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1. Non-perturbative gauge-fixing and the path integral

In gauge theories like the standard model, gauge-fixed latime functions, like the gluon
propagator, are an excellent tool in intermediate step&terchine gauge-invariant physics. This
has been heavily used both in perturbation theory [1] anatey2—6]. The key element in the
latter calculations has been the judicious combinatiomttitle gauge theory, functional continuum
methods, in particular Dyson-Schwinger equations (DSEd)fanctional renormalization group
equations (FRGSs), effective theories, and perturbati@orth[5]. However, this requires to fix a
gauge in a controlled way to determine these correlatiostions. How to perform this beyond
perturbation theory will be the central question in this kvdfor this purpose, it will be restricted
to su(2) Yang-Mills theory ird Euclidean space-time dimensions in the following.

In perturbation theory, gauge-fixing can be done in a uniqag by employing local condi-
tions, e. g. the Landau gauge condition used here

9uAL =0 (1.1)

on the gauge field. It can be implemented in the path integral for the calcatatf a quantity
0 using the Faddeev-Popov procedure [1]
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with the gauge-fixed Lagrangiafy containing the coupling constagt the structure constants
fabc the (anti)ghost fields? andc®, and the gauge parametgrwhich has to be sent to zero at the
end of the calculation.

The obstruction arising to this procedure beyond pertishdheory is the presence of multi-
ple solutions to the original gauge condition (1.1), theb@vicopies [7]. The Gribov copies cannot
be distinguished using any local condition in covariantggesu[8]. Such Gribov copies are just
ordinary gauge copies, but now separated from each otherfimtergauge transformation. As
such, they are also valid representatives of the gauge arait it is required, just as with pertur-
bative gauge copies, to identify a precise way how to dedl thiém. In particular, the same two
possibilities are available as in perturbation theory [Bhe possibility is akin to Landau gauge,
and requires a (non-local) condition to select a well-defirepresentative for each gauge orbit
among the Gribov copies. The alternative is to work akin teac@ant gauges by averaging in a
well-defined way over (a subset of) Gribov copies. As in pxtion theory, both possibilities are
equally valid.

It remains how to perform such atask. In lattice gauge thidsyossible to determine at least
a finite subset of the Gribov copies of each gauge orbit, amdpukate the Gribov copies directly.
For the functional methods, this is not possible, and it isessary to implement the prescription
how to deal with the Gribov copies in another way. There appeé&e at least two possibilities
how to realize this [5, 9-13].
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One method [5, 9, 11] starts by the realization that coraiafunctions determine a theory
completely. Thus, two distinct gauges have to differ attiéasone correlation function for one
momentum configuration [10]. Thus, without any restrictiba equations for the correlation func-
tions should contain all the different sets of correlationdtions for the different gauges. Since
the gauge-fixed Lagrangian itself generally changes albagyauge orbit, and thus for different
Gribov copies, the necessary information is stored someayled it should be possible to identify
the different solutions by boundary conditions [9]. Unityuielentifying suitable correlation func-
tions and providing a formal proof of this statement is, hesvecomplicated at best despite some
tantalizing results [9, 10]. It thus remains an active afe@search.

An alternative [5, 12], on which this work will be focused ds,to implement additional
conditions in the path integral formulation similar to therfprbative Faddeev-Popov procedure.
The by far simplest procedure can be formulated, if therstgx non-local quantity which is
guaranteed to take values in a certain range along a gaugearialmost all) configurations.
Then, a replication of the perturbative procedure could &dopmed [5, 12]. Whether such a
guantity suited for Landau gauge exists is not proven. Tthis,option will not be investigated
here. The alternative is instead to average over the gabdendth a well-defined weight. It is this
possibility which will be explored here.

To simplify this, the first step is to reduce the path integta?) to the so-called first Gribov
region, i. e. the region where the Faddeev-Popov operatoohig non-negative eigenvalues. Itis
known that this restriction does not affect any gauge-iavdrquantity, as all gauge orbits have at
least one gauge copy inside this region [14]. The implentiemtaf this in the path integral can be
performed using &-function as

< 2> = lim / PATc7E20 (~0,DP) (A, c,E)e % (1.3)
&E—0
6 (—auD%) = no).

where the); are the eigenvalues of the Faddeev-Popov opera@gDﬁb. Such an additional term,
as stated, does not affect any gauge-invariant quantitgnibe implemented in lattice calculations
[5]. For functional calculations, the observation suffitleagt any variation of the such modified
kernel of the path integral (1.3) will produce two terms. Tinst term will contain the variation
of the 8-function, yielding a function on the Gribov horizon. However, since on this hamizhe
Faddeev-Popov determinant, obtained after integratinghelghost terms, vanishes, this term will
not contribute [15]. The second term produces only the argifiunctional equations, but with
expectation values now obtained from the reduced integratomain of the first Gribov region.
Turning the argument around, this implies that the funa@icquations over all Gribov regions
have the same form, and thus have the same solution manffielgs, the solution manifold of these
equations contain the correlation functions from both saaad it requires a further constraint, a
boundary condition, to select among them. Sufficient boondanditions for this case are not yet
identified, though some necessary ones are known [5, 10, 12].

2. The structure of the residual gauge orbit

This, unfortunately, is not sufficient to fully eliminate iBov copies [16], and a possibly in-
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finite number of them remains. This set is termed the resigaatie orbit [11]. In the following,
lattice calculations will be used to investigate this rasidgauge orbit further, before returning to
a formulation in terms of the path integral. This implies ginesence of both finite volume and dis-
cretization artifacts, and thus, strictly speaking, tHfeing results only apply to the investigated
set of lattice parameters.

In lattice calculations multiple restart algorithms [5] pérmit to obtain at least a fraction of
all Gribov copies of the residual gauge orbit. However, stidguish two Gribov copies from each
other in practical calculations is a non-trivial problem.plrinciple, it would be necessary to check
at each space-time point for differences, within the nuoaérccuracy, taking all possible global
transformations into account. Already the memory limias are prohibitive in practice for any
appreciable number of Gribov copies. Thus, an obtainedazfingd configuration is usually [5]
characterized by a finite number of moments. In actual caficuis, these are based on the simplest
ones, the two-point correlation functions,

1 [ 4

F = 1—V—/d XASAG

b = Z3 lim G(p),
3p2_>0 (p)

whereG is the color-averaged ghost dressing function Zni$ the ghost renormalization constant.
Note that both quantities are evaluated for each Gribov @l configuration individually. The
finite volume in lattice calculations imposes thmis actually evaluated at a finite momentum of
order 1/L wherelL is the lattice extension [5]. This will here be consideredadite volume
artifact [10, 18]. WhileF as a composite operator is subject to well-defined additigk raulti-
plicative renormalizations [19]y is only multiplicatively renormalized. Note that both qtitias
are invariant under global color rotations and space-tiawesformations.

In the following, two Gribov copies will be considered to bistahct if their difference inF
or b exceeds a certain threshadd Hence, some Gribov copies, which are different, will not be
recognized as such. Thus, all results which indicate a tdtsio the choice of Gribov copies
yields only a lower limit to this sensitivity, even if all Gxdv copies of any given residual gauge
orbit would be determined. So, the valuesiias to be set carefully. For a properly renormalized
guantity, € could be the numerical accuracy, which is usually signifiyaless than the machine
precision, giving possible cancellations in the sums angr@tision in the gauge-fixing process.
Forb, this is rather straight-forward. Fét, this is less simple. Due to the combination of additive
and multiplicative renormalization, the unrenormaliZedwill tend towards 1 in the continuum
limit with vanishing width. Thus, at fixed numerical accwyawo distinct Gribov copies at low
discretization will appear equal at better discretizatlmecause their difference Fiwill no longer
be resolvable.

To illustrate the impact of both restricting effects, thétémesolution of Gribov copies and the
finite search space, the number of Gribov copies obtained)ustherF or b as the sole criterion
is shown in figure 1. From the figure it can be seen that the nufobed depends strongly on the
thresholde and the search space size, but not on whether ditlugib is chosen.

Thus, both coordinateB andb vary between Gribov copies. At this point, an interesting
guestion is whether Gribov copies resolved by either of thardinates are also resolved by the
other coordinate. There are indications that this is the §H3]. But this is not an entirely simple
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Figure 1: The number of Gribov copies identified, both as a functionhaf $earch space size and the
thresholds. Results are from a (4.4 frattice with lattice spacing 0.122 fm in three dimensiongesiits
in the left panel are obtained usiigto distinguish Gribov copies, arlis used in the right panel.

guestion, as this may depend on the resolving power with d fixel'hus this may be altered by

a more systematic study, which is a rather non-trivial esetcand will be done elsewhere [13].
However, for the present purpose, this is not relevant, es this will not eliminate the possibility
that two copies are not resolved by either F, but only by some coordinate based on some higher
order correlation function or a different kinematic defimit

In fact, the only relevant question in the following to olbtaion-trivial results will be whether
either of the coordinates has any resolving power at all aiigqular towards the continuum and
infinite-volume limit. This will be studied here for the calimateb by using two criteria. One
is how the possible range fvalues develops and the other how the number of Gribov copies
develops. The first quantity has an implication for the sdoguantity: Only if the range remains
at least finite, it makes any sense to distinguish Gribovepsindd. This range, given as a ratio
to remove all trivial multiplicative factors, is shown ingkeft-hand side of figure 2. So far, it seems
to be finite, and except for one single lattice setup in foamatisions not shrinking. Whether the
latter is an artifact of too small a search space has to be baeit could also be a genuine effect.
For now, it suffices that this range is finite, so it seems todwdul to differentiate between at least a
part of the Gribov copies. Even if not, the whole procedunetigped here could also be performed
using a more suitable quantity.

To take renormalization effects into account, the paramefer counting the Gribov copies
is then not fixed for all volumes and discretizations, butrdefito be 1/1000th of the difference
between(maxb) and(minb). This implies that at most 1000 different Gribov copies caridund,
and in particular close-by Gribov copies will not be resdlv@hus, the number of Gribov copies
found is once more a lower limit. The results are shown initietthand side of figure 2. In contrast
to the original anticipation [11], the Gribov copies showiffedent behavior in two dimensions than
in three and four dimensions. While in the latter cases thmbmnr of Gribov copies increases as
a function of ¥a, in two dimensions this number is more or less constant. hEumtore, for the
largest volume a decrease seems to occur in two dimensionsinie this is a result from a single
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Copies in two dimensions
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More details will be available in [13].
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\ Gauge corridor width in two dimensions
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\ Gauge corridor width in four dimensions
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Figure 2
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as a function of volume and lattice spacing in two (top parikfee (middle panel) and four (bottom panel)

dimensions.
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lattice setup, this may or may not be an artifact. Nonetlseld®e whole observation may stand
in connection with the qualitative difference observedtfar behavior of propagators in two and
higher dimensions [5, 20].

3. Gribov-copy-aware gauge-fixing using the path integral

Assume for the following that the gauge corridor foiis finite in the infinite-volume and
continuum limit. The implications if this is not the case Maé discussed afterwards.

This assumption implies that (at least some of) the Gribqieare differentiated by their
value ofb. Itis thus a viable concept to average over the Gribov copisan additional weight
factor, not only the Faddeev-Popov term, sensitive to tlfferdnt values ofo for each Gribov
copy. Formally, this can be justified by an argument thateleists an (unknown) functional
which reduces the path integral exactly to one Gribov copyefch gauge orbit. Afterwards, an
averaging over such reduced path integrals can be donegtist covariant gauges in perturbation
theory [1]. The lattice implementation gives an operatiatedinition of selecting a single Gribov
copy, showing that this is possible. It is then permissilbleaterage such expressions with an
appropriate normalized weight, as long as this guarante¢stly gauge-invariant operator remains
unchanged. Otherwise, the weight is arbitrary. Such aesrage, again just as for perturbative
covariant gauges, merely a gauge choice.

A second constraint is that this does not alter the corregipgrfunctional equations severely,
if possible. This is not necessary, but technically cormeni A possibility may be then to write a
weight factor explicitly depending dm[5, 12]

<0> = lim / TGO Ay 516 (~0,D) e %
£—0
x exp<,/V+A\% / ddxddyaﬁéa(x)c?}jca(y)) : 3.1)

which only modifies the equation for the ghost propagatarcesithe additional term is bilinear

in the fields. The parametér is a Lagrange parameter, and can be seen as an additiona gaug
parameter. The quantity’” is a normalization factor, which guarantees that this esgiom does

not change gauge-invariant quantities. The double-iategrthe ghost dressing function at zero
momentum [5], and thus should act only as a boundary termumetibnal equation.

It remains to investigate whether this expression couldevsdnse. For this purpose, it can
be operationally defined in lattice calculations, by a waaghrsum over the Gribov copies of each
residual gauge orbit with the exponential facexp—Ab+ .47), with 4" chosen such that the
expectation value of one remains one. Since this then ordyages over gauge copies, this is
nothing but a gauge choice in lattice calculations, andefioee admissible.

The first interesting question is, whether the normalizationstant /" is gauge-orbit indepen-
dent, at least in the infinite-volume and continuum limitthis were the case, it could be absorbed
in the measure. The simplest form for this will evidently #ained forA = 0. In this case,V
merely counts the Gribov copies. Though this is not sufficfen.# to be orbit independent, it
is surely necessary. To investigate this, its distribufmmdifferent volumes and discretizations is
shown in figure 3. The result is rather puzzling. With inciregsolume, the distribution becomes
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Figure 3: The distribution of Gribov copies over the orbits in threendnsions, normalized to the aver-
age number of Gribov copies. The left-hand side shows thelmition as a function of volume at fixed
discretizatiora = 0.22 fm, the right-hand side as a function of discretizatiofixadV = (3.1 fm)3 [13].
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Figure 4: The left panel shows the actual obtained valu&@) as a function of the desirdglvalues. The
right-hand panel shows the value dfrequired to obtain the equality, up to numerical precisggwn in
the left-hand side as a function of the gauge paranttdrhe results are in three dimensions for volumes
varying between (1.8 fm)and (5.7 fm§ and for discretizations between= 0.22 fm toa = 0.043 fm.

better centered around the average value, and less asyimnitwever, for better discretization,
the distribution becomes at the same time broader, but efsodsymmetric. The eventual limit
cannot be inferred from these figures, but instead calls fobee detailed investigation to be pre-
sented elsewhere [13]. Especially, the restricted segrabesand Gribov copy separating power
could have a systematic influence here as well. Sure is oalyfth the present calculations the
guantity.#" cannot be assumed to be orbit-independent.

This is not a problem in a lattice calculation, and thus itasgible to proceed. To specihy,
there are two options. The first is to directly specifyas with the gauge parameter in covariant
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Figure 5: The difference in percent iB(0) between the minimal Landau gauge and an averagingitt0
in three dimensions.

gauges. The alternative is an indirect condition, whicH @ done here along the lines of the
LandauB gauge construction [10]. In this case, the gauge cond{tipa- B = G(0) for some value
of B is imposed, and a value df is selected such that this condition is satisfied. This igdud
possible, as is shown in figure 4. For a valueBabetween(minb) and (maxb) it is, within the
numerical precision appliédalways possible to find a value #fsuch that the prescription (3.1)
yields the desired equality. Since the weighted averagaataxceed the values dfinb) and
(maxby), there is noA value which could permit to go beyond this range. As a consecg, when
B approaches either of the values, the requieglue diverges, clearly marking the impossibility
to exceed these bounds. On the other hand, this also shoichtt@sing a particular value df
just leads to a particular value @), and both conditions are in a one-to-one correspondence.

An interesting case i3 = 0, which corresponds to a flat average over the residual ganbife
If a random selection of a Gribov copy, as is done in the mihiraadau gauge [5], is an unbiased
process, this will yield in the limit of infinite samples tharse value as when averaging over the
whole orbit. This seems to be indeed the case, as is shownuie fig where the difference between
the A = 0 value and the minimal Landau gauge value is shown. As skerditference is small,
though systematic. However, the deviation is of the same &izthe statistical error of the data,
and thus this may be a finite statistics effect.

This permits a quite interesting speculation: If a formiolatike (3.1) is correct, then the case
A =0 implies minimal Landau gauge. Sindetakes the form of an additional gauge parameter,
minimal Landau gauge is a fixed point under multiplicativeaenalization, and thus the natural
result under an unconstrained renormalization evolutimus, minimal Landau gauge is the one
naturally obtained in the infinite volume and continuum tinti requires a particular action to stay
away from this fixed point.

In functional equations, this is not trivially recoveredend, formulating the functional equa-

LIt was searched for a fitting value in the interval—14, 14] with step size 0.2.
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Figure 6: Gluon propagator (left panel) and ghost propagator (rigimeh) from DSEs [9] and lattice data
[21].

tions at finiteA and then taking the limit ok to zero would be adequate. Given that the additional
term in the path integral (3.1) implements a non-local a@ist on the ghost propagator equation
only, this requires a constraint in this equation. This ¢@mst will force G(0) to the value in the
minimal Landau gauge for going to zero.

Alternatively, instead of taking the limit, it may be podsilo just select among the solutions of
the unconstrained functional equations by selecting thaien which satisfies the gauge condition
G(0) = B. For other values of, and thusB andG(0), this procedure should, in principle, hold as
well. This prescription has already been used [9], and ftielsly a rather accurate reproduction of
the lattice results for the propagators in minimal Landauggeusing functional methods, as shown
in figure 6.

What is then about the family of solutions obtained in thecfiomal equations [4-6, 9, 22, 23]?
Since the DSEs in these cases have been derived without hcitecgmstraint, and are, as argued
beforehand, insensitive to the Gribov region without fartinput, there are a number of scenarios,
as discussed in [5, 12]. Assume that the existence of thdyfaimiparticular the extremal scaling
case [2, 9], are not mere artifacts. If this is the case, athefsolutions must be reproducible with
other methods. However, since the family of solutions wdg faund using implicit information,
without an explicit implementation of additional consirai in the the functional equations, these
solutions may originate from any Gribov region and/or wéiggnover residual gauge orbits, in the
spirit of the discussion in the previous paragraph. Thus,ekistence of the family of solutions
can only be firmly checked or excluded using lattice gaugerihdf all of these possibilities
are checked. For this, it would be helpful to explicitly fifdetconstraints used in the functional
equations, in order to be able to reproduce the same catnulat the lattice. In particular, it would
be very important to understand whether the scaling caseleed obtained only when averaging
over all Gribov copies in all Gribov regions [24-26].

However, if one is only interested in using the propagatorfinally obtain gauge-invariant
guantities, this can very well be done with any of the familgmbers, in particular the minimal
Landau gauge one. If the speculations here are correct,ttieza is a way to implement the

10
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minimal Landau gauge in functional calculations, and tlis be done. This ends the speculative
part.

In case the range of possilievalues shrinks to a point in the continuum and infinite-vadum
limit, the averaging procedure returns to a flat average,, itoethe case oA = 0, and all of
this is only a rather elaborate framework to recover the flatage over the residual gauge orbit.
However, the procedure still remains correct, and all djmera performed are permissible.

4. Where to go from here

Gauge averaging over Gribov copies as an operative definititattice gauge theory is obvi-
ously possible. Of course, provided the normalization isem, these are equally possible gauge
choices, and there is no preference from a physical poirieef.\n fact, at least for those quantities
investigated here, the conventional minimal Landau gaugestout to be equivalent to a particular
averaging gauge.

The next step is to investigate for further quantities, ffimost correlation functions, what the
impact of averaging is. In particular, whether the equiveéeto minimal Landau gauge at the fixed
point A = 0 persists. This would establish the concept further camegrattice gauge theory. Of
course, because averaging over all Gribov copies with aicenteight, irrespective of whether the
Gribov copies actually receive a different weight or noegisely defines a treatment of Gribov
copies, this is a full resolution of the Gribov-Singer amliig

Concerning the implementation in functional methods, tib@aton is not yet as simple.
Whether the formulation (3.1) is indeed correct requiregarformal arguments, yet to be de-
veloped, if possible at all. The fact that the proceduredgiatather good agreement in actual
calculations, see figure 6, as well as for physical obseegald, 27—-29], could still be accidental
due to the truncations performed. Nonetheless, it offelsaat a formulation which, in light of the
lattice results, could be a starting point for a more fornadilition of the problem. Since a solution
is mandatory to formally permit the comparison of continuand lattice results, a resolution of
this problem appears worthwhile to find.
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