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Since the coupling constant and gluon propagator are dampedin the infrared, due to the presence

of a dynamical gluon mass, the major part of the chiral breaking is only due to the confining

propagator and related to the low momentum region of the gap equation. We study the asymptotic

behavior of the gap equation containing this confinement effect and massive gluon exchange, and

find that the symmetry breaking can be approximated by an effective four-fermion interaction

generated by the confining propagator. We compute some QCD chiral parameters as a function of

m, finding values compatible with the experimental data. We find a simple approximate relation

between the fermion condensate and dynamical mass for a given representation as a function of

the parameters appearing in the effective confining propagator.
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1. Introduction

QCD has two main properties: the chiral symmetry breaking (CSB) or dynamical quark
mass generation and confinement of quarks and gluons. Both phenomenaare related to the non-
perturbative infrared (IR) dynamics. The most usual non-perturbative method to study these prop-
erties is QCD simulation on the lattice, but it is also possible to study dynamical mass generation in
the continuous space-time through Schwinger-Dyson equations (SDE) [1]. Another fundamental
QCD property is that the gluon may have a dynamically generated mass, as suggested many years
ago by Cornwall [2], and this property has been thoroughly studied recently [3, 4, 5]. We may say
nowadays that there are strong evidences for this fact as observed inlattice QCD simulations [6],
whose results show nice compatibility with the SDE calculations [4].

It is usually assumed that the fermionic gap equation can generate CSB only above a certain
critical coupling equal toαc(0) ≡ (g2

c/4π) ≥ (π/3C2), whereC2 is the Casimir eigenvalue of the
fundamental representation. Actually it was suggested for fermions in a generic representation
R of non-Abelian gauge theories a hypothetical Casimir scaling law for fermionmass generation
αsC2(R) ≈ O(1) [7], which is a consequence of the fermionic SDE without the existence of a
dynamical gauge boson mass. Unfortunately the beautiful scenario of dynamical gluon mass gen-
eration, which may have deep implications for confinement [2], poses a problem for the study of
CSB through SDE. When gluons acquire a dynamical mass it has been shown that the coupling
constant freezes in the infrared, i.e. develops a non-perturbative infrared fixed point [8], with the
following behavior:

ḡ2(k2) =
1

bln[(k2+4m2
g)/Λ2

QCD]
, (1.1)

whereb= (11N−2nf )/48π2 for theSU(N) group withnf flavors. For quarks in the fundamental
representationC2 = 4/3 andmg ≡ mg(k2 = 0) ≈ 2ΛQCD ≈ 500−600 MeV, the phenomenologi-
cally preferred infrared value of the gluon mass [9], this charge’s value at the infrared fixed point
(αs(0) ≡ ḡ2(0)/4π) is of order 0.5, while it should be at least a factor 2 larger to trigger CSB.
Furthermore, the gluon propagator in the fermionic SDE kernel no longer behaves as 1/k2 but as
1/(k2+m2

g) in the infrared, what provides an extra damping in the gap equation. The consequence
is that this equation does not generate dynamical quark masses (M(k2)) compatible with the exper-
imental data! However if quarks were in higher dimensional representation, with higher values for
the Casimir operator, it would still be possible to generate some CSB [10, 11].

The fact that if gluons acquire a dynamical mass we cannot obtain non-trivial solutions for
the fermionic SDE was discussed in several papers [12, 13]. It could be said that the SDE are
inappropriate to discuss CSB, but this is hardly the case in view of the successful results obtained
through this approach in what concerns the gluonic sector. Thereforewe can guess that some phys-
ical input is missing in the quark SDE. Before discussing a solution recently proposed by Cornwall
to solve this problem [14], it is interesting to recollect some lattice and phenomenological results
that are intimately related to this problem. One important result of heavy quark phenomenology,
consistent with lattice QCD, is that the potential felt by quarks in the fundamental representation is
given byVF(r) = KF r − 4

3
αs
r , where the first term is linear with the distance and proportional to the

string tensionKF generating a confining force. The second term, of orderαs, the strong coupling
constant, describes the one gluon exchange contribution. On the other hand the classical potential
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between static quark charges is related to the Fourier transform of the time-timecomponent of the
full gluon propagator in the following way

V(r) =−
2C2

π

∫

d3qαs(q2)∆00(q)expıq.r , (1.2)

where the bold terms,q andr , are 3-vectors. As noticed in Ref.[15] the linear confining term of the
potential (KF r) cannot be obtained from the gluon propagator determined in the lattice or from the
gluonic SDE, i.e. we could roughly say that the dynamically massive gluon propagator also does
not lead to quark confinement as it may not lead to CSB.

Another important QCD lattice result that is connected to the CSB mechanism, is theobser-
vation that most of the chiral breaking is related to the very low momenta component of the gluon,
i.e. CSB is associated to the deep infrared region [16], which is the region dominated by the linear
confining potential. Finally, from a phenomenological point of view, we cannot neglect the many
successful results obtained by Nambu-Jona-Lasinio type of quark models, which are effective four-
fermion interactions explaining most of the CSB strong interaction phenomenology. We believe
that it is extremely difficult to generate such effective theories when we deal only with massive
one-gluon exchange, with their infrared damped propagator and frozen coupling constant.

We can resume the previous paragraphs saying that lattice QCD appear to demand a linear
potential between quarks and a CSB mechanism typical of very low momenta gluons, and on
the other hand the phenomenological data seems to demand a strong interactionbetween quarks
in order to generate an effective four-fermion interaction. We can add tothese arguments the
following results: a)SU(2) lattice simulations have shown that that the removal of confining center
vortices restore the chiral symmetry [17, 18]; b) In the case of adjoint fermions we may have
CSB without confinement [19], what may be due to the large Casimir value present in the gap
equation with massive one-gluon exchange [10, 11]. Therefore the one-gluon massive gap equation
may drive CSB, although this breaking will be related to the exchange of intermediate momenta
gluons [11]. We then have several indications that confinement may play an important role in CSB.
Cornwall proposed recently an effective propagator for the gap equation, based on confinement and
entropy criteria, that cures the problem of CSB in the presence of dynamically massive gluons [14].
We complement Cornwall’s paper in some points, and, particularly, show thatmost of the chiral
breaking happens at very low momenta, what is compatible with the lattice simulations. We study
the bifurcation equation finding limits on the parameters appearing in the effective propagator,
below which a satisfactory fermion mass solution is generated. We study the asymptotic behavior
of the new gap equation containing the confinement effect and massive gauge boson exchange,
and find that the symmetry breaking can be approximated by an effective four-fermion interaction
generated by the confining propagator, in agreement with phenomenological quark models with
this type of interaction. We compute some QCD chiral parameters, finding values compatible with
the experimental data, and obtain a simple approximate relation between the fermion condensate
and dynamical quark mass for a given representation as a function of theparameters appearing in
the effective confining propagator.

2. Confining propagator and bifurcation of the gap equation

Confinement was introduced explicitly into the gap equation through the following effective
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propagator, which is not at all related to the propagation of a standard quantum field[14]:

Dµν
e f f(k)≡ δ µνDe f f(k); De f f(k) =

8πKF

(k2+m2)2 . (2.1)

In the m→ 0 limit we would obtain the standard effective propagator 8πKFδ µν/k4, that yields
approximately an area law for the Wilson loop. We must necessarily have a finite m 6= 0 value
due to entropic reasons as demonstrated in Ref.[14], and its value is relatedto the dynamical quark
mass (m≈ M(0)), as required by gauge invariance, originating a negative term−KF/m in the static
potential in order to generate the Goldstone bosons associated to the chiralsymmetry breaking.
Moreover, the Abelian gauge invariance of this effective propagator must appear in the quark action
obtained by integrating over quark world lines that will imply a area-law action [14]. It is opportune
to remember that for many years it was thought, due to the known Mandelstam approximation [20],
that a confining 1/k4 propagator would come out naturally from the Schwinger-Dyson equations.
Now, after recognizing that the gluon propagator has a massive behavior [4] and is a “confined"
gluon, it seems that we ought to change the paradigm and introduce confinement explicitly into the
gap equation as proposed in Ref.[14].

The full gap equation in this case is given by:

M(p2) =
1

(2π)4

∫

d4kDe f f(p−k)
4M(k2)

k2+M2(k2)

+
C2

(2π)4

∫

d4k
ḡ2(p−k)3M(k2)

[(p−k)2+m2
g(p−k)][k2+M2(k2)]

, (2.2)

whereM(p2) is the dynamical quark mass generated by the confining and dressed-gluon propaga-
tor. Apart from the approximate solutions of Eq.(2.2) found in Ref.[14] wecan study its critical
behavior examining its bifurcation equation. This equation is a standard Fredholm equation with
a positive kernel, and, requiring its solution to belong toL2, the spectrum is discrete with a small-
est value for the “effective coupling"KF/m2 and the 1-gluon exchange coupling ¯g2/4π such that
we have the trivial solution for values of these couplings smaller than a certain critical value, and
the nontrivial one if their values are larger than this same critical value. If we linearize Eq.(2.2)
and define the variablesx = p2/M2, y = k2/M2, κ = m2/M2, ε = m2

g/M2, ρ = Λ2
QCD/M2 and

f (p2) = δM(p2)/M, we obtain the following bifurcation equation [21]

f (x) =
1
π

∫ Λ2/M2

0
dyK(x,y) f (y) , (2.3)

where we introduced an ultraviolet cutoff (Λ) and the kernelK(x,y) is equal to

K(x,y) =
y

(y+1)

[(

2K f

M2

1
(y+κ)2 +

3C2

16π
ḡ2(y)
(y+ ε)

)

θ(y−x)

+

(

2K f

M2

1
(x+κ)2 +

3C2

16π
ḡ2(x)
(x+ ε)

)

θ(x−y)

]

. (2.4)

The kernelK is square integrable and the first bifurcation point of the nonlinear equation must
satisfy 1

π ‖K‖ = 1. This bifurcation condition lead us to Fig.(1), whose curves were obtained in
the case ofnf = 3, ΛQCD = 300MeV andKF = 0.18GeV2. The dashed (blue) curve was obtained
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with mg = 600MeV, the dot-dashed (red) curve withmg = 650MeV and the solid (black) curve
with mg = 700MeV. Each point of these curves indicates the bifurcation point for agivenm value
generating a dynamical quark massM. It should be noticed that there is a maximummvalue above
which there is no CSB. It is also interesting to verify that CSB also receivescontributions from
the massive gluon term, and this is the reason for the differences between the curves, though the
massive gluon (or 1-gluon exchange) generates a minute mass, as already observed many years
ago in Ref.[12, 13]. As the dynamical gluon mass is decreased we can observe a small increase
in the maximum value of them parameter, due to the 1-gluon exchange increasing contribution to
the gap equation. The confining effective propagator dominates the amount of symmetry breaking
and has most of its effect concentrated in a momentum region belowO(100) MeV. Actually, as we
shall discuss ahead, most of the chiral symmetry breaking will occur due tothe low momentum
region of the gap equation, what is consistent with lattice observations that the relevant momentum
component of gluons for CSB is exactly this region [16]. This fact may be contrasted with the
results of Ref.[11], where a larger part of the CSB comes from an intermediate region ofO(1)
GeV. The details of our calculation can be found in Ref.[21].
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Figure 1: The bifurcation condition for the kernel of Eq.(2.4) is plotted in the case ofnf = 3, ΛQCD =

300MeV andKF = 0.18GeV2. The dashed (blue) curve was obtained withmg = 600MeV, the dot-dashed
(red) curve withmg = 650 MeV and the solid (black) curve withmg = 700MeV.

3. The asymptotic behavior of the gap equation and the four-fermion approximation

Eq.(2.2) can be transformed into a linear second-order differential equation with a singularity
at infinity, subjected to two boundary conditions. Its asymptotic solution is a linear combination
of two independent solutions,f (x) = b1 f+(x)+b2 f−(x), which can be obtained by applying the
expansion method [24]. In the ultraviolet limit we verify that the asymptotic behavior of the quark
self-energy is, apart from logarithmic contributions, the known 1/p2 behavior (orf asymp

reg solution)
found by Politzer using the operator product expansion [22]. Notice that the asymptotic behavior
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is fully described by the 1-gluon exchange, and this is not much differentfrom what was found
by Takeuchi [23] in a problem where the CSB is dominated by a four-fermion interaction. The
influence of the confining propagator enters only through the boundaryconditions. As the mass so-
lution that comes from the confining contribution has a fast falloff, almost behaving as an effective
four-fermion interaction it is not surprising at all to see the similarity of our detailed results (see
[21]) with the ones of Ref.[23]. As discussed in Ref.[21] for some peculiar values of the parame-
ters appearing in the gap equation we may change the asymptotic behavior of the self-energy, from
the regular behaviorf asymp

reg to the one known as irregular (f asymp
irreg ), not differing from the one with

explicit CSB; this fact led us to study an actual four-fermion approximation tothe gap equation.

The gap equation has a different asymptotic behavior if the upper cutoff isof orderm≈ M.
Assuming an upper limit (Λ) in the momentum integration, we studied in Ref.[21] the ratioR=

f asymp
reg / f asymp

irreg whenΛ ≈ m as a function ofa1 =
2K f

πM2 anda2 =
3C2ḡ2

16π2 . This ratio is smaller than 1
indicating that the irregular asymptotic behavior of the symmetry breaking solution dominates over
the regular one in this particular limit. In order to explore even more this possibilitywe can assume
that the confining contribution could be reduced to an effective four-fermion interaction. Some of
the reasons why we are concerned with the possibility of generating a four-fermion interaction are
the following: First, confinement is introduced into the gap equation leading to astrong infrared
force, we then expect to reproduce some of the many phenomenological successful quark-models
based on the Nambu-Jona-Lasinio type of interaction. Secondly, lattice simulations show that the
relevant gluonic energy scale of spontaneous CSB is due to the low-momentum component of the
gluon field [16], which may indicate the possibility of a natural upper cutoff inthe momentum,
appearing due to the saturation of the linear potential. The existence of a specific momentum that
separates the confinement and perturbative regions has also been discussed in a different context
[25]. Finally, the existence of a completely nonperturbative infrared fixed point, as happens when
the theory develops a dynamical gauge boson mass [8], may induce effective four-fermion interac-
tions as discussed many years ago in Ref.[26].

It is known that as long as we have a massive gluon propagator it could beimagined that
this mass could be factorized from the propagator generating an effective four-fermion interaction,
but this is not true because the actual interaction strength is measured by theproduct “coupling⊗
propagator", and we know from Eq.(1.1) that the 1-gluon exchange has not enough strength to
generate such effective interaction. On the other hand the confining effective propagator, with
the usual values for the string tension, is strong enough to generate the following effective gap
equation:

M4 f (p
2) =

2
π3

KF

m4

∫

d4k
M4 f (k2)

k2+M2
4 f (k

2)
θ(m2−k2)

+
C2

(2π)4

∫

d4k
ḡ2(p−k)3M4 f (k2)

[(p−k)2+m2
g(p−k)][k2+M2

4 f (k
2)]

. (3.1)

The solution of Eq.(3.1) is similar to the one of Ref. [23] observing the interplay between its
4-fermion coupling constantλ and our effective couplingKF/m2.

In order to show how a 4-fermion approximation is reasonable to describe the critical behavior
of the complete Eq.(2.3) studied in the previous section, we can study the bifurcation problem for
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the 4-fermion effective kernel given by

∥

∥K4 f
∥

∥

2
=
∫ ∞

0
dx
∫ x

0
dy

y2

(y+1)2

(

2K f

M2
4 f κ2

θ(κ −y)+
3C2

16π
ḡ2(x)
(x+ ε)

)2

+
∫ ∞

0
dx
∫ ∞

x
dy

y2

(y+1)2

(

2K f

M2
4 f κ2

θ(κ −y)+
3C2

16π
ḡ2(y)
(y+ ε)

)2

(3.2)

We separated the kernel of Eq.(3.2) into two different kernels, one dueto the effective four-
fermion interaction and another due to the exchange of a massive gluon. Using the triangle inequal-
ity
∥

∥K4 f
∥

∥ ≡ ‖Kc+K1g‖ ≤ ‖Kc‖+ ‖K1g‖ and the bifurcation condition1π
∥

∥K4 f
∥

∥ = 1 we compute
the critical condition and show in Fig.(2) the dot-dashed (black) curve of critical m values for the
generation of massive solutions of Eq.(3.1). This curve was obtained formg = 600 MeV,nf = 3,
ΛQCD = 300 MeV andKF = 0.18 GeV2, and for comparison we also draw in Fig.(2) the dashed
(blue) critical curve of the complete kernel given by Eq.(2.4) (i.e. withoutthe four-fermion approx-
imation) computed with the same parameters. This shows that most of the symmetry breaking is
driven by the confining effective propagator and the four-fermion approximation is quite accurate
up to an order of 10%, what is quite reasonable if we consider the use of the triangle inequality to
obtain Fig.(2), indicating that the confinement effect, as proposed in Ref.[14], may indeed generate
an effective four-fermion interaction.
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Figure 2: The bifurcation condition obtained for the kernel of Eq.(3.2) using the triangle inequality. The
result formg = 600 MeV,nf = 3, ΛQCD= 300 MeV andKF = 0.18 GeV2 is shown by the dot-dashed (black)
curve. For comparison we also draw the dashed (blue) critical curve of the complete kernel given by Eq.(2.4)
computed with the same parameters.

Besides the fact that the gap equation generated in this approximation is numerically satisfac-
tory, we believe that the confining part of the fermionic SDE should have a natural upper cutoff at
some scale not much different fromm. The reason for this is that the linear potential must break
at some critical distance. Fornf = 2 quarks in the fundamental representation, lattice QCD data
shows that the string breaks at the critical distancerc ≈ 1.25 fm [27], which corresponds to am
value compatible with the one necessary for the expected amount of CSB. Itwould be outpurposed
if confinement (and, in particular, the confining propagator) were still effective to shorter distances
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m f̄π fπ 〈q̄q〉(1GeV2) B
[MeV] [MeV] [MeV] [MeV3] [MeV4]

160 62.0 71.12 169.03 100.09

180 54.51 61.83 156.12 84.96

200 46.59 52.14 142.0 69.43

Expected Values 93 93 229±9 146

Table 1: Values of fπ , 〈q̄q〉 andB as a function ofm obtained with the numerical solution of Eq.(2.2).

or large momentum scales. We can resume our results up to now (as detailed in [21]): a) Most of
the CSB comes from a momentum region belowO(100) MeV and b) The effective confining prop-
agator seems to generate an effective four-fermion interaction, which is not only observed through
the bifurcation condition in Fig.(2) but also through the full numerical solutionof the gap equation
[21].

To confirm that the scenario of Ref. [14] is fully consistent with the CSB phenomenology,
we compute several chiral parameters with the same values ofnf , ΛQCD, KF andmg discussed
above andm= 180 MeV, which leads to the usually expected dynamical quark mass of 250 MeV.
These calculations are performed in the case of the full gap equation (Eq.(2.2)) and the results
do not change appreciably from the values obtained with the four-fermionapproximation. The
chiral parameters, computed in the Abelian gluon approximation, that we consider are: a) The pion
decay constantf 2

π = f̄ 2
π +δ f 2

π , whereδ f 2
π is a correction tof̄ 2

π as determined in [28]; b) The quark
condensate〈q̄q〉 at the scaleµ2 = 1 GeV2; c) The MIT bag constantB. The results for these three
parameters, computed as a function ofm, are shown in Table (1). These values were calculated in
the simple rainbow approximation [21], and better choices for the vertex function as well as higher
order corrections for these quantities can bring them closer to the experimental values.

4. CSB for higher dimensional representations

The study of CSB for fermions in higher dimensional representations is of interest because it
is a possible way to verify how this mechanism is distinct from the confinement one, as well as it is
important for technicolor model building. If a type of Casimir scaling occurs [7], we expect that for
higher dimensional representations the CSB typical mass scale would be different from the one for
the fundamental representation, and perhaps different from the confinement scale. It has also been
argued that for “quarks" in the adjoint representation the dynamically massive gluons may have
enough strength to generate a dynamical quark mass [10, 11]. Indeed inRef.[11] a large dynamical
mass was found for fermions in the adjoint representation, and one naively would expect that in
this case the confining and chiral breaking transitions would appear separately.

If we follow straightforwardly the model of Ref.[14] we must also verify what is the difference
introduced by the confining propagator in the case of higher dimensional representations, because
in principle we should replace the string tensionKF by KR, which is the string tension for fermions
in the representationR. We assume that this replacement is accurate, although we know that the
phenomenological potential, and consequently the string tension, does change according to the rep-
resentation. For instance, in the case of the adjoint representation it is known thatVA(r →∞)= 2Mg,

8
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whereMg is the energy of the lightest glueball. Moreover, the adjoint representationis not confined
but screened [29], what means that the confining propagator should be understood as effective up to
a certain distance in these cases. Of course, no matter what the fermionic representation is we shall
have a critical distance above which the string breaks. We assume that in themodel of Ref.[14]
most of the chiral symmetry breaking is still related to the form of Eq.(2.1), which does not get the
chance to be probed at large distances, consequently we may still expectthat most of the CSB is
driven by the “confining" propagator.

The fermion condensate is the most frequent quantity used to characterizethe chiral phase
transition, and it is this quantity that we will analyze to investigate CSB for fermions in different
representations. It is easier to compute this quantity for different fermion representations if we
consider the gap equation in the four-fermion approximation given by Eq.(3.1), perform the angle
approximation and neglect the gluon mass in the propagator of the 1-gluon exchange contribution:

M4 f (p
2) =

2
π3

KR

m4

∫ m2

0
d4k

M4 f (k2)

k2+M2
4 f (k

2)

+
C2

(2π)4

∫

d4k
ḡ2(p)3M4 f (k2)

p2[k2+M2
4 f (k

2)]
θ(p2−k2)

+
C2

(2π)4

∫

d4k
ḡ2(k)3M4 f (k2)

k2[k2+M2
4 f (k

2)]
θ(k2− p2) . (4.1)

On the other hand we may write the fermion condensate for the representationR in the following
form

〈q̄q〉R(m
2) =−

NR

4π2

∫ m2

0
dx

xMR(x)

[x+M2
R(x)]

, (4.2)

whereNR is the dimension of the fermion representationR andMR(x) its dynamical mass. We are
forcing the upper limit of Eq.(4.2) to be ofO(m), which can be as low as 0.18 GeV, while〈q̄q〉 is
well known at the 1 GeV scale. We did this, as we shall see below, in order toeasily compare the
condensate expression to Eq.(4.1), but we can check that Eq.(4.2) provides a good estimate of the
quark condensate at 1 GeV [21]. We stress that the upper limit in the first integral in the right-hand
side of Eq.(4.1) may be a physical one in order to be consistent with the critical distance at which
the string breaks.

Eq.(4.2) can be compared to Eq.(4.1), the dynamical fermion massMR in the four-fermion
approximation, if we set all integrals at the scalem, obtaining

MR(m
2)≈

[

2KR

πm4 +
3C2Rg2

R(m
2)

16π2m2

]

∫ m2

0
dx

xMR(x)

x+M2
R(x)

. (4.3)

Since the first term between brackets in the right-hand side of Eq.(4.3) is much larger than the
second one, combining the two last equations we have〈q̄q〉R(m

2)≈−NR
8π

m4

KR
MR(m2). For quarks in

the fundamental representation, this relation underestimates the condensatedue to the fact that the
integration area in this equation was drastically reduced when we cutoff the integral atm2. Since
the effect of the Eq.(2.1) is the dominating one, it is quite plausible that the relation between the
condensates holds up to other scales (still keeping the factorm4 in the right-hand side) and it can
be tested through lattice simulations.
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We can now make a few comments on the differences between CSB for fermions in the fun-
damental and adjoint representations estimating the ratio of the condensates for SU(3) fermions
in these representations. First we need to know how the string tension changes as we change the
fermion representation. It has been observed in lattice simulations what is usually called Casimir
scaling for the string tension [29], i.e.KR ≈ CR

CF
KF whereCR/CF is the ratio between the Casimir

operators for the representationR and the fundamental one. ForSU(N) theories and a finiteN the
Casimir scaling law must break down at some point, and should be replaced bya dependence on
theN-ality k of the representationKR = f (k)KF [29]. This change of behavior is credited to an ef-
fect of force screening by the gluons. For fermions in the adjoint representation theN-ality is zero,
therefore, according to Casimir scaling, the adjoint string tension is given by KA = 2N2

N2−1KF , and,
as a reasonable approximation, we may assumeKA ≈ 2KF . Consequently we obtain the following
ratio at the scalem2

〈q̄q〉3

〈q̄q〉8
≈

3
4

M3

M8
. (4.4)

Once the dynamical masses almost scale with the string tension value we could say that the above
ratio is roughly of order 3/8. Of course, the uncertainty in this estimative is certainly connected
to the remarks made at the beginning of this section about the phenomenologicalpotential and
the effective propagator for the adjoint representation. For other fermionic representations the
screening behavior is smaller, although in all cases we certainly have a limit onthe critical distance
for which this approach is valid that will be connected with the string breakingmechanism.

5. Conclusions

We discussed chiral symmetry breaking in QCD and in the presence of dynamically massive
gluons. Confinement was introduced into the SDE in the form of an effective propagator, which is
one that can reproduce an area law for quarks. This is a phenomenological way to investigate the
possibility, indicated by the lattice, of confinement (by center vortices) beingintrinsically related
to chiral symmetry breaking. We briefly review the conditions for the confining propagator to
generate non-trivial massive solutions. We studied the bifurcation condition for the complete gap
equation, i.e. the one with the exchange of dynamically massive gluons and withthe inclusion of the
confining effective propagator dependent on the entropic parameterm, which must be proportional
to the dynamical quark mass, and on the string tensionKF , verifying that there is a maximum
m value below which the chiral symmetry is broken, and generating the expected values for the
dynamical quark masses. As already known in the literature we verified thatthe massive gluon
exchange gives only a minute contribution to the dynamical quark mass. Mostof the breaking is
due to the confining propagator and this may be one indication that we should not expect large
differences between the chiral and confinement transitions.

It is known that the quark gap equation with a massive gluon cannot be reduced to an effective
four-fermion interaction due to the small infrared strength of the product “coupling⊗propagator",
however we verified that this is not the case for the confining effective propagator. The bifurcation
equation for the gap equation with the four-fermion approximation performedin the confining part
reproduces approximately the result of the complete gap equation. Our numerical calculation of
the quark mass is consistent with the approximate results obtained by Cornwall [14].
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We discuss CSB for fermionic representations different than the fundamental one. We found
a simple relation between the fermion condensate and the fermionic dynamical mass. This relation
depends on the dimension of the fermion representation,m andKF , and we assumed that the form
of Eq.(2.1) still holds for different fermionic representations up to a certain distance. In principle
such relation can be studied in lattice simulations.

Our results indicate that the CSB mechanism proposed in Ref.[14] can account for the ex-
pected values of several known chiral parameters. The model also seems to indicate that the CSB
scale is connected to the confinement one even for fermions in higher dimensional representations.
How far can we assume the four-fermion approximation discussed here for the purpose of practical
calculations still needs further analysis. Finally, a more precise determinationof the CSB observ-
ables can be obtained with the introduction of more sophisticated vertex functions and higher order
corrections.
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