ(x) (a= 1,2), whileV A

µ (x) reduces
to the diagonal oneA3

µ(x) = aµ(x), i.e.,X A
µ (x) = A a

µ (x)δAa, V A
µ (x) = A 3

µ (x)δA3 = cµ(x)δA3. The
gauge (6.1) forces the color field at each spacetime point to take the same direction by gauge
rotations. Hence the fieldG given by (2.3),

Gµν = Fµν +Hµν , Fµν := ∂µcν −∂νcµ , Hµν := ig−1nnn· [∂µnnn,∂νnnn] (6.2)

contains singularities (of hedgehog type) similar to the Dirac magnetic monopole after taking the
gauge (6.1). If we do not fix the gauge, such a contribution is contained also in the partig−1nnn ·
[∂µnnn,∂νnnn] to make a gauge-invariant combinationGµν , see [36, 37]. Consequently, the Bianchi
identity forG is violated,

δ ∗G= ∗dG= ∗∗ddc+∗dH = δ ∗H ̸= 0, (6.3)

even if ddc= 0. Hered denotes the exterior differential andδ the codifferential. There is no
well-defined one-formh such thatH = dh. Thus we obtain a nontrivial gauge-invariant magnetic
monopole current defined by

k := δ ∗G. (6.4)

By integrating out theB field, we obtain the effective actioñSeff
YM [G]. Then we find that the

effective propagatorDaa has the Gribov-Stingl form:

D̃GG(p) = p2D̃aa(p), D̃aa(p) =
1+d1p2

c0+c1p2+c2p4 , (6.5)

wherec0=m2, c1=1+ γβ 2

3
g2

(4π)2
m2

M2 , c2=
g2

(4π)2
1

M2 [(2+γαβ )2+(1+γα2)γβ 2+2(2+γαβ )γαβ ]/3,

andd1 =
γβ 2

3
g2

(4π)2
1

M2 . The precise values of the parametersm,γ,α,β andM are to be determined
by the functional RG [29] following [12], which is a subject of future study.

In the unitary-like gauge (6.1) the Wilson loop operator is reduced to

WC[F ] = exp

[
ig

1
2

∫
Σ:∂Σ=C

G

]
= exp

[
ig

1
2
(ΘΣ,G)

]
. (6.6)

Then the Wilson loop averageW(C) is evaluated by integrating outG= da:

W(C) = exp

[
−1

8
g2(ΘΣ,DGGΘΣ)+ ....

]
, (6.7)

whereDGG = ∆Daa and its Fourier transform obeys̃DGG(p) = p2D̃aa(p).
For concreteness, we chooseΘΣ for a planar surface bounded by a rectangular loopC with

side lengthsT andR in thex3−x4 plane. Then we find that the Wilson loop average has the area
law for largeRandT:

W(C)∼ exp[−σRT], (6.8)

with the string tension given by the formula:

σ =
1
8

g2
∫

p2
1+p2

2≤M2

dp1dp2

(2π)2 D̃GG(p1, p2,0,0)> 0, (6.9)

8
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D Diagonal gluon propagator
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Figure 1: (Left panel) The propagator of the diagonal gluon in MA gauge as a function of the momentum
p=

√
p2. (Right panel) The dressing function of the diagonal gluon in MA gauge, or the integrand of the

formula for the string tension, |p|2+d1|p|4
c0+c1|p|2+c2|p|4

as a function ofp=
√

p2.

where the momentum integration is restricted to the two-dimensional momentum space (the di-
mensional reduction by two [41]) and is cutoff atM which is the upper limit of the low-energy
effective model being meaningful. A positive and finite string tension 0< σ < ∞ follows from
the condition of no real poles in the effective gluon propagatorD̃GG(p) in the Euclidean region,
0< D̃GG(p) = p2D̃aa(p)< ∞, which is connected to the gluon confinement shown below. This is
another main result.

According to numerical simulations in MA gauge [42, 43, 44], the diagonal gluon propagator
is well fitted to the form (6.5), see Fig. 1: e.g. [44] gives c0 = 0.064(2)GeV2, c1 = 0.125(9),
c2 = 0.197(9)GeV−2, d1 = 0.13(1)GeV−2, andM ≃ 0.97GeV, whereM is the mass of off-diagonal
gluons obtained in the MA gauge. This value ofM is a little bit smaller than the values of other
groups [42, 43]. This indeed leads to a good estimate for the string tension

σ ≃ (0.5GeV)2, (6.10)

according to (6.9) for α(µ) = g2(µ)/(4π) ≃ 1.0 at µ = M. The next task is to study how the
results are sensitive to the deep infrared behavior of the diagonal gluon propagator (6.5) and the
actual value ofM for the off-diagonal gluon propagator.

The Gribov-Stingl form is obtained only whenc0 ̸= 0 (i.e.,m ̸= 0) andd1 ̸= 0 (Bµν is included).
Even in the limitm2 → 0 (c0 → 0), the area law can survive according to (6.9), provided that
D̃GG(p) remains positive and finite:D̃GG(p) → 1+d1p2

c1+c2p2 , while D̃aa(p) behaves unexpectedly as

D̃aa(p)→ 1+d1p2

p2(c1+c2p2)
. Hence, we argue that it does not matter to quark confinement whetherm= 0

or m ̸= 0.

7. Calculating the Schwinger function to show positivity violation: gluon
confinement

(Step5) The positivity violation is examined. We consider the Schwinger function defined by

∆(t) :=
∫

d3xe−ippp·xxxD(t,xxx)|ppp=0 =

∫ +∞

−∞

dp4

2π
eip4tD̃(ppp= 0, p4). (7.1)

The Euclidean propagator̃D(p) in momentum space has a spectral representation,

D̃(p) =
∫ ∞

0
dκ2 ρ(κ2)

p2+κ2 > 0=⇒ ∆(t) =
∫ ∞

0
dκρ(κ2)e−κt > 0. (7.2)
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Figure 2: The Schwinger function∆(t) calculated from the diagonal gluon propagator of the Gribov-Stingl
type obtained in MA gauge (left panel) 0< t < 5, (middle panel) 0< t < 12, (right panel) 5< t < 15.

If ∆(t) is found to be non-positive,ρ(κ2) cannot be a positive spectral function. The corresponding
states cannot appear in the physical particle spectrum: they are confined.
1) For the free massive propagator,∆(t) is positive for anyt,

D̃(p) =
1

p2+m2 =⇒ ∆(t) =
∫ +∞

−∞

dp4

2π
eip4t 1

p2
4+m2

=
1

2m
e−m|t| > 0. (7.3)

Therefore, we find no positivity violation as expected. This case corresponds toρ(κ2) = δ (κ2−
m2) = 1

2mδ (κ −m)> 0.

2) We consider the propagator of the Gribov-Stingl type in Euclidean space,

D̃(p) =
d0+d1p2

c0+c1p2+c2p4 , p2 ≥ 0, c0,c1,c2,d0,d1 ∈ R. (7.4)

In the case ofc2 = 0, there is no positivity violation, as far asc0/c1 > 0. In the case ofc2 ̸= 0,
D̃aa(p) has a pair of complex conjugate poles atp2 = zandp2 = z∗, z:= x+ iy, x :=−c1/(2c2), y :=√

c0/c2− (c1/(2c2))
2. We find that the Schwinger function∆(t) :=

∫ +∞
−∞

dp4
2π eip4tD̃aa(ppp= 0, p4) is

oscillatory int and is negative over finite intervals in the Euclidean timet > 0 (See Fig. 2):

∆(t) =
1

2c2|z|3/2sin(2ϕ)
e−t|z|1/2 sinϕ [cos(t|z|1/2cosϕ −ϕ)+d1|z|cos(t|z|1/2cosϕ +ϕ)], (7.5)

wherez= |z|e2iϕ with |z|=(c0/c2)
1/2, cos(2ϕ)=−

√
c2

1/(4c0c2), and sin(2ϕ)=
√

1−c2
1/(4c0c2).

Therefore, the reflection positivity is violated for the gluon propagator (6.5), as long as

0<
c2

1

4c0c2
< 1, (7.6)

irrespective ofd1. Whenc0 = 0 (orm= 0),

∆(t) =− t
2c1

− 1
2c1

√
c2

c1

(
1− c1

c2
d1

)
e
−t

√
c1
c2 . (7.7)

Hence, the special casec0 = 0 also violates the positivity, ifc1 > 0 andc2 > 0. Thus the diagonal
gluon in the MA gauge can be confined.
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8. Summary

In summary, we have discussed how to obtain a low-energy effective model of theSU(2)
Yang-Mills theory without fixing the original gauge symmetry. It is remarkable that the effective
model respects theSU(2) gauge invariance of the original Yang-Mills theory, which allows one to
take any gauge fixing in computing physical quantities of interest in the low-energy region. The
resulting effective gluon propagator belongs to the Gribov-Stingl type, irrespective of the gauge
choice This is a universal aspect obtained independently of the choice of gauge fixing condition.

In MA gauge, especially, we have demonstrated that the model exhibits both quark confine-
ment and gluon confinement simultaneously in the sense that the Wilson loop average satisfies the
area law (i.e., the linear quark-antiquark potential) and that the Schwinger function violates re-
flection positivity. Moreover, we have given a formula for the string tension based on the gluon
propagator of the gauge-invariant field strengthGµν . It gives a good estimate for the string tension.

However, for the effective gluon propagator to agree exactly with the Gribov-Stingl form, we
need to introduce (i) a gauge-invariant, but nonlocal mass term or (ii) a mass term that breaks
nilpotency of the BRST symmetry. Otherwise, we havec0 = 0. We argued that both quark and
gluon confinement can be obtained even in the absence of such a mass term,c0 = 0. More results
and full details will be given in a subsequent paper [45].
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