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1. Introduction

Total cross-sections provide a way to access the question of confinement from a phenomeno-
logical point of view. This is so for the obvious reason that the bulk of particle scattering takes
place at large distance, with only a tiny minority of events occurring at the small distances whose
dynamics is described by perturbative QCD. To access very large distances, one needs a formal-
ism linking an observable such as the total cross-section to very low momentum gluons. We have
proposed to do it through the mechanism of soft gluon resummation. Since Bloch and Nordsieck
wrote their fundamental paper on the radiation field of electrons [1], summation of soft quanta
emitted in a collision has remained of central interest both in QED and QCD, for different reasons.
In QED, this was due to the importance of extracting information about theoretical quantities from
the measurements which are irreducibly affected by soft photon emission. In QCD, the focus is not
only on the calculation of hadronic backgrounds for high energy experiments (often identified as
minimum bias effects), but , as we propose, on the possiblity to use the resummation tool to study
the infra red (IR) region.

Our program includes providing a formalism in which soft gluon resummation is linked to the
total cross-section, but also a revisitation of soft gluon resummation to include the infrared region,
and an ansatz for the effective soft gluon coupling to the quark field when the gluon momenta go to
zero. This ansatz relates the one gluon exchange potential to the infrared coupling for soft gluons.
We are then able to link the singularity of the infrared coupling to the asymptotic Froissart bound.

In the following, after describing the model we have developed with our collaborators, we
summarize our most recent results for total cross-section phenomenology [2].

2. The Froissart bound for the total cross-section

Although the most popular and successful parametrization for the energy dependence of the
total cross-section has been the Regge inspired formula by Donnachie and Landshoff [3], i.e.

σtotal = Xs−η +Y sε (2.1)

with η ∼ 0.5 and ε . 0.1, this formulation is at variance with the expectations from the Froissart
bound based unitarity and analyticity, namely that σtotal . log2 s. This bound was established in
the 1960s [4, 5, 6], but it is already present in the Heisenberg calculation of the total cross-section
[7]. According to Heisenberg, the energy dependence for production of mesons in a high energy
reaction can be a constant or rise as much as log2 s, depending on whether the average pion energy
rises proportionally to the energy or is limited by a constant as the energy increases. In either case,
the derivation is based on a limitation of the spatial extension of the emitted pion cloud, namely on
the existence of a cut-off, bmax, in impact parameter space. A similar condition is also present in
the derivation of the Froissart bound: namely, the existence of a maximum value Lmax in the partial
wave expansion of the elastic scattering amplitude is integral part of the derivation. If one wishes
to understand total cross-sections in QCD it is thus necessary to uncover the presence of a cut-off
which can produce the observed logarithmic rise of the total cross-section at high energies. This
has been the driving idea behind our approach, as would become clearer when we discuss an infra
red (IR ) singular expression for the strong coupling αs.
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In our approach, an asymptotic cut-off is provided by a singular behaviour of the effective
quark-gluon coupling for gluon momenta 0 ≤ kt ≤ Λ, where Λ is O(ΛQCD). The argument we
developed in [8] is based on an asymptotic behaviour of the total cross-section such that

σtot(s)≈ 2π

∫
db2[1− exp[−C(s)e−(bΛ̄)2p

)]] (2.2)

In this expression, C(s) is obtained from a leading order (LO) calculation of QCD mini-jet cross-
sections, which increase as ∼ sε . The cut-off in b-space, obtained for 1/2 ≤ p ≤ 1, appears from
emission of singular infrared gluons, as we discuss in Sect. 3. Eq. (2.2), whose derivation is based
on the model described in the next section, leads to an asymptotic behaviour compatible with the
Froissart bound, i.e.

σtot(s)→ [ε log(s)]1/p. (2.3)

3. Model in impact parameter space

We describe here the formalism we use in order to link soft gluon resummation to the total
cross-section. It is based on the eikonal representation for the scattering amplitude, i.e., for t =−q2,

F(s, t) =
∫

d2b f (b,s) = i
∫

d2beiq·b[1− eiχ(b,s)] (3.1)

from where one obtains

d2σelastic

d2b
= |1− eiχ(b,s)|2 (3.2)

σtotal(s) = 2
∫

d2bℜe[1− eiχ(b,s)] = 2
∫

d2b[1− cosℜeχ(b,s)e−ℑmχ(b,s)] (3.3)

σinel = σtotal −σelastic =
∫

d2b[1− e−2ℑmχ(b,s)] (3.4)

Experimentally, the real part of the scattering amplitude at t = 0 is only a fraction of the imaginary
part, so that, for what concerns the calculation of σtotal(s), one can put ℜeχ(b,s)≈ 0 in Eq. (3.3).
This is an approximation which will need to be revised when dealing with t 6= 0, such as is the case
for the differential elastic cross-section.

Mini-jet models attribute the rise of the total cross-section to the rising number of low-x parton
collisions. We follow the description advanced quite some time ago by Durand and collaborators
[9], who embedded mini-jets in the eikonal reprentation, with ℑmχ(b,s) ∝ σmini− jets. As men-
tioned, and as is well known, if one uses actual parton density functions, PDFs, as parametrized
at LO through Deep Inelastic Scattering, mini-jet cross-sections are seen to rise with energy as a
power law, sε , with ε ∼ 0.3−0.4. If the eikonal is factorized into a cross-section and an impact pa-
rameter distribution with no residual s-dependence, it is difficult to describe both the early, almost
turbulent, rise and the subsequent gentle behaviour of the total cross-section, without introduc-
ing ad hoc parametrizations of the mini-jet contributions [10]. Our proposal is a model in which
both the rise and the cut-off in b-space producing the levelling off, are obtained from QCD. This
model uses library available PDFs at LO and LO parton cross-sections to calculate the mini-jet
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contribution, i.e., for collisions between two hadrons A and B, we have

σ
AB
mini− jets(s, pt)min) =

∫ √
s/2

ptmin

d pt

∫ 1

4p2
t /s

dx1

∫ 1

4p2
t /(x1s)

dx2 ∑
i, j,k,l

fi|A(x1, p2
t ) f j|B(x2, p2

t )
dσ̂ kl

i j (ŝ)
d pt

(3.5)
where pmin separates the perturbative from the non -perturbative QCD regime. fi|A(x1, p2

t ) are PDFs
for extracting partons of type i from hadron A, and are DGLAP evolved at Q2 = p2

t . We write

2ℑmχ(b,s) = n̄so f tb,s+ n̄mini− jet(b,s) (3.6)

At low energies,
√

s . 10 GeV , the mini-jet contribution is very small, and the average number of
collisions n̄so f t(b,s) is parametrized as in [11]. For the term n̄mini− jet(b,s) which is proportional
to the mini-jet contribution, we propose a QCD explanation for the impact parameter distribution
of partons, as follows: the mini-jet expression of Eq. (3.5) assumes the colliding partons to be
collinear. Initial state radiative corrections, which are energy dependent, change this acollinearity.
The acollinearity reduces the rise of the mini-jet cross-section and is the missing factor in QCD
models for mini-jet production. In our approach, we use the Fourier transform of the initial state
transverse momentum distribution arising from soft gluon emission to model the b-dependence of
the mini-jet term of the eikonal.

4. A model for Soft Gluon Resummation in the Infrared region

In order to probe large distances, as mentioned, we need to study very low momenta. In QED,
the infrared divergence due to the zero mass of the associated gauge field, does not cancel in the
amplitude, only in the cross-sections. Thus what is important is to find the probability for overall
emission of soft quanta. Resummation of soft photons to all orders led to the well known expression
[12, 13, 14] for the probability of emission of a 4-momentum Kµ in charged particle collisions:

d4P(K) =
∫ d4K

(2π)4 eiK·xexp[−
∫ d3k

2k0
| jµ(k)|2(1− e−ik·x)] (4.1)

where
jµ(k) =

ie
(2π)3/2

∑i εi piµ

pi · k
(4.2)

for emission of a real photon of momentum k from an electron or positron of momentum piµ , with
εi = ±1 depending on whether the electron or positron is entering or leaving. The expression in
Eq. (4.1) exhibits the summation of all soft photons into an exponential factor as well as the can-
cellation of the infrared divergence between real and virtual photons. The real photon contribution
is multiplied by the factor eik·x. This factor correlates the individual emitted photons of momentum
kµ to the total energy-momentum Kµ of the emitted radiation. The cancellation between real and
virtual photons as the individual photon 4-momentum goes to zero can occurr because the distinc-
tion between a real, k2 = 0, and a virtual, k2 6= 0, photon disappears as the photon 4- momentum
goes to zero. Indeed, individual soft photons are not an observable.

When dealing with resummation in QCD, our knowledge of the coupling is limited to high
Q2 values and this usually prevents studying the infrared region. However, one can distnguish our
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ignorance about the value of the coupling in region of confinement, from the question of whether
a cancellation between real and virtual gluons takes place when the gluon momenta go to zero. To
overcome the difficulty, one can first ignore the details of the interaction, QED or QCD, and try to
derive an expression similar to Eq. (4.1) on purely statistical basis, as done in [15] for the case of
photons. The argument, semi-classical, runs as follows.

Consider the probability of having a total energy-momentum loss Kµ due to gluon emission
in a scattering process, such as the one between quarks. This total emission can be constructed
through the many possible ways in which nk gluons of momentum k can give rise to a given
total energy loss Kµ and then summing on all the values of k. In this formulation, one obtains a
total energy-momentum loss Kµ through emission of nk1 gluons of momentum k1, nk2 gluons of
momentum k2 and so on. If one can assume that the gluons are all emitted independently (the effect
of their emission on the source particle is neglected), each one of these distributions is a Poisson
distribution, and the probabilty of a 4-momentum loss in the interval d4K is written as

d4P(K) = ∑
nk

ΠkP({nk, n̄k})δ 4(K−∑
k

knk)d4K (4.3)

where the Bloch and Nordsiek’s result of independent emission is introduced through the Poisson
distribution P({nk, n̄k}),

P({nk, n̄k}) =
n̄nk

k
nk!

exp[−n̄k] (4.4)

and four momentum conservation is ensured through the 4-dimensional δ -function, which selects
the distributions {nk, n̄k} with the right energy momentum loss Kµ . Using the integral representa-
tion for the δ -function, one can invert the order between performing the sum with the product in
Eq. (4.3). One can then perform the sum over the nk and obtain

d4P(K) =
d4K
(2π)4

∫
d4x exp[−h(x)+ iK · x] (4.5)

with
h(x) = ∑

k

(
1− exp[−ik · x]

)
n̄k (4.6)

or, passing from the discrete to the continuum,

h(x) =
∫

d3n̄k
(
1− exp[−ik · x]

)
(4.7)

The above derivation does not specify what the soft gluon distribution d3n̄k is, only that it is pos-
sible to define its integral. Since the expression in the round bracket of Eq. (4.7) goes to zero as
k→ 0, this procedure shows that the integral can be finite even if the single guon spectrum is singu-
lar. Writing d3n̄k = (d3k/2k)g(k)/k2, for this procedure to be finite even when the integral extends
down to k = 0, one must require the function g(k) to be less singular than 1/k as k → 0.

Integrating the expression in Eq. (4.5) over the energy and longitudinal momentum variables,
one can obtain a transverse momentum distribution for emitted radiation [16, 17]. To proceed fur-
ther in QCD, just as in QED, one needs to specify the single particle, gluon or photon, distribution
d3n̄k. In perturbative QCD, using the asymptotic freedom expression for the strong coupling con-
stant, one can only specify this distribution for k > ΛQCD ∼ 100−200 MeV . With a lower cut-off
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in the single gluon momentum, as was done in [17] and in [18] for the case of Drell-Yan pairs,
the second term in Eq. (4.7) is no longer necessary, since the infrared region is excluded from
integration. The integrals can then be done analytically.

Since our aim is to study the infrared region, we propose instead to retain the second term
and use an ad hoc expression for the coupling in the infrared region, such as allow the integration.
There are a number of possibilities, among them a frozen αs(kt < Λ) = ᾱ , as in [19]. Our proposal
is a power law behaviour , i.e. αs(kt < Λ) = (Λ/kt)2p, with p < 1 for the integral in Eq. (4.7) to be
finite. This proposal has led us to obtain the intrinsic transverse momentum of Drell-Yan pairs as
given by

< p2
t (
√

s) >= constant
∫

Λ

0
ktdktαs(kt) ln[2

√
s/kt ] (4.8)

To summarize, our proposal for the transverse momentum distribution of a pair of initially
collinear partons, which acquire acollinearity through soft gluon emission is

Π(Kt)≡
d2P()Kt

d2Kt
=

∫ d2b
(2π)2 e−iKt ·b−h(b)

h(b,E) =
16
3π

∫ E

0

dkt

kt
αe f f (kt) ln[

2E
kt

](1− J0(ktb))

αe f f (kt) =
12π

33−2N f

p
log[1+ p(kt/Λ)2p]

(4.9)

The expression we have used for the strong coupling constant is such as to interpolate between our
proposed singular but integrable αs and the usual one loop asymptotic freedom expression. Such
an expression is what we propose to use to probe QCD at large distances through total cross-section
phenomenology. The Fourier transform of the above distribution is used to describe the distribution
of partons in impact parameter space at high energy, in lieu of the Fourier transform of the EM form
factors, as is more customary in the impact parameter representation. In the following section, we
apply the above equations to estimate total cross-sections at LHC.

5. Comparison between the model and LHC data at
√

s = 7 TeV

Our model is based on using library available LO PDFs, such as GRV [20] or MRST [21], as
input to the following set of equations:

σtotal = 2
∫

d2b[1− e−n̄(b,s)/2] ℜeχ(b,s)≈ 0

n̄(b,s) = n̄low(b,s)+ n̄mini− jet(b,s)

n̄mini− jet = A(b,s)σmini− jet(s, ptmin)

A(b,s) =
e−h(b,qmax)∫

d2b exp[−h(b,qmax)]
(5.1)

In these equations, the low energy component n̄low(b,s) is parametrized with no rising term, and
the rise with energy is obtained solely through the high energy term n̄mini− jet(b,s). A part from the
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Figure 1: The curves in the panel at left and the two dotted lines in the panel at right correspond to the
same set of high energy parameters, ptmin = 1.15 GeV, p = 0.75, GRV [20] densities. The two bands in the
panel at right correspond to choosing a range of high energy parameters for n̄(b,s) as discussed in [2]. Our
results are compared with data up to the recent ATLAS[22], CMS [23] and TOTEM [24]experiment. We
also compare predictions and data with the recent description from Block and Halzen [25].

low energy parameters, the model depends on a set of high energy parameters such as the choice
of PDFs and ptmin and on the infrared power p . The following scales define the high energy
dependence :

• for a given choice of PDFs, the value of ptmin determines the beginning of the rise: to describe
the CERN Intersecting Storage Ring data, it is chosen to be ∼ 1.1 GeV ;

• the quantity qmax depends on ptmin and on the chosen PDFs, and defines the maximum trans-
verse momentum allowed for single gluon emission in a given collision, averaged over the
PDFs: it is a slowly varying function of

√
s and of the order of ptmin;

• the parameter p, with the condition 1/2 < p < 1, respectively for consistency with a rising
one-gluon potential and an integrable spectrum, regulates the singularity of the single gluon
distribution and controls the softening of the rise: everything else being equal, higher values
of p correspond to more saturation and thus to a slower rise,

• Λ∼ 100 MeV is the scale in the effective coupling constant in the resummed spectrum.

We show in Fig. 1 our result for the elastic amplitude in impact parameter space at different c.m.
energies, at left, and, at right, the total and inelastic cross-sections as obtained from our model. A
detailed description of our results can be found in [2] and references therein.
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