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1. Introduction

It is by now a well-established fact that large-volume lattice simulations in thddwagauge
yield a gluon propagator that reaches a finite non-vanishing value in #qeid&ared [1, 2, 3,
4,5, 6, 7]. Without a doubt, the most physical way of explaining this aleskfiniteness is to
invoke the mechanism of dynamical gluon mass generation, first introdadbd seminal work
of Cornwall [8], and subsequently studied in a series of articles [9,11], In this picture the
fundamental Lagrangian of the Yang-Mills theory (or that of QCD) remaimaltered, and the
generation of the gluon mass takes place dynamically, through the well-kAocmminger mecha-
nism [12, 13, 14, 15, 16, 17, 18], without violating any of the underl\dgmmetries (for related
contributions and alternative approaches, see, e.g., [19, 20, 213224, 25, 26]).

The way how the Schwinger mechanism generates a mass for the gawge(blo®n) can
be seen most directly at the level of its inverse propagator(g?) = g?[1+iM(g?)], wherel(q)
is the dimensionless vacuum polarization. According to Schwinger’s fuadtal observation,
if M(g?) develops a pole at zero momentum transtgr=€ 0), then the vector meson acquires a
mass, even if the gauge symmetry forbids a mass term at the level of therfentid Lagrangian.
Indeed, ifl(g?) = m?/g?, then (in Euclidean spac&)(¢?) = g + n?, and so the vector meson
becomes massivé~1(0) = n?, even though it is massless in the absence of interact@pas(

N =0) [14, 15].

The key assumption when invoking the Schwinger mechanism in Yang-Millsiisesuch
as QCD, is that the required poles may be produced due to purely dynawésains; specifi-
cally, one assumes that, for sufficiently strong binding, the mass of themgte bound state
may be reduced to zero [14, 15, 16, 17, 18]. In addition to triggering theviBger mechanism,
these massless composite excitations are crucial for preserving gaaganoe. Specifically, the
presence of massless poles in the off-shell interaction vertices gussahtd the Ward identities
(WIs) and Slavnov Taylor identities (STIs) of the theory maintain exactly #mesform before
and after mass generation (i.e. when the the massless propagatorsrapipeidiem are replaced
by massive ones) [8, 17, 18, 11]. Thus, these excitations act likendgahNambu-Goldstone
scalars, displaying, in fact, all their typical characteristics, such aslesasgss, compositeness,
and longitudinal coupling; note, however, that they differ from Namimld&one bosons as far as
their origin is concerned, since they are not associated with the spontabesaking of any global
symmetry [8]. Finally, every such Goldstone-like scalar, “absorbed biuon in order to acquire
a mass, is expected to actually cancel out of $hmaatrix against other massless poles or due to
current conservation [14, 15, 16, 17, 18].

The main purpose of this presentation is to report on recent work [27¢ravthe central
assumption of the dynamical scenario outlined above, namely the possibilitiuzfl dormation
of such massless excitations, has been examined. Specifically, the entlaniset of gluon
mass generation hinges on the appearance of massless poles insidg#réunbative three-gluon
vertex, which enters in the Schwinger Dyson equation (SDE) governigliion propagator.
These poles correspond to the propagator of the scalar massless exciatidanteract with a pair
of gluons through a very characteristic proper vertex, which, ofssyunust be non vanishing, or
else the entire construction is invalidated. The way to establish the existetius latter vertex is
by finding non-trivial solutions to the homogeneous Bethe-Salpeter eqU8&E) that it satisfies.
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Figure 1: The “one-loop dressed” gluon contribution to the PT-BFMaylwself-energy. White (black)
circles denote fully dressed propagators (vertices); @ girale attached to the external legs indicates that
they are background gluons. Within the PT-BFM frameworkséhénvo diagrams constitute a transverse
subset of the full gluon SDE.

2. Basic concepts

The full gluon propagatohZf) (q) = 62°A,, () in the Landau gauge is defined as

D (9) = —iPuy (@)A(6?), (2.1)
where
Puv(9) = guv — qggv ; (2.2)

is the usual transverse projector, and the scalar cofé(ty) is related to the (all-order) gluon
self-energy,y (q) = Py ()M(g?) through

AY(?) = o +iM(d?). (2.3)

One may define the dimensionless vacuum polarizdfigf) by settingf(g?) = g?M(g?) so that
(2.3) becomes
A7) = P[L+iM(aP)]. (2.4)

Alternatively, one may define the gluon dressing functi¢e’) as
AHo?) = 0PI(oP). (2.5)

In the presence of a dynamically generated mass, the natural fant @?) is given by (Euclidean
space)
Do) = oPI(P) + () (2.6)

where the first term corresponds to the “kinetic term”, or “wave functicoritribution, whereas
the second is the (positive-definite) momentum-dependent mass. If orte msisiaintaining the
form of (2.5) by explicitly factoring out &?, then

2
AN = [J(qz) - ”‘2;2 q : (2.7)

and the presence of the pole, with residue givemb§0), becomes manifest.
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The Schwinger mechanism is integrated into the SDE of the gluon propagedagkhthe
form of the three-gluon vertex. In particular, a crucial condition for riés&lization of the gluon
mass generation scenario is the existence of a special vertex, to becleyutg,, (q,r, p), which
must be completeliongitudinally coupledi.e. must satisfy

P ()P (r)P""Y (p)Vapv(G.1, p) = 0. (2.8)

The role of the verteXq (0,1, p) is instrumental for maintaining gauge invariance, given
that the massless poles that it must contain in order to trigger the Schwingleamisu, act, at the
same time, as composite, longitudinally coupled Nambu-Goldstone bosonsficaigcin order
to preserve the gauge invariance of the theory in the presence of memsesrtexVy v (a,r, p)
must be added to the conventional (fully-dressed) three-gluon vérgex (g, r, p), giving rise to
the new full vertex,Ty ,, (q,r, p), defined as

My (0,1 P) = ICapy (A, 1, P) +Vauv(a,T, ). (2.9)

Gauge invariance remains intact becadisesétisfies the same WI (or STI) ds thefore, but now
replacing the gluon propagators appearing on their rhs by massiveschesnaticallyA—! — AL,
where the former denotes the propagator given in (2.5), while the lattesft(@26).

To see this in detail, let us employ the formalism provided by the synthesis ofrtble f@ch-
nique (PT) [8, 28, 29] with the background field method (BFM) [30]. lis framework, the natural
quantity to consider is the vertdQQ, to be denoted by kv (0, r, p), connecting a background
gluon B) with two quantum gluons@). With the Schwinger mechanism turned off, this vertex
satisfies the WI

97N (a1, P) = PPI(PP)Puv (P) —123(r?)Puv(r), (2.10)
when contracted with respect to the momentum of the background gluon, Géege invariance
requires that

anauv(qa rnp) = mz(rz)Puvg) - mz(pz)Puv(p)? (2.11)
so that, after turning the Schwinger mechanism on, the correspondingtisied by " would
read

qalr:““/(q, r7 p) = qa [Ir(qv r7 p) +V(q7 r7 p)]auv
= [p23(p?) — MP(p?)]Puv (p) — [r2I(r?) — mP(r?)] Py (r)
= DM (P%)Puv () — B (r?)Puv (1), (2.12)

which is indeed the identity in Eq. (2.10), with the aforementioned replacefénts AL en-
forced. The remaining STls, triggered when contractirig,},(q, r, p) with respect to the other two
legs are realized in exactly the same fashion.

The next step is to inself@,w(q,r, p) into the SDE equation satisfied by the gluon propa-
gator, see Fig. 1. Then, a rather elaborate analysis [11] gives riseitaegral equation for the
momentum-dependent gluon mass, of the type

(@) = [ MK (6K, (2.13)

where the kerneK survives theg — 0 limit, i.e., limgq_,0 K(q, k) # O, precisely because it includes
the term ¥g? contained insid®y v (q, T, p).
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3. Structure of the pole vertex
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Figure 2: The SDE for thaBQQ vertex which connects a background glu&) with two quantum gluons
Q).

The main characteristic of the vert¥x which sharply differentiates it from ordinary vertex
contributions, is that it contains massless poles, originating from the catirisuof bound-state
excitations. Specifically, all terms of the vertéxare proportional to Ag?, 1/r?, 1/p?, and products
thereof. Such dynamically generated poles are to be clearly distinguistradpbles related to
ordinary massless propagators, associated with elementary fields in timaldcgrangian.

To see how such poles enter into the vertex, let us focus on the getractliee of the SDE
for the BQQ vertex. With the Schwinger mechanism turned off, the various multiparticlecker
appearing in this SDE have a complicated skeleton expansion (not shog)n i their common
characteristic is that they are one-particle-irreducible with respect toirctte direction of the
momentuny

When the Schwinger mechanism is turned on, the structure of the kernelsliBatidy the
presence of composite massless excitation, described by a propaghnydei /g2, as shown in
Fig. 3. The sum of such dynamical terms, coming from all multiparticle kersbtsyn in Fig. 4,
constitutes a characteristic part of the veftgxto be denoted by in Eq. (3.2), namely the part
that contains at least a massless propagdtgr The remaining parts, to be denotedRycontain
massless excitations in the other two channels, nam@hﬁ andpy/p? (but noqy/g?), and are
not relevant for the purposes of this presentation. Thus,

Vauv(Qa r’ p) :Uauv(qua p)+RGuV(qa r> p)a (31)
with
Uapv (.1, P) = o <Vlguv +V20uQy +Vapu Py +Vary,Qy +Vsry pv> , (3.2)

where theV; are form factors depending on the various momenta.
At this point we can make the nonperturbative pole manifest, andgastq,r, p) in the form
of Fig. 4, by setting

Uapv (9,1, p) = la(Q) <q'2> Buv (a1, p), (3.3)

where the nonperturbative quantity

Buv(a,r, p) = B1Guv + B20uQy + Bapu Py + BaruQu + Bsrpy (3.4)
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Figure 3: The gray kernel (regular part with respectgoand the composite massless excitation in the
g-channel.

is the effective vertex describing the interaction between the masslesgiercitad two gluons.
Buv(q,r, p) is to be identified with the “bound-state wave function” (or “BS wave funciai
the two-gluon bound-state shown in Fig. 3, which, as we will see shortlgfiea a homogeneous
BSE. In addition,i/g? is the propagator of the scalar massless excitation. Firlallg) is the
(nonperturbative) transition amplitude introduced in Fig. 4, allowing the mixigtgvéen a gluon
and the massless excitation; note that the imaginary factérom the Feynman rule in Fig. 3 is
absorbed into the definition &f (q).

Evidently, by Lorentz invariance,

la () = dal (q), (3.5)

and the scalar cofactor, to be referred to as the “transition functionmiglg given by

1(q) = qa|a2(q) : (3.6)
q
so that .
Vi(g,r,p) =1(q) <q'2> Bij(a,r,p); j=1...,5. (3.7)

Note that, due to Bose symmetry with respect to the interchangev andp < r, we must
have
Bl,z(q7 rnp) = —B12(q, p, r, (3.8)

which implies that
B12(0,—p,p) =0. (3.9)

4. Gluon mass and the BS wave-function: an exact relation

The WI of Eq (2.11) furnishes an exact relation between the dynamicahghass, the tran-
sition amplitude at zero momentum transfer, and the form f&&to6pecifically, contracting both
sides of the WI with two transverse projectors, one obtains,

PHH(N)PYY (P)q%Vapy (a,T, p) = [MP(r) — mA(p)]P4 (1)P°Y (p). (4.1)

On the other hand, contracting the full expansion of the vertex (3.3) Isgtinansverse projectors
and then contracting the result with the momentum of the background leg,twe ge

o PHH()PY (Ve (.1, P) = 1 (@)[BaGy + oGP (P (p), (42)
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Figure 4: (A) The vertexUy,y is composed of three main ingredients: the transition aongei, |, which
mixes the gluon with a massless excitation, the propagdttiieomassless excitation, and the (massless
excitation)—(gluon)—(gluon) vertexBf The Feynman rules (with color factors included) for (i) thegaga-

tor of the massless excitation and (i) the “proper vertexction”, or, “bound-state wave functionB,,.

where the relation of Eq (3.7) has been used. Thus, equating both resdtarrives at

il (q)B1(a,r, p) = m(r) —n?(p), Ba(q,r,p)=0. (4.3)

The above relations, together with those of Eq. (3.7), determine exactlgrimeféctorsv, andVa,
of the vertexVy v, namely

Vi(q,r,p) = , Va(q,r,p) =0. (4.4)

We will now carry out the Taylor expansion of both sides of Eq (4.3) in the lgmit 0. To
that end, let consider the Taylor expansion of a funcfiég r, p) aroundq = 0 (andr = —p). In
general we have

f(a,—p—a,p) = f(=p.p) +[2(q-p) + | f'(~p.p) +2(a- p)*f"(—p,p) + O(0°),  (4.5)
where the prime denotes differentiation with respedtde- q)2 and subsequently taking the limit

g—0,i.e.
ooy [0f(@—p—a,p)
f( p,p)—élgﬁo{ 3 (p1 a2 } (4.6)

Now, if the function is antisymmetric undgr« r, as happens with the form factos », then
f(—p, p) = 0; thus, for the case of the form factors in question, the Taylor expaisip= 1,2)

Bi(d,—P—0,p) = [2(a- p) + &|B{(—p. p) +2(q- P)*B/(—p, p) + O(). 4.7)
Using Eq (4.7), and the corresponding expansion for the rhs,

m?(r) — P (p) = mP(g-+ p) — mP(p) = 2(q- p)[M(p))' + O(F) | (4.8)
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Figure 5. The complete BSE for the full three gluon vertﬁf&[w(q, rp).

assuming that thé(0) is finite, and equating the coefficients in front @f- p), we arrive at
(Minkowski space)

[m?(p))’ =il (0)B}(p). (4.9)

Note that this is an exact relation, whose derivation relies only on the WBaBsd-symmetry that
Vauv(0, 1, p) satisfies, as captured by Eq. (2.11) and Eq. (3.9), respectively.

5. The Bethe-Salpeter equation

As has become clear in the previous section, the existenBé isfof paramount importance
for the mass generation mechanism envisaged here; essentially, themgbegt@own to whether
or not the dynamical formation of a massless bound-state excitation of thpagpdated above is
possible. As is well-known, in order to establish the existence of such rdgtate one mugt)
derive the appropriate BSE for the corresponding bound-state wae&dn,B,,, (or, in this case,
its derivative), andii) find non-trivial solutions for this integral equation.

The starting point is the BSE for the vertd%lw(q, r,p), shown in Fig. 5. Note that, unlike
the corresponding SDE of Fig. 2, the vertices where the backgrouma gduentering (carrying
momentumg) are now fully dressed. As a consequence, the corresponding miidiipdernels
appearing in Fig. 5 are different from those of the SDE.

The general methodology of how to isolate from the BSE shown in Fig. 5 ttrespmnding
dynamical equation for the quantiBy,, has been explained in [15, 18]. Specifically, one separates
on both sides of the BSE equation each vertex (black circle) into two paftsgalar” part and
another containing a pole/@?; this separation is shown schematically in Fig. 6. Then, omitting
all other vertices, and the possible poles they too may have, the B, §0q,r, p) is obtained
simply by equating the pole parts on both sides; specifically, [see Fig. 5]

BT — | BRSSP (k-+ )OS (k) A 51

We will next approximate the four-gluon BS kern#! by the lowest-order set of diagrams
shown in Fig. 7, where the vertices are bare, while the internal gluorapgetprs are fully dressed.
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Figure6: (A) The separation of the vertex in regular and pole p#&B¥.The BSE for the bound-state wave
functionBy,.

Going to Euclidean space, we define p?, y=k?, andz= (p+k)?; then, after appropriate Taylor
expansion, and use of the fact tigat= 0 [see Eq. (4.3)], the BSE becomes

/ _ asCa /oo 2
Bi(X) = — 5 |, dWBMA%Y
T
\[i/ d@sin* 6 cosd [z+ 10(x+y) +%(x2+y2+10xy) A2). (5.2)
0
As a further simplification, we approximate the gluon propagAtaj appearing in the BSE

of (5.2) [but not theh?(y)] by its tree level value, that i®(z) = 1/z Then, the angular integration
may be carried out exactly, yielding

_ac o (5035 | [y (a1 B2 3%
2471{/ YB(Y)A%( <3+ ax ax) T WROAMY(8+T 50
3

6. Numerical analysis

Next we discuss the numerical solutions for Eq. (5.3) for arbitrary wadidi&. Evidently, the
main ingredient entering into its kernel is the nonperturbative gluon pedpad(q). In order to
explore the sensitivity of the solutions on the detaild\¢d), we will employ three infrared-finite
forms, to be denoted b (q), A2(q), andAz(q), focusing on their differences in the intermediate
and asymptotic regions of momenta.

(i) Let us start with the simplest such propagator, namely a tree-level masspagator of
the form

= ?+ g, (6.1)

wherem% is a hard mass, that will be treated as a free parameter. On the left pdfigl 8f the
(blue) dotted curve represemis(g?) for my = 376 MeV.
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Figure 7: The Feynman diagrams considered for the BS kernel. Theaittien vertices are approximated
by their tree level values, while the internal gluon progagaare fully dressed.

(ii) The second model is an improved version of the first, where we introdacerniormalization-
group logarithm next to the momentuyf, more specifically

Agl(qZ) — q2 |:1+ :I-K:Ag2 In <q2 Lgn%>:| —I-TT%, (62)

96712

wherep is an adjustable parameter varying in the rangp ef[2,10]. Notice that the hard mass
mj appearing in the argument of the perturbative logarithm acts as an ohitateff; so, instead

of the logarithm diverging at the Landau pole, it saturates at a finite vahe(black) dashed line
represents the Eq. (6.2) when= 16, mg = 376 MeV, andu = 4.3 GeV.

(iii) The third model is simply a physically motivated fit for the gluon propagatormroteted
by the large-volume lattice simulations of Ref. [3], and shown on the leftlpdifrég. 8. The lattice
data presented there correspond 8.#3) quenched lattice simulation, whekéq) is renormalized
at u = 4.3 GeV. This gluon propagator can be accurately fitted by the expression

. 13Ca03, (& +PLMg()
Agl(qZ) — n‘é(qz) +of |1+ 967T21 In < 2 , (6.3)
wheremg(c?) is a running mass given by
m’
)= 6.4
(@) = o (6.4)

and the values of the fitting parametersiare 520 MeV,gi =5.68,01 =8.55and,0, =1.91. On
the left panel of Fig. 8, the (red) continuous line represents the fit éolattice gluon propagator
given by Eq. (6.3). Notice that, in all three cases, we have fixed the véltve (0) = mg ~ 0.14.

Our main findings may be summarized as follows.

(a) In Fig. 8, right panel, we show the solutions of Eq. (5.3) obtained usirigpas the three
propagators shown on the left panel. For the simple massive propa§&ugr @.1), a solution for
B1(q) is found foras = 1.48; in the case af\;(q) given by Eq. (6.2), a solution is obtained when
as = 0.667, while for the lattice propagatdg(q) of Eq. (6.3) a non-trivial solution is found when
as = 0.492.

(b) Note that, due to the fact that Eq. (5.3) is homogeneous and (effectliregy, if B (q)
is a solution then the functiooB;(q) is also a solution, for any real constamt Therefore, the
solutions shown on the right panel of Fig. 8 corresponds to a repegsencase of a family of
possible solutions, where the constamtas chosen such thgf (0) = 1.

10
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Figure 8: The three models for the gluon propagator (left) and theespmnding solutions of the BS equa-
tion for B'(x) (right)

(c) Another interesting feature of the solutions of Eq. (5.3) is the dependsdribe observed
peak on the support of the gluon propagator in the intermediate region of mantpecifically,
an increase of the support of the gluon propagator in the approximage (ar8-1) GeV results in
a more pronounced peakBj(q).

(d) In addition, observe that due to the presence of the perturbative lagaritthe expression
for Ax(q) andAz(q), the corresponding solutiof (q) fall off in the ultraviolet region much faster
than those obtained using the simplgq) of Eq. (6.1).

7. Conclusions

In this presentation we have reported recent progress [27] on theddttice Schwinger mech-
anism in QCD, which is the only self-consistent way to endow gluons with ardjcal mass. This
mechanism relies on the existence of massless bound-state excitations dyhasiical formation
is controlled by a homogeneous BSE. As we have seen, under certain gingphssumptions,
this equation admits non-trivial solutions, thus furnishing additional suppéavor of the specific
mass generation mechanism described in a series of earlier works [9,]10,

In the future it would be particularly important to consider the effects ofndestate poles
in the SD kernels of not only the three-gluon vertex, as we did here,flait other fundamental
vertices of the theory. Such an investigation would eventually give rise tupled system of
various homogeneous integral equations. Especially interesting in thisxt@nthe information
that one might be able to obtain on the corresponding wave-function otitt-ghost channel.
Specifically, according to the recent lattice findings [1, 2, 3, 4, 5], in #epdnfrared the ghost
dressing functior is finite, but the full ghost propagator diverges, a fact that strongdygests
that there is no dynamical mass associated with the ghost field (note thatitbecss ofF can
be easily accounted for by the presence of a gluon mass, saturatingtindate logarithm of
F [10]). One would expect, therefore, that the solution of the corredipgrsystem should give
rise to a non-vanishing;, as before, but to a vanishing ghost-ghost wave function.

11
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