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1. Introduction

QCD has two main properties: the chiral symmetry breaking (CSB) or dynaiizak
mass generation and confinement of quarks and gluons. Both phenameergated to the non-
perturbative infrared (IR) dynamics. The most usual non-pertwdatiethod to study these prop-
erties is QCD simulation on the lattice, but it is also possible to study dynamical massagion in
the continuous space-time through Schwinger-Dyson equations (SDEAfbther fundamental
QCD property is that the gluon may have a dynamically generated mass,gestaymany years
ago by Cornwall [2], and this property has been thoroughly studieshtbc[3, 4, 5]. We may say
nowadays that there are strong evidences for this fact as obserlatide QCD simulations [6],
whose results show nice compatibility with the SDE calculations [4].

It is usually assumed that the fermionic gap equation can generate CSBbawky a certain
critical coupling equal tax;(0) = (g2/4m) > (11/3C;), whereC; is the Casimir eigenvalue of the
fundamental representation. Actually it was suggested for fermions imerigerepresentation
R of non-Abelian gauge theories a hypothetical Casimir scaling law for fermiass generation
aCy(R) = ¢'(1) [7], which is a consequence of the fermionic SDE without the existence of a
dynamical gauge boson mass. Unfortunately the beautiful scenaricmafdgal gluon mass gen-
eration, which may have deep implications for confinement [2], poseskdgmnafor the study of
CSB through SDE. When gluons acquire a dynamical mass it has been shakthe coupling
constant freezes in the infrared, i.e. develops a non-perturbatiggadffixed point [8], with the

following behavior:
1

" bin[(k2+4mg) /A\2cp]

whereb = (1IN — 2n;) /48 for the SU(N) group withns flavors. For quarks in the fundamental
representatio; = 4/3 andmyg = my(k? = 0) ~ 2Aqcp ~ 500— 600 MeV, the phenomenologi-
cally preferred infrared value of the gluon mass [9], this charge’sevatuithe infrared fixed point
(as(0) = g?(0)/4m) is of order 05, while it should be at least a factor 2 larger to trigger CSB.
Furthermore, the gluon propagator in the fermionic SDE kernel no lorgfeamMes as /k? but as
1/(k?+ mg) in the infrared, what provides an extra damping in the gap equation. Tiseqoence

is that this equation does not generate dynamical quark mad$k%)J compatible with the exper-
imental data! However if quarks were in higher dimensional representatitmhigher values for
the Casimir operator, it would still be possible to generate some CSB [10, 11].

The fact that if gluons acquire a dynamical mass we cannot obtain ndal-solutions for
the fermionic SDE was discussed in several papers [12, 13]. It caukhld that the SDE are
inappropriate to discuss CSB, but this is hardly the case in view of the ssfoteesults obtained
through this approach in what concerns the gluonic sector. Thens®oan guess that some phys-
ical input is missing in the quark SDE. Before discussing a solution recemoped by Cornwall
to solve this problem [14], it is interesting to recollect some lattice and phermlogical results
that are intimately related to this problem. One important result of heavy qir@hopnenology,
consistent with lattice QCD, is that the potential felt by quarks in the fundahrempi@sentation is
given byVe (r) = Ker — %‘% where the first term is linear with the distance and proportional to the
string tensiorKg generating a confining force. The second term, of oodethe strong coupling
constant, describes the one gluon exchange contribution. On the otitetheaclassical potential

g°(K) (1.1)
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between static quark charges is related to the Fourier transform of the timedmponent of the
full gluon propagator in the following way

%

V(N = ~52 [ das(a?)doo(a) exp® (12)

where the bold termg, andr, are 3-vectors. As noticed in Ref.[15] the linear confining term of the
potential Krr) cannot be obtained from the gluon propagator determined in the latticeroitfre
gluonic SDE, i.e. we could roughly say that the dynamically massive gluoragetpr also does
not lead to quark confinement as it may not lead to CSB.

Another important QCD lattice result that is connected to the CSB mechanism,abske
vation that most of the chiral breaking is related to the very low momenta compoftine gluon,
i.e. CSB is associated to the deep infrared region [16], which is the regimindted by the linear
confining potential. Finally, from a phenomenological point of view, wencdmeglect the many
successful results obtained by Nambu-Jona-Lasinio type of quarkisp@dech are effective four-
fermion interactions explaining most of the CSB strong interaction phenonggnole believe
that it is extremely difficult to generate such effective theories when vaé @ldy with massive
one-gluon exchange, with their infrared damped propagator andifamepling constant.

We can resume the previous paragraphs saying that lattice QCD appeanamdi a linear
potential between quarks and a CSB mechanism typical of very low momentasgland on
the other hand the phenomenological data seems to demand a strong intdrattiean quarks
in order to generate an effective four-fermion interaction. We can adte®se arguments the
following results: aSU(2) lattice simulations have shown that that the removal of confining center
vortices restore the chiral symmetry [17, 18]; b) In the case of adjormites we may have
CSB without confinement [19], what may be due to the large Casimir valusepren the gap
equation with massive one-gluon exchange [10, 11]. Therefore #hglmon massive gap equation
may drive CSB, although this breaking will be related to the exchange ofetdiate momenta
gluons [11]. We then have several indications that confinement may playortant role in CSB.
Cornwall proposed recently an effective propagator for the gaptemy based on confinement and
entropy criteria, that cures the problem of CSB in the presence of dyalynicassive gluons [14].
We complement Cornwall’s paper in some points, and, particularly, showrtbst of the chiral
breaking happens at very low momenta, what is compatible with the lattice simulafienstudy
the bifurcation equation finding limits on the parameters appearing in the efqmtbpagator,
below which a satisfactory fermion mass solution is generated. We studyyimptatic behavior
of the new gap equation containing the confinement effect and massige ¢son exchange,
and find that the symmetry breaking can be approximated by an effectivéeionion interaction
generated by the confining propagator, in agreement with phenomerallggiark models with
this type of interaction. We compute some QCD chiral parameters, findingsveduepatible with
the experimental data, and obtain a simple approximate relation between thenfeonitensate
and dynamical quark mass for a given representation as a function patameters appearing in
the effective confining propagator.

2. Confining propagator and bifurcation of the gap equation

Confinement was introduced explicitly into the gap equation through the folipeffiective
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propagator which is not at all related to the propagation of a standard quantum fil4dt

81Ke

(R+m?)2° 2.1)

Ders(k) = 8*'Dett(K); Dett(k) =
In the m — O limit we would obtain the standard effective propagataKg8s+V /k#, that yields
approximately an area law for the Wilson loop. We must necessarily havéearfigZz 0 value
due to entropic reasons as demonstrated in Ref.[14], and its value is teldéteddynamical quark
mass (h~ M(0)), as required by gauge invariance, originating a negative teg/min the static
potential in order to generate the Goldstone bosons associated to thesghiraktry breaking.
Moreover, the Abelian gauge invariance of this effective propagatst appear in the quark action
obtained by integrating over quark world lines that will imply a area-law acfigh [It is opportune
to remember that for many years it was thought, due to the known Mandelptaoxamation [20],
that a confining 1k* propagator would come out naturally from the Schwinger-Dyson equsation
Now, after recognizing that the gluon propagator has a massive beljidyend is a “confined"”
gluon, it seems that we ought to change the paradigm and introduceeraefin explicitly into the
gap equation as proposed in Ref.[14].

The full gap equation in this case is given by:

AM(K?)
e meie)
C2 g*(p—k)3M(K?)

whereM(p?) is the dynamical quark mass generated by the confining and dressetpgbpaga-
tor. Apart from the approximate solutions of Eq.(2.2) found in Ref.[14]oar study its critical
behavior examining its bifurcation equation. This equation is a standarthéirecquation with
a positive kernel, and, requiring its solution to belong fpthe spectrum is discrete with a small-
est value for the “effective coupling<r /m? and the 1-gluon exchange coupligey 47 such that
we have the trivial solution for values of these couplings smaller than arcerttical value, and
the nontrivial one if their values are larger than this same critical value elfinearize Eq.(2.2)
and define the variables= p?/M?, y = k?/M?, k = n?/M?, £ = m§/M?, p = N3cp/M? and
f(p?) = M(p?)/M, we obtain the following bifurcation equation [21]

/\Z/MZ
(=7 dyKoey ). 23

mJjo
where we introduced an ultraviolet cutoff and the kerneK(x,y) is equal to

oy 2Ke 1 3, GA(y)
K“”“W+n[<MZW+Kﬂ+1wrW+w)ew‘”

K¢ 1 3T, FX)
* <M2(X—|—K)2+167T (x+s))e<x_ )] ' (24)

The kernelK is square integrable and the first bifurcation point of the nonlinear equatisst
satisfy £ |[K|| = 1. This bifurcation condition lead us to Fig.(1), whose curves were olstdime
the case ohs = 3, Agcp = 300MeV andKr = 0.18Ge\2. The dashed (blue) curve was obtained
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with my = 600MeV, the dot-dashed (red) curve witly = 650MeV and the solid (black) curve
with myg = 700MeV. Each point of these curves indicates the bifurcation point venm value
generating a dynamical quark mads It should be noticed that there is a maximomvalue above
which there is no CSB. It is also interesting to verify that CSB also receigatributions from
the massive gluon term, and this is the reason for the differences betweearttes, though the
massive gluon (or 1-gluon exchange) generates a minute mass, ay absadved many years
ago in Ref.[12, 13]. As the dynamical gluon mass is decreased we canvels small increase
in the maximum value of then parameter, due to the 1-gluon exchange increasing contribution to
the gap equation. The confining effective propagator dominates the afosymmetry breaking
and has most of its effect concentrated in a momentum region b@(d@®0) MeV. Actually, as we
shall discuss ahead, most of the chiral symmetry breaking will occur dthettow momentum
region of the gap equation, what is consistent with lattice observations thaglédvant momentum
component of gluons for CSB is exactly this region [16]. This fact may drdrasted with the
results of Ref.[11], where a larger part of the CSB comes from an intateeregion of&'(1)
GeV. The details of our calculation can be found in Ref.[21].
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Figure 1: The bifurcation condition for the kernel of Eq.(2.4) is péat in the case ofir = 3, Agcp =
300MeV andKg = 0.18Ge\2. The dashed (blue) curve was obtained with= 600MeV, the dot-dashed
(red) curve withmy = 650 MeV and the solid (black) curve withy = 700MeV.

3. The asymptotic behavior of the gap equation and the four-fienion approximation

Eq.(2.2) can be transformed into a linear second-order differentialtiequwith a singularity
at infinity, subjected to two boundary conditions. Its asymptotic solution is arliceabination
of two independent solutiond,(x) = bs f1 (x) + b2 f_(X), which can be obtained by applying the
expansion method [24]. In the ultraviolet limit we verify that the asymptotic behaf the quark
self-energy is, apart from logarithmic contributions, the knowp?lbehavior (orfiag ™ solution)

found by Politzer using the operator product expansion [22]. Notidethigsasymptotic behavior
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is fully described by the 1-gluon exchange, and this is not much différent what was found
by Takeuchi [23] in a problem where the CSB is dominated by a four-fernmteraction. The
influence of the confining propagator enters only through the bourdagitions. As the mass so-
lution that comes from the confining contribution has a fast falloff, aimadsabiag as an effective
four-fermion interaction it is not surprising at all to see the similarity of ouaitied results (see
[21]) with the ones of Ref.[23]. As discussed in Ref.[21] for some pacualues of the parame-
ters appearing in the gap equation we may change the asymptotic behaviesefftenergy, from
the regular behaviofieg"'to the one known as irregulaf2 ™), not differing from the one with
explicit CSB; this fact led us to study an actual four-fermion approximatiaghéa@ap equation.

The gap equation has a different asymptotic behavior if the upper cutoffasderm~ M.
Assuming an upper limit/{) in the momentum integration, we studied in Ref.[21] the r&ic
fieg "/ fieg T WhenA ~ mas a function oy = 24, andap = ?1%27?22 This ratio is smaller than 1
indicating that the irregular asymptotic behavior of the symmetry breaking solddiminates over
the regular one in this particular limit. In order to explore even more this possiviityan assume
that the confining contribution could be reduced to an effective foumifen interaction. Some of
the reasons why we are concerned with the possibility of generating-defouion interaction are
the following: First, confinement is introduced into the gap equation leadingstmag infrared
force, we then expect to reproduce some of the many phenomenolagicaissful quark-models
based on the Nambu-Jona-Lasinio type of interaction. Secondly, lattice simnglahow that the
relevant gluonic energy scale of spontaneous CSB is due to the low-mameataponent of the
gluon field [16], which may indicate the possibility of a natural upper cutothi®m momentum,
appearing due to the saturation of the linear potential. The existence ofificpwmentum that
separates the confinement and perturbative regions has also bagsseim a different context
[25]. Finally, the existence of a completely nonperturbative infraredlfp@nt, as happens when
the theory develops a dynamical gauge boson mass [8], may inductveffecr-fermion interac-
tions as discussed many years ago in Ref.[26].

It is known that as long as we have a massive gluon propagator it coultidgned that
this mass could be factorized from the propagator generating an edféatix-fermion interaction,
but this is not true because the actual interaction strength is measured finpdhet “couplingp
propagator”, and we know from Eq.(1.1) that the 1-gluon exchangenbaenough strength to
generate such effective interaction. On the other hand the confiniagtie# propagator, with
the usual values for the string tension, is strong enough to generatelldwirig effective gap
eqguation:

Mas (K2)
- mm k24 M2, (k2)
G / 4 0°(p— k)3Mat (k%)

(2m)* [(P—K)2+mg(p—K)] [+ Mz (k?)]

6(m? — k)

(3.1)

The solution of Eq.(3.1) is similar to the one of Ref. [23] observing the intgrpktween its
4-fermion coupling constank and our effective couplingg /n?.

In order to show how a 4-fermion approximation is reasonable to descelmitital behavior
of the complete Eq.(2.3) studied in the previous section, we can study thedtifur problem for
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the 4-fermion effective kernel given by

o ,
HK4fH2=/O dX/O dy(yy2 ( Kt oik—y)+ 22 QQ(X)>

+1)2 \ M2,k?2 167 (x+

£)
@ @ % 2K T P\’
+ /0 dx/x W 117 (MEfKZQ(K—y)—i—lGn (yH)) (3.2)

We separated the kernel of Eq.(3.2) into two different kernels, ondalthee effective four-
fermion interaction and another due to the exchange of a massive gluinig. this triangle inequal-
ity ||Ka|| = [|Ke+ Kag|| < [|Ke|| + [|[Kag|| @and the bifurcation conditiod ||Ks¢|| = 1 we compute
the critical condition and show in Fig.(2) the dot-dashed (black) curveittéad m values for the
generation of massive solutions of Eq.(3.1). This curve was obtainad,fer 600 MeV,ns = 3,
Agcp = 300 MeV andKg = 0.18 Ge\?, and for comparison we also draw in Fig.(2) the dashed
(blue) critical curve of the complete kernel given by Eq.(2.4) (i.e. withlbetfour-fermion approx-
imation) computed with the same parameters. This shows that most of the symneetkingris
driven by the confining effective propagator and the four-fermigoreximation is quite accurate
up to an order of 10%, what is quite reasonable if we consider the use tidhgle inequality to

obtain Fig.(2), indicating that the confinement effect, as proposed inlRgfrhay indeed generate
an effective four-fermion interaction.

H
& 0.25F
E

. . . Iul
0.05 0.10 0.15 0.2C
M(GeV)

Figure 2: The bifurcation condition obtained for the kernel of EcR{3using the triangle inequality. The
result formy = 600 MeV,nt = 3, Agcp = 300 MeV andKr = 0.18 Ge\2is shown by the dot-dashed (black)
curve. For comparison we also draw the dashed (blue) driticae of the complete kernel given by Eq.(2.4)
computed with the same parameters.

Besides the fact that the gap equation generated in this approximation isicalipeatisfac-
tory, we believe that the confining part of the fermionic SDE should haaswal upper cutoff at
some scale not much different from The reason for this is that the linear potential must break
at some critical distance. For = 2 quarks in the fundamental representation, lattice QCD data
shows that the string breaks at the critical distance 1.25 fm [27], which corresponds tora
value compatible with the one necessary for the expected amount of G8&ullt be outpurposed
if confinement (and, in particular, the confining propagator) were stédtéfe to shorter distances
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m frr fr (q9) (1GeV?) B

[MeV] [MeV] [MeV] [MeV3] [MeV4]
160 62.0 71.12 169.03 100.09
180 5451 | 61.83 156.12 84.96
200 46.59 | 52.14 142.0 69.43
Expected Values 93 93 229+9 146

Table 1: Values off;;, (qQg) andB as a function ofn obtained with the numerical solution of Eq.(2.2).

or large momentum scales. We can resume our results up to now (as detaiéf)ira) Most of
the CSB comes from a momentum region bel@¢100) MeV and b) The effective confining prop-
agator seems to generate an effective four-fermion interaction, which @iy observed through
the bifurcation condition in Fig.(2) but also through the full numerical solutibine gap equation
[21].

To confirm that the scenario of Ref. [14] is fully consistent with the CSBnamenology,
we compute several chiral parameters with the same values, dfqocp, Kr andmy discussed
above andn= 180 MeV, which leads to the usually expected dynamical quark mass of 250 M
These calculations are performed in the case of the full gap equatior2 &g.&4nd the results
do not change appreciably from the values obtained with the four-ferapgnoximation. The
chiral parameters, computed in the Abelian gluon approximation, that wedeose: a) The pion
decay constant2 = f_,2T+ 52, whered f2 is a correction td_,ZT as determined in [28]; b) The quark
condensatéqq) at the scalgi? = 1 Ge\?; ¢) The MIT bag constanB. The results for these three
parameters, computed as a functiompfare shown in Table (1). These values were calculated in
the simple rainbow approximation [21], and better choices for the vertetiumas well as higher
order corrections for these quantities can bring them closer to the expeaimnelues.

4. CSB for higher dimensional representations

The study of CSB for fermions in higher dimensional representations iserest because it
is a possible way to verify how this mechanism is distinct from the confinemrmentas well as it is
important for technicolor model building. If a type of Casimir scaling occulsfe expect that for
higher dimensional representations the CSB typical mass scale wouldérexdiffrom the one for
the fundamental representation, and perhaps different from theneamdint scale. It has also been
argued that for “quarks" in the adjoint representation the dynamically meaghions may have
enough strength to generate a dynamical quark mass [10, 11]. IndRedl [ihl] a large dynamical
mass was found for fermions in the adjoint representation, and oneynaigald expect that in
this case the confining and chiral breaking transitions would appearagelya

If we follow straightforwardly the model of Ref.[14] we must also verifyatls the difference
introduced by the confining propagator in the case of higher dimensiepadsentations, because
in principle we should replace the string tensknby Kg, which is the string tension for fermions
in the representatioR. We assume that this replacement is accurate, although we know that the
phenomenological potential, and consequently the string tension, daggechecording to the rep-
resentation. For instance, in the case of the adjoint representation itve khatVa(r — o) = 2Mg,
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whereMy is the energy of the lightest glueball. Moreover, the adjoint represeniatrmt confined
but screened [29], what means that the confining propagator sheuldderstood as effective up to
a certain distance in these cases. Of course, no matter what the fermpmeieamitation is we shall
have a critical distance above which the string breaks. We assume thatrimotted of Ref.[14]
most of the chiral symmetry breaking is still related to the form of Eq.(2.1), vtiaes not get the
chance to be probed at large distances, consequently we may still éxaentost of the CSB is
driven by the “confining" propagator.

The fermion condensate is the most frequent quantity used to charadtegizliral phase
transition, and it is this quantity that we will analyze to investigate CSB for fersiomifferent
representations. It is easier to compute this quantity for different ferng@presentations if we
consider the gap equation in the four-fermion approximation given by Hg, (@erform the angle
approximation and neglect the gluon mass in the propagator of the 1-glabarege contribution:

2 Kg [™ 4 Mas(K?)

Mar(P) = Tty i vz, 1)
C 0°(p)3Mat (K)
! (271)4/ T 201+ M2, ()] "
G g°(K)3Mat (k)
" et / a* K22+ M2, (K2)] Ok~ p). (4.1)

On the other hand we may write the fermion condensate for the represerRatiahe following
form

— Nr m XMR(X)
(AQ)g (MP) = _T#/() dxm ; (4.2)

whereNg is the dimension of the fermion representat®andMg(x) its dynamical mass. We are
forcing the upper limit of Eq.(4.2) to be @f(m), which can be as low asITB GeV, while(qq) is
well known at the 1 GeV scale. We did this, as we shall see below, in orasity compare the
condensate expression to Eq.(4.1), but we can check that Eq.(4v&)gs@ good estimate of the
quark condensate at 1 GeV [21]. We stress that the upper limit in the tegtral in the right-hand
side of Eq.(4.1) may be a physical one in order to be consistent with the kedistance at which
the string breaks.

Eq.(4.2) can be compared to Eg.(4.1), the dynamical fermion mdasis the four-fermion
approximation, if we set all integrals at the scaleobtaining

(4.3)

Mr(m?) ~ | 2R | %ZRQ%(”‘Z)} / " axMR(9

m?  1emm? | Jo X+ M3(X)
Since the first term between brackets in the right-hand side of Eq.(4.3) ib latger than the
second one, combining the two last equations we kgsjg; (M?) ~ —Q‘—,F;K@;MR(n?). For quarks in
the fundamental representation, this relation underestimates the condrs&tethe fact that the
integration area in this equation was drastically reduced when we cutofftéggahatn?. Since
the effect of the Eq.(2.1) is the dominating one, it is quite plausible that the rela¢ioveen the
condensates holds up to other scales (still keeping the fertar the right-hand side) and it can
be tested through lattice simulations.
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We can now make a few comments on the differences between CSB for farmitme fun-
damental and adjoint representations estimating the ratio of the conderma®3) fermions
in these representations. First we need to know how the string tensiogeshas we change the
fermion representation. It has been observed in lattice simulations whatayusalled Casimir
scaling for the string tension [29], i.&R = %EKF whereCgr/Ck is the ratio between the Casimir
operators for the representatiBand the fundamental one. FSU(N) theories and a finit&l the
Casimir scaling law must break down at some point, and should be replaceddpendence on
the N-ality k of the representatiolg = f (K)Kg [29]. This change of behavior is credited to an ef-
fect of force screening by the gluons. For fermions in the adjoint ssgmtation théN-ality is zero,
therefore, according to Casimir scaling, the adjoint string tension is giyd¢n b= sz’\flKF, and,
as a reasonable approximation, we may asskigve 2Kg. Consequently we obtain the following
ratio at the scale? _

(a3 _3Ms

(Gcs ~ 4Ms
Once the dynamical masses almost scale with the string tension value we optlidtsthe above
ratio is roughly of order 88. Of course, the uncertainty in this estimative is certainly connected
to the remarks made at the beginning of this section about the phenomenofugiieatial and
the effective propagator for the adjoint representation. For othemideic representations the

screening behavior is smaller, although in all cases we certainly have a lithie @nitical distance
for which this approach is valid that will be connected with the string breakiaghanism.

(4.4)

5. Conclusions

We discussed chiral symmetry breaking in QCD and in the presence ofnityally massive
gluons. Confinement was introduced into the SDE in the form of an eféeptivpagator, which is
one that can reproduce an area law for quarks. This is a phenomaablegy to investigate the
possibility, indicated by the lattice, of confinement (by center vortices) bietnigsically related
to chiral symmetry breaking. We briefly review the conditions for the cordimiropagator to
generate non-trivial massive solutions. We studied the bifurcation condaithe complete gap
equation, i.e. the one with the exchange of dynamically massive gluons anthgvitttiusion of the
confining effective propagator dependent on the entropic parametenich must be proportional
to the dynamical quark mass, and on the string ten&ipnverifying that there is a maximum
m value below which the chiral symmetry is broken, and generating the exbeahees for the
dynamical quark masses. As already known in the literature we verifiedh@ahassive gluon
exchange gives only a minute contribution to the dynamical quark mass. d¥itiet breaking is
due to the confining propagator and this may be one indication that we shouékpect large
differences between the chiral and confinement transitions.

It is known that the quark gap equation with a massive gluon cannot beeddo an effective
four-fermion interaction due to the small infrared strength of the prodtaapling=propagator”,
however we verified that this is not the case for the confining effectivpagmator. The bifurcation
equation for the gap equation with the four-fermion approximation performtgk confining part
reproduces approximately the result of the complete gap equation. Ourrinahoalculation of
the quark mass is consistent with the approximate results obtained by Corbjall [

10
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We discuss CSB for fermionic representations different than the funadtahwne. We found
a simple relation between the fermion condensate and the fermionic dynamicalThasrelation
depends on the dimension of the fermion representaticandKg, and we assumed that the form
of Eq.(2.1) still holds for different fermionic representations up to a gedstance. In principle
such relation can be studied in lattice simulations.

Our results indicate that the CSB mechanism proposed in Ref.[14] canrddoo the ex-
pected values of several known chiral parameters. The model alsw $eéndicate that the CSB
scale is connected to the confinement one even for fermions in higher dimahspresentations.
How far can we assume the four-fermion approximation discussed hdtefpurpose of practical
calculations still needs further analysis. Finally, a more precise determiradttbe CSB observ-
ables can be obtained with the introduction of more sophisticated vertex fasetial higher order
corrections.
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