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1. Non-perturbative gauge-fixing and the path integral

In gauge theories like the standard model, gauge-fixed correlation functions, like the gluon
propagator, are an excellent tool in intermediate steps to determine gauge-invariant physics. This
has been heavily used both in perturbation theory [1] and beyond [2–6]. The key element in the
latter calculations has been the judicious combination of lattice gauge theory, functional continuum
methods, in particular Dyson-Schwinger equations (DSEs) and functional renormalization group
equations (FRGs), effective theories, and perturbation theory [5]. However, this requires to fix a
gauge in a controlled way to determine these correlation functions. How to perform this beyond
perturbation theory will be the central question in this work. For this purpose, it will be restricted
to su(2) Yang-Mills theory ind Euclidean space-time dimensions in the following.

In perturbation theory, gauge-fixing can be done in a unique way by employing local condi-
tions, e. g. the Landau gauge condition used here

∂µAa
µ = 0 (1.1)

on the gauge fieldAa
µ . It can be implemented in the path integral for the calculation of a quantity

O using the Faddeev-Popov procedure [1]

< O > = lim
ξ→0

∫

DAµDcD c̄O(Aµ ,c, c̄)e
−
∫

d4xLg (1.2)

Lg = −
1
4

Fa
µ Fµa+

1
2ξ

(∂µAa
µ)

2+ c̄a∂µDab
µ cb

Fa
µν = ∂µAa

ν −∂νAa
µ +g fa

bcA
b
µAc

ν

Dab
µ = δ ab∂µ +g fab

c Ac
µ

with the gauge-fixed LagrangianLg containing the coupling constantg, the structure constants
f abc, the (anti)ghost fieldsca andc̄a, and the gauge parameterξ , which has to be sent to zero at the
end of the calculation.

The obstruction arising to this procedure beyond perturbation theory is the presence of multi-
ple solutions to the original gauge condition (1.1), the Gribov copies [7]. The Gribov copies cannot
be distinguished using any local condition in covariant gauges [8]. Such Gribov copies are just
ordinary gauge copies, but now separated from each other by afinite gauge transformation. As
such, they are also valid representatives of the gauge orbit, and it is required, just as with pertur-
bative gauge copies, to identify a precise way how to deal with them. In particular, the same two
possibilities are available as in perturbation theory [5]:One possibility is akin to Landau gauge,
and requires a (non-local) condition to select a well-defined representative for each gauge orbit
among the Gribov copies. The alternative is to work akin to covariant gauges by averaging in a
well-defined way over (a subset of) Gribov copies. As in perturbation theory, both possibilities are
equally valid.

It remains how to perform such a task. In lattice gauge theoryit is possible to determine at least
a finite subset of the Gribov copies of each gauge orbit, and manipulate the Gribov copies directly.
For the functional methods, this is not possible, and it is necessary to implement the prescription
how to deal with the Gribov copies in another way. There appear to be at least two possibilities
how to realize this [5, 9–13].
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One method [5, 9, 11] starts by the realization that correlation functions determine a theory
completely. Thus, two distinct gauges have to differ at least for one correlation function for one
momentum configuration [10]. Thus, without any restrictionthe equations for the correlation func-
tions should contain all the different sets of correlation functions for the different gauges. Since
the gauge-fixed Lagrangian itself generally changes along the gauge orbit, and thus for different
Gribov copies, the necessary information is stored somewhere, and it should be possible to identify
the different solutions by boundary conditions [9]. Uniquely identifying suitable correlation func-
tions and providing a formal proof of this statement is, however, complicated at best despite some
tantalizing results [9, 10]. It thus remains an active area of research.

An alternative [5, 12], on which this work will be focused on,is to implement additional
conditions in the path integral formulation similar to the perturbative Faddeev-Popov procedure.
The by far simplest procedure can be formulated, if there exists a non-local quantity which is
guaranteed to take values in a certain range along a gauge orbit for (almost all) configurations.
Then, a replication of the perturbative procedure could be performed [5, 12]. Whether such a
quantity suited for Landau gauge exists is not proven. Thus,this option will not be investigated
here. The alternative is instead to average over the gauge orbit with a well-defined weight. It is this
possibility which will be explored here.

To simplify this, the first step is to reduce the path integral(1.2) to the so-called first Gribov
region, i. e. the region where the Faddeev-Popov operator has only non-negative eigenvalues. It is
known that this restriction does not affect any gauge-invariant quantity, as all gauge orbits have at
least one gauge copy inside this region [14]. The implementation of this in the path integral can be
performed using aθ -function as

< Q > = lim
ξ→0

∫

DAµDcD c̄Qθ
(

−∂µDab
µ

)

(Aµ ,c, c̄)e
−
∫

d4xLg (1.3)

θ
(

−∂µDab
µ

)

= Π
i

θ(λi),

where theλi are the eigenvalues of the Faddeev-Popov operator−∂µDab
µ . Such an additional term,

as stated, does not affect any gauge-invariant quantity. Itcan be implemented in lattice calculations
[5]. For functional calculations, the observation sufficesthat any variation of the such modified
kernel of the path integral (1.3) will produce two terms. Thefirst term will contain the variation
of theθ -function, yielding aδ function on the Gribov horizon. However, since on this horizon the
Faddeev-Popov determinant, obtained after integrating out the ghost terms, vanishes, this term will
not contribute [15]. The second term produces only the ordinary functional equations, but with
expectation values now obtained from the reduced integration domain of the first Gribov region.
Turning the argument around, this implies that the functional equations over all Gribov regions
have the same form, and thus have the same solution manifold.Thus, the solution manifold of these
equations contain the correlation functions from both cases, and it requires a further constraint, a
boundary condition, to select among them. Sufficient boundary conditions for this case are not yet
identified, though some necessary ones are known [5, 10, 12].

2. The structure of the residual gauge orbit

This, unfortunately, is not sufficient to fully eliminate Gribov copies [16], and a possibly in-
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finite number of them remains. This set is termed the residualgauge orbit [11]. In the following,
lattice calculations will be used to investigate this residual gauge orbit further, before returning to
a formulation in terms of the path integral. This implies thepresence of both finite volume and dis-
cretization artifacts, and thus, strictly speaking, the following results only apply to the investigated
set of lattice parameters.

In lattice calculations multiple restart algorithms [5, 17] permit to obtain at least a fraction of
all Gribov copies of the residual gauge orbit. However, to distinguish two Gribov copies from each
other in practical calculations is a non-trivial problem. In principle, it would be necessary to check
at each space-time point for differences, within the numerical accuracy, taking all possible global
transformations into account. Already the memory limitations are prohibitive in practice for any
appreciable number of Gribov copies. Thus, an obtained gauge-fixed configuration is usually [5]
characterized by a finite number of moments. In actual calculations, these are based on the simplest
ones, the two-point correlation functions,

F = 1−
1
V

∫

ddxAa
µAa

µ

b = Z̃3 lim
p2→0

G(p),

whereG is the color-averaged ghost dressing function andZ̃3 is the ghost renormalization constant.
Note that both quantities are evaluated for each Gribov copyand configuration individually. The
finite volume in lattice calculations imposes thatb is actually evaluated at a finite momentum of
order 1/L whereL is the lattice extension [5]. This will here be considered asa finite volume
artifact [10, 18]. WhileF as a composite operator is subject to well-defined additive and multi-
plicative renormalizations [19],b is only multiplicatively renormalized. Note that both quantities
are invariant under global color rotations and space-time transformations.

In the following, two Gribov copies will be considered to be distinct if their difference inF
or b exceeds a certain thresholdε . Hence, some Gribov copies, which are different, will not be
recognized as such. Thus, all results which indicate a sensitivity to the choice of Gribov copies
yields only a lower limit to this sensitivity, even if all Gribov copies of any given residual gauge
orbit would be determined. So, the value ofε has to be set carefully. For a properly renormalized
quantity,ε could be the numerical accuracy, which is usually significantly less than the machine
precision, giving possible cancellations in the sums and imprecision in the gauge-fixing process.
For b, this is rather straight-forward. ForF, this is less simple. Due to the combination of additive
and multiplicative renormalization, the unrenormalizedF will tend towards 1 in the continuum
limit with vanishing width. Thus, at fixed numerical accuracy two distinct Gribov copies at low
discretization will appear equal at better discretization, because their difference inF will no longer
be resolvable.

To illustrate the impact of both restricting effects, the finite resolution of Gribov copies and the
finite search space, the number of Gribov copies obtained using eitherF or b as the sole criterion
is shown in figure 1. From the figure it can be seen that the number found depends strongly on the
thresholdε and the search space size, but not on whether eitherF or b is chosen.

Thus, both coordinatesF and b vary between Gribov copies. At this point, an interesting
question is whether Gribov copies resolved by either of the coordinates are also resolved by the
other coordinate. There are indications that this is the case [10]. But this is not an entirely simple
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Figure 1: The number of Gribov copies identified, both as a function of the search space size and the
thresholdε. Results are from a (4.4 fm)3 lattice with lattice spacing 0.122 fm in three dimensions. Results
in the left panel are obtained usingF to distinguish Gribov copies, andb is used in the right panel.

question, as this may depend on the resolving power with a fixed ε . Thus this may be altered by
a more systematic study, which is a rather non-trivial exercise, and will be done elsewhere [13].
However, for the present purpose, this is not relevant, as even this will not eliminate the possibility
that two copies are not resolved by eitherb or F, but only by some coordinate based on some higher
order correlation function or a different kinematic definition.

In fact, the only relevant question in the following to obtain non-trivial results will be whether
either of the coordinates has any resolving power at all, in particular towards the continuum and
infinite-volume limit. This will be studied here for the coordinateb by using two criteria. One
is how the possible range ofb values develops and the other how the number of Gribov copies
develops. The first quantity has an implication for the second quantity: Only if the range remains
at least finite, it makes any sense to distinguish Gribov copies usingb. This range, given as a ratio
to remove all trivial multiplicative factors, is shown in the left-hand side of figure 2. So far, it seems
to be finite, and except for one single lattice setup in four dimensions not shrinking. Whether the
latter is an artifact of too small a search space has to be seen, but it could also be a genuine effect.
For now, it suffices that this range is finite, so it seems to be useful to differentiate between at least a
part of the Gribov copies. Even if not, the whole procedure developed here could also be performed
using a more suitable quantity.

To take renormalization effects into account, the parameter ε for counting the Gribov copies
is then not fixed for all volumes and discretizations, but defined to be 1/1000th of the difference
between〈maxb〉 and〈minb〉. This implies that at most 1000 different Gribov copies can be found,
and in particular close-by Gribov copies will not be resolved. Thus, the number of Gribov copies
found is once more a lower limit. The results are shown in the right-hand side of figure 2. In contrast
to the original anticipation [11], the Gribov copies show a different behavior in two dimensions than
in three and four dimensions. While in the latter cases the number of Gribov copies increases as
a function of 1/a, in two dimensions this number is more or less constant. Furthermore, for the
largest volume a decrease seems to occur in two dimensions, but since this is a result from a single
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Figure 2: Left panels: The ratio〈maxb〉/〈minb〉 as a function of volume and lattice spacing in two (top
panel), three (middle panel) and four (bottom panel) dimensions. Right panels: The number of Gribov copies
as a function of volume and lattice spacing in two (top panel), three (middle panel) and four (bottom panel)
dimensions. More details will be available in [13].
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lattice setup, this may or may not be an artifact. Nonetheless, the whole observation may stand
in connection with the qualitative difference observed forthe behavior of propagators in two and
higher dimensions [5, 20].

3. Gribov-copy-aware gauge-fixing using the path integral

Assume for the following that the gauge corridor forb is finite in the infinite-volume and
continuum limit. The implications if this is not the case will be discussed afterwards.

This assumption implies that (at least some of) the Gribov copies are differentiated by their
value ofb. It is thus a viable concept to average over the Gribov copieswith an additional weight
factor, not only the Faddeev-Popov term, sensitive to the different values ofb for each Gribov
copy. Formally, this can be justified by an argument that there exists an (unknown) functional
which reduces the path integral exactly to one Gribov copy for each gauge orbit. Afterwards, an
averaging over such reduced path integrals can be done, justas for covariant gauges in perturbation
theory [1]. The lattice implementation gives an operational definition of selecting a single Gribov
copy, showing that this is possible. It is then permissible to average such expressions with an
appropriate normalized weight, as long as this guarantees that any gauge-invariant operator remains
unchanged. Otherwise, the weight is arbitrary. Such averages are, again just as for perturbative
covariant gauges, merely a gauge choice.

A second constraint is that this does not alter the corresponding functional equations severely,
if possible. This is not necessary, but technically convenient. A possibility may be then to write a
weight factor explicitly depending onb [5, 12]

< O > = lim
ξ→0

∫

DAµDcD c̄O(Aµ ,c, c̄)θ
(

−∂µDab
µ

)

e−
∫

d4xLg

×exp

(

N +λ
1
V

∫

ddxddy∂ x
µ c̄a(x)∂ y

µ ca(y)

)

, (3.1)

which only modifies the equation for the ghost propagator, since the additional term is bilinear
in the fields. The parameterλ is a Lagrange parameter, and can be seen as an additional gauge
parameter. The quantityN is a normalization factor, which guarantees that this expression does
not change gauge-invariant quantities. The double-integral is the ghost dressing function at zero
momentum [5], and thus should act only as a boundary term in a functional equation.

It remains to investigate whether this expression could make sense. For this purpose, it can
be operationally defined in lattice calculations, by a weighted sum over the Gribov copies of each
residual gauge orbit with the exponential factorexp(−λb+N ), with N chosen such that the
expectation value of one remains one. Since this then only averages over gauge copies, this is
nothing but a gauge choice in lattice calculations, and therefore admissible.

The first interesting question is, whether the normalization constantN is gauge-orbit indepen-
dent, at least in the infinite-volume and continuum limit. Ifthis were the case, it could be absorbed
in the measure. The simplest form for this will evidently be obtained forλ = 0. In this case,N
merely counts the Gribov copies. Though this is not sufficient for N to be orbit independent, it
is surely necessary. To investigate this, its distributionfor different volumes and discretizations is
shown in figure 3. The result is rather puzzling. With increasing volume, the distribution becomes

7
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Figure 3: The distribution of Gribov copies over the orbits in three dimensions, normalized to the aver-
age number of Gribov copies. The left-hand side shows the distribution as a function of volume at fixed
discretizationa= 0.22 fm, the right-hand side as a function of discretization atfixedV = (3.1 fm)3 [13].
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Figure 4: The left panel shows the actual obtained value ofG(0) as a function of the desiredB values. The
right-hand panel shows the value ofλ required to obtain the equality, up to numerical precision,shown in
the left-hand side as a function of the gauge parameterB. The results are in three dimensions for volumes
varying between (1.8 fm)3 and (5.7 fm)3 and for discretizations betweena= 0.22 fm toa= 0.043 fm.

better centered around the average value, and less asymmetric. However, for better discretization,
the distribution becomes at the same time broader, but also less asymmetric. The eventual limit
cannot be inferred from these figures, but instead calls for amore detailed investigation to be pre-
sented elsewhere [13]. Especially, the restricted search space and Gribov copy separating power
could have a systematic influence here as well. Sure is only that for the present calculations the
quantityN cannot be assumed to be orbit-independent.

This is not a problem in a lattice calculation, and thus it is possible to proceed. To specifyλ ,
there are two options. The first is to directly specifyλ , as with the gauge parameter in covariant

8



P
o
S
(
Q
C
D
-
T
N
T
-
I
I
)
0
2
8

On the structure of the residual gauge orbit Axel Maas

]-1

1/L [fm

0.2
0.3

0.4
0.5

a [fm]

0.1

0.2

 [%
]

m
.L

.
)/

G
(0

)
fla

t
-G

(0
)

m
.L

.
(G

(0
) -4

-2

0

2

4

Difference between minimal Landau gauge and flat distribution
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in three dimensions.

gauges. The alternative is an indirect condition, which will be done here along the lines of the
Landau-B gauge construction [10]. In this case, the gauge condition〈b〉=B=G(0) for some value
of B is imposed, and a value ofλ is selected such that this condition is satisfied. This is indeed
possible, as is shown in figure 4. For a value ofB between〈minb〉 and〈maxb〉 it is, within the
numerical precision applied1, always possible to find a value ofλ such that the prescription (3.1)
yields the desired equality. Since the weighted average cannot exceed the values of〈minb〉 and
〈maxb〉, there is noλ value which could permit to go beyond this range. As a consequence, when
B approaches either of the values, the requiredλ value diverges, clearly marking the impossibility
to exceed these bounds. On the other hand, this also shows that choosing a particular value ofλ
just leads to a particular value of〈b〉, and both conditions are in a one-to-one correspondence.

An interesting case isλ = 0, which corresponds to a flat average over the residual gaugeorbit.
If a random selection of a Gribov copy, as is done in the minimal Landau gauge [5], is an unbiased
process, this will yield in the limit of infinite samples the same value as when averaging over the
whole orbit. This seems to be indeed the case, as is shown in figure 5, where the difference between
the λ = 0 value and the minimal Landau gauge value is shown. As seen, the difference is small,
though systematic. However, the deviation is of the same size as the statistical error of the data,
and thus this may be a finite statistics effect.

This permits a quite interesting speculation: If a formulation like (3.1) is correct, then the case
λ = 0 implies minimal Landau gauge. Sinceλ takes the form of an additional gauge parameter,
minimal Landau gauge is a fixed point under multiplicative renormalization, and thus the natural
result under an unconstrained renormalization evolution.Thus, minimal Landau gauge is the one
naturally obtained in the infinite volume and continuum limit. It requires a particular action to stay
away from this fixed point.

In functional equations, this is not trivially recovered. Here, formulating the functional equa-

1It was searched for a fittingλ value in the interval[−14,14] with step size 0.2.
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Figure 6: Gluon propagator (left panel) and ghost propagator (right panel) from DSEs [9] and lattice data
[21].

tions at finiteλ and then taking the limit ofλ to zero would be adequate. Given that the additional
term in the path integral (3.1) implements a non-local constraint on the ghost propagator equation
only, this requires a constraint in this equation. This constraint will force G(0) to the value in the
minimal Landau gauge forλ going to zero.

Alternatively, instead of taking the limit, it may be possible to just select among the solutions of
the unconstrained functional equations by selecting the solution which satisfies the gauge condition
G(0) = B. For other values ofλ , and thusB andG(0), this procedure should, in principle, hold as
well. This prescription has already been used [9], and this yields a rather accurate reproduction of
the lattice results for the propagators in minimal Landau gauge using functional methods, as shown
in figure 6.

What is then about the family of solutions obtained in the functional equations [4–6, 9, 22, 23]?
Since the DSEs in these cases have been derived without an explicit constraint, and are, as argued
beforehand, insensitive to the Gribov region without further input, there are a number of scenarios,
as discussed in [5, 12]. Assume that the existence of the family, in particular the extremal scaling
case [2, 9], are not mere artifacts. If this is the case, all ofthe solutions must be reproducible with
other methods. However, since the family of solutions was only found using implicit information,
without an explicit implementation of additional constraints in the the functional equations, these
solutions may originate from any Gribov region and/or weighting over residual gauge orbits, in the
spirit of the discussion in the previous paragraph. Thus, the existence of the family of solutions
can only be firmly checked or excluded using lattice gauge theory, if all of these possibilities
are checked. For this, it would be helpful to explicitly find the constraints used in the functional
equations, in order to be able to reproduce the same calculation on the lattice. In particular, it would
be very important to understand whether the scaling case is indeed obtained only when averaging
over all Gribov copies in all Gribov regions [24–26].

However, if one is only interested in using the propagators to finally obtain gauge-invariant
quantities, this can very well be done with any of the family members, in particular the minimal
Landau gauge one. If the speculations here are correct, thenthere is a way to implement the
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minimal Landau gauge in functional calculations, and this can be done. This ends the speculative
part.

In case the range of possibleb values shrinks to a point in the continuum and infinite-volume
limit, the averaging procedure returns to a flat average, i. e., to the case ofλ = 0, and all of
this is only a rather elaborate framework to recover the flat average over the residual gauge orbit.
However, the procedure still remains correct, and all operations performed are permissible.

4. Where to go from here

Gauge averaging over Gribov copies as an operative definition in lattice gauge theory is obvi-
ously possible. Of course, provided the normalization is correct, these are equally possible gauge
choices, and there is no preference from a physical point of view. In fact, at least for those quantities
investigated here, the conventional minimal Landau gauge turns out to be equivalent to a particular
averaging gauge.

The next step is to investigate for further quantities, foremost correlation functions, what the
impact of averaging is. In particular, whether the equivalence to minimal Landau gauge at the fixed
point λ = 0 persists. This would establish the concept further concerning lattice gauge theory. Of
course, because averaging over all Gribov copies with a certain weight, irrespective of whether the
Gribov copies actually receive a different weight or not, precisely defines a treatment of Gribov
copies, this is a full resolution of the Gribov-Singer ambiguity.

Concerning the implementation in functional methods, the situation is not yet as simple.
Whether the formulation (3.1) is indeed correct requires more formal arguments, yet to be de-
veloped, if possible at all. The fact that the procedure yields rather good agreement in actual
calculations, see figure 6, as well as for physical observables [3, 27–29], could still be accidental
due to the truncations performed. Nonetheless, it offers atleast a formulation which, in light of the
lattice results, could be a starting point for a more formal solution of the problem. Since a solution
is mandatory to formally permit the comparison of continuumand lattice results, a resolution of
this problem appears worthwhile to find.
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